The Anonymous Widower

Energy Storage Takes On Weird New Forms As Sparkling Green Future Takes Shape

The title of this post, is the same as that of this article on CleanTechnica.

The first section is entitled Gravity-Enabled Energy Storage Tested By Scotland’s Gravitricity and explains it well.

It then writes an interesting aside about pairing a Gravitricity system, with an idea from GE, in a section, which is entitled A Wind Power & Energy Storage Twofer, Maybe.

GE were proposing a lattice-style wind-turbine tower, so why not put a Gravitricity system inside?

Hence the maybe in the section title!

I can imagine an office or residential tower with a Gravitricity system built into the lift core in the centre of the building. Top the building with solar panels or wind turbines and you’re going some way towards a building that could be self-sufficient in energy.

Putting two and two together, so they add up to five, is the best way to improve efficiency.

The last section is entitled How To Do Energy Storage Without Any Energy Storage.

As I have never played a computer game, I don’t understand it, but it is based on research at two reputable universities; Delft University of Technology (TU Delft) in the Netherlands and Northwestern University in the US.

Conclusion

We will be seeing weirder and weirder ideas for energy generation and storage in the future.

September 5, 2020 Posted by | Energy, Energy Storage | , | Leave a comment

Generating Clean Energy From The Coal Mines

The title of this post, is the same as that of this article on The Engineer.

This is the introductory paragraph.

With a number of the UK’s abandoned coal mines being repurposed for green energy projects, Jon Excell asks whether the legacy of Britain’s polluting industrial past could hold the key to its low carbon future?

A few points from this must-read article.

  • We spend £2.4 billion every year dealing with the water in abandoned mines.
  • The huge volumes of mine water – heated by geological processes to temperatures as high as 40˚C – could actually help power the UK’s shift to a zero-carbon economy.
  • The Coal Authority now has around thirty different projects.
  • there is an estimated 2.2 million GWh of annually renewing zero carbon geothermal energy held within the mines.
  • Heat can be extracted using boreholes, heat pumps and heat exchangers.
  • The mines can be used to store energy as waste heat.
  • I particularly liked the use of a mine shaft as a thermal flask, which is being developed at Shawfair in Scotland.

The article then talks about Gravitricity.

This is an extract.

According to Gravitricity project development manager Chris Yendell, the potential for the technology is huge.

Research carried out for the company by KPMG identified 60,000 vertical shafts of 200m or greater in Germany alone. Indeed, many of these shafts as deep as 1000m. Meanwhile, following discussions with the Coal Authority, the team believes that in the UK there are at least 100 potentially viable deep vertical mineshafts. “Based on that you could look at a future portfolio in the UK of 2.4GWh of capacity, based on a 10MW peak system with a capacity of 24MWh” said Yendell.

The article finishes on an optimistic note, by outlining how in the former mining areas, there is lots of expertise to maintain and run these new green energy systems, that will replace coal’s black hole.

Conclusion

Coal could be the future! But not as we know it!

September 4, 2020 Posted by | Energy, Energy Storage | , , | Leave a comment

Work Underway On Gravitricity Storage Demo

The title of this post, is the same as that of this article on renews.biz.

This is the introductory paragraph.

Winch specialists Huisman have begun on the fabrication of Gravitricity’s €1.1m energy storage demonstrator, which is due for trial in Edinburgh early next year.

The article also gives a few details of the system.

  • It uses a 16 metre lattice tower.
  • Two twenty-five tonne weights are raised and lowered.
  • An output of 250 kW is quoted.

Unless they are using a deep hole to increase the height, Omni’s Potential Energy Calculator says that the stored energy is only 2.18 kWh.

So it will only supply 250 kW for about half a minute.

But as it’s a demo, that is probably enough to validate the concept.

Coal mines with shafts around a thousand metres deep are not unknown in the UK and a system with two twenty-five weights would be able to store a very useful 136 kWh.

But that is still very small compared to Highview Power‘s liquid air battery being build in Manchester, that I wrote about in Climate Emission Killer: Construction Begins On World’s Biggest Liquid Air Battery. That battery has these characteristics.

  • The size of the battery is 250 MWh.
  • It can delivery up to 50 MW of power. which translates to five hours at full power, if the battery is full.
  • If it was already working, it would be the ninth biggest battery of all types, except for pumped storage, in the world.
  • It will be double the size of the largest chemical battery, which was built by Tesla in South Australia.

Both battery technologies are being backed by the UK government.

Conclusion

I don’t believe that the two battery systems will compete directly.

In terms of size in Explaining Gravitricity, I state that in the UK, 2.2 MWh of storage might be possible for Gravitricity. This is very small compared with Highview Power’s 250 MWh in Manchester.

I suspect though, that capital and running costs may well be in Gravitricity’s favour and the system will be ideal for some applications, where space is limited.

Gravitricity’s systems may also be an innovative way of capping dangerous mine shafts.

August 31, 2020 Posted by | Energy, Energy Storage | , , | 2 Comments

Beeching Reversal – South Yorkshire Joint Railway

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This railway seems to have been forgotten, as even Wikipedia only has a rather thin entry for the South Yorkshire Joint Railway.

The best description of the railway, that I’ve found is from this article in the Doncaster Free Press, which is entitled South Yorkshire Railway Line, Which Last Carried Passengers 100 Years Ago Could Be Reopened.

This is said.

The line remains intact, and recently maintained, runs from Worksop through to Doncaster, via North and South Anston, Laughton Common/Dinnington and Maltby.

I jave got my helicopter out and navigating with the help of Wikipedia, I have traced the route of the South Yorkshire Joint Railway (SYJR) between Worksop and Doncaster.

Shireoaks Station

This Google Map shows the Southern end of the SYJR on the Sheffield and Gainsborough Central Line between Shireoaks and Kiveton Park stations.

Note.

  1. Shireoaks station is in the East.
  2. Kiveton Park station is in the West.
  3. The SYJR starts at the triangular junction in the middle of the map.
  4. Lindrick Golf Club, where GB & NI, won the Ryder Cup in 1957 is shown by a green arrow to the North of Shireoaks station.
  5. The original passenger service on the SYJR, which closed in the 1920s, appears to have terminated at Shireoaks station.

The line immediately turns West and then appears to run between the villages of North and South Anston.

Anston Station

This Google Map shows the location of Anston station.

Note that the SYJR goes between the two villages and runs along the North side of the wood, that is to the North of Worksop Road.

Dinnington & Laughton Station

This Google Map shows the lacation of the former Dinnington & Laughton station.

Note that the SYJR goes to the west side of both villages, so it would have been quite a walk to the train.

Maltby Station

This Google Map shows the location of the former Maltby station.

Note.

  1. The SYJR goes around the South side of the village.
  2. The remains of the massive Maltby Main Colliery, which closed several years ago.

I wonder if they fill the shafts of old mines like this. if they don’t and just cap them, they could be used by Gravitricity to store energy. In Explaining Gravitricity, I do a rough calculation of the energy storage with a practical thousand tonne weight. Maltby Main’s two shafts were 984 and 991 metres deep. They would store 2.68 and 2.70 MWh respectively.

It should be noted that Gravitricity are serious about 5.000 tonnes weights.

Tickhill & Wadworth Station

This Google Map shows the location of the former Tickhill & Wadworth station.

Note.

  1. Tickhill is in the South and Wadworth is in the North.
  2. Both villages are to the West of the A1 (M)
  3. The SYJR runs in a North-Easterly direction between the villages.

The station appears to have been, where the minor road and the railway cross.

Doncaster iPort

The SYJR then passes through Doncaster iPort.

Note.

  1. The iPort seems to be doing a lot of work for Amazon.
  2. The motorway junction is Junction 3 on the M18.
  3. The SYJR runs North-South on the Western side of the centre block of warehouses.

This is Wikipedia’s introductory description of the iPort.

Doncaster iPort or Doncaster Inland Port is an intermodal rail terminal; a Strategic Rail Freight Interchange, under construction in Rossington, Doncaster at junction 3 of the M18 motorway in England. It is to be connected to the rail network via the line of the former South Yorkshire Joint Railway, and from an extension of the former Rossington Colliery branch from the East Coast Main Line.

The development includes a 171-hectare (420-acre) intermodal rail terminal to be built on green belt land, of which over 50 hectares (120 acres) was to be developed into warehousing, making it the largest rail terminal in Yorkshire; the development also included over 150 hectares (370 acres) of countryside, the majority of which was to remain in agricultural use, with other parts used for landscaping, and habitat creation as part of environment mitigation measures.

It ;looks like the SYJR will be integrated with the warehouses, so goods can be handled by rail.

Onward To Doncaster

After the iPort, the trains can take a variety of routes, some of which go through Doncaster station.

I have some thoughts on the South Yorkshire Joint Railway (SYJR).

Should The Line Be Electrified?

This is always a tricky one, but as there could be a string of freight trains running between Doncaster iPort and Felixstowe, something should be done to cut the carbon emissions and pollution of large diesel locomotives.

Obviously, one way to sort out Felixstowe’s problem, would be to fill in the gaps of East Anglian electrification and to electrify the Great Northern and Great Eastern Joint Line between Peterborough and Doncaster via Lincoln. But I suspect Lincolnshire might object to up to fifteen freight trains per hour rushing through. Even, if they were electric!

I am coming round to the believe that Steamology Motion may have a technology, that could haul a freight  train for a couple of hours.

These proposed locomotives, which are fuelled by hydrogen and oxygen, will have an electric transmission and could benefit from sections of electrification, which could power the locomotives directly.

So sections of electrification along the route, might enable the freight trains to go between Felixstowe and Doncaster iPort without using diesel.

It should be said, that Steamology Motion is the only technology, that I’ve seen, that has a chance of converting a 3-4 MW diesel locomotive to zero carbon emissions.

Many think it is so far-fetched, that they’ll never make it work!

Electrification of the line would also enable the service between Doncaster and Worksop to be run by Class 399 tram-trains, which are pencilled in to be used to the nearby Doncaster Sheffield Airport.

What Rolling Stock Should Be Used?

As I said in the previous section, I feel that Class 399 tram-trains would be ideal, if the line were to be electrified.

Also, if the line between Shireoaks and Kiveton Park stations were to be electrified to Sheffield, this would connect the South Yorkshire Joint Line to Sheffield’s Supertram network.

Surely, one compatible tram-train type across South Yorkshire, would speed up development of a quality public transport system.

Conclusion

This seems to be a worthwhile scheme, but I would like to see more thought on electrification of the important routes from Felixstowe and a unified and very extensive tram-train network around Sheffield.

 

July 5, 2020 Posted by | Energy Storage, Transport | , , , , , , , , , , | 4 Comments

Lithium Battery Cell Prices To Almost Halve By 2029

The title of this post, is the same as that of this article on Energy Storage News.

This is the introductory paragraph.

Lithium-ion cell prices will fall by around 46% between now and 2029, according to new analysis from Guidehouse Insights, reaching US$66.6 per kWh by that time.

The rest of the article contains a lot more useful predictions.

I will add a prediction of my own.

The drop in prices of lithium-ion batteries will surely result in a lot more applications, in the following areas.

  • Battery-electric vehicles
  • Battery-electric vans and buses and light-trucks.
  • Battery-electric trams and trains
  • Battery-electric aircraft.
  • Battery-electric ships.
  • Battery-electric tractors
  • Battety-electric construction plant

Lithium-ion batteries will also be used in hydrogen-powered versions of any of the above.

The cost of lithium-ion batteries, will also lead to more applications in the following areas.

  • Grid energy storage or as it sometimes called; front-of-the-meter storage.
  • Heavy trucks
  • Double-deck buses
  • Railway locomotives

These could use a very large number of lithium-ion cells.

Conclusion

Because as yet, there is no alternative to lithium-ion cells for mobile applications, I think we’ll see grid-energy storage going to one of the alternatives like Gravitricity, Highview Power or Zinc8.

 

 

June 9, 2020 Posted by | Energy Storage, Transport | , , , | 2 Comments

US Deployed 98MW / 208MWh Of Energy Storage During First Quarter Of 2020

The title of this post, is the same as that of this article on Energy Storage News.

This is the introductory paragraph.

Research firm Wood Mackenzie has held onto its forecast that the US will deploy around 7GW of energy storage annually by 2025 and found that 97.5MW / 208MWh of storage was installed during the first quarter of this year.

The United States may be led by a President, who doesn’t believe in global warming, but individuals and businesses in the country seem to believe in battery storage and the benefits it brings.

This is an interesting paragraph from the article.

The overall deployments were also down in megawatt-hour terms: 208MWh in total was a 43% decrease quarter-on-quarter and down 34% year-on-year. Wood Mackenzie found that this was due to a majority of front-of-the-meter projects coming online being short duration energy storage. This meant that FTM storage accounted for 13% of Q1 2020 deployments in megawatt-hours but for 22% of the total megawatts deployed.

Front-of-the-meter storage is mainly used to maintain supplies, when demand is going up and down like a yo-yo in an area. Companies like Gresham House Energy Sorage Fund seem to be funding these batteries in the UK. Gravutricity, Highview Power and Zinc8 also seem to be targeting this market.

Conclusion

It would appear that the energy storage market is healthy on both sides of the Atlantic

June 9, 2020 Posted by | Energy Storage | , , , , | 5 Comments

Explaining Gravitricity

Gravitricity is a simple way to store excess electricity, that is perhaps being produced by intermittent renewable resources like wind or solar power.

This is their explanatory video.

It may look simple, but how much energy can a typical system store.

The video says that depths can be between 150 and 1,500 metres and that the weight can be up to 5,000 tonnes.

  • A quick calculation using Omni’s Potential Energy Calculator with 500 metres and 500 tonnes gives 681 kWh.
  • But build a system in a four kilometre deep gold mine with 5000 tonnes and you could store 54.5 MWh.
  • Perhaps, that is extreme, but you can understand why the South Africans are interested in the technology.
  • Perhaps, more practically, we have some coal mines in the UK, where the winding shafts are around 800 metres, which with a 1000 tonnes would store 2.2 MWh.

These are practical amounts of power.

Gravitricity And South Africa

This article on ESI Africa is entitled Gravitricity Sets Sights On South Africa To Test Green Energy Tech.

This is the introductory paragraph.

Disused mine shafts in South Africa have been identified as an ideal location to test UK-based energy start-up Gravitricity’s green energy technology.

Remember that mine depths in South Africa are often measured in kilometres rather than metres.

 

June 8, 2020 Posted by | Energy Storage | , | 2 Comments

Prowling for Solutions To Unleash Renewable Energy

The title of this post, is the same as this article on Toolbox.

It is a good summary of the best methods of storing renewable energy without using chemical batteries.

Gravitricity, Energy Vault and Highview Power are all mentioned.

This last paragraph, explains some of the philosophy behind Vermont looking seriously at Highview Power.

Vermont may well be tempted by liquid air energy storage because of its flexibility — simply requiring a two-acre site anywhere. One possible location could be near an abandoned power station. That’s a beautiful solution because the transmission lines that once transported the electricity from the plant are built and ready to use in the renewable era.

Note that a two-acre site is slightly smaller than a football pitch.

It is rather elegant to replace a coal- or gas-fired power-station with an environmentally-friendly energy storage system on the same site, which effectively does the same job of providing energy.

The article doesn’t mention employment, but surely many of the existing workforce can be easily retrained for the new technology.

January 16, 2020 Posted by | Energy Storage | , , , , | Leave a comment

Gravitricity Gets An Imperial Seal Of Approval

This article on Renewable Energy Magazine is entitled Gravitricity Technology Turns Mine Shafts into Low Cost Power Storage Systems.

This is the first paragraph.

A report by independent analysts at Imperial College London has found that Scotland-based Gravitricity’s gravity-fed energy storage system may offer a better long-term cost of energy storage than batteries or other alternatives – particularly in grid balancing and rapid frequency response services.

I am starting to believe that Gravitricity’s simple, but patented system has a future.

The Imperial report says the system has the following advantages.

  • More affordable than batteries.
  • Long life.
  • No long term degredation.

The main requirement is a shaft, which can be newly sunk or an old mine shaft.

Hopefully, reusing old mine shafts, must save costs and remove hazards from the landscape.

No-one can say the system isn’t extremely scientifically green.

I have some thoughts.

Eco-Developments

Could clever design allow a mine shaft to be both capped and turned into an energy storage system?

Perhaps then housing or other developments could be built over the top, thus converting an area unsuitable for anything into something more valuable. with built in energy storage.

More Efficient Motor-Generators

One of the keys to efficient operation of a Gravitricity system is efficient motor-generators.

These are also key to efficient regenerative braking on trains, trams and other vehicles.

So is enough research going into development of efficient motor-generators?

May 22, 2018 Posted by | Energy Storage | | 2 Comments

Report: Gravity-Based Energy Storage Could Prove Cheaper Than Batteries

The title of this post, is the same as this article on Business Green.

This is said.

Storing energy by suspending weights in disused mine shafts could be cheaper than batteries for balancing the grid, new research has found.

According to a report by analysts at Imperial College London and seen by BusinessGreen, gravity-fed energy storage systems can provide frequency response at a cost cheaper than most other storage solutions.

 

This was the conclusions of the Imperial College report.

According to the paper, gravity-fed storage providing frequency response costs $141 per kW, compared to $154 for a lithium-ion battery, $187 for lead acid batteries and $312 for flywheel.

Despite its high upfront cost, the paper argued that unlike battery-based storage systems, gravity-fed solutions have a long lifespan of more than 50 years and aren’t subject to degradation. This means they could cycle several times a day – allowing them to ‘stack revenues’ from different sources.

I always puzzle why this idea hasn’t been seriously tried before.

April 19, 2018 Posted by | Energy Storage | , | Leave a comment