The Anonymous Widower

Gravitricity And Arup Secure Funding To Develop Below Ground Hydrogen Storage

The title of this post, is the same as that of this article on Offshore Energy.

This is the first paragraph.

Edinburgh-based storage tech firm Gravitricity and British environment consultancy Arup have secured $372,073 (£300,000) from the UK government to study the feasibility of storing hydrogen in purpose-built underground shafts.

The biggest thing about this grant is that it has gone to Scottish start-up; Gravitricity and one of the UK’s most respected engineering consultancy companies; Arup, who have over 16,000 staff in their world-wide operation.

For Gravitricity, it is the sort of deal, that could make this small company.

It follows their link up with world-class Dutch winch specialist Huisman, who provide the winches they need.

If you judge a company, by their friends, Gravitricity now have two of the biggest and best.

This paragraph described the objectives of the study.

The parties will collaborate to deliver a complete system design and commercial feasibility report for the new idea, as well as identify a potential site for their underground hydrogen store. The design will also include integration with gravity energy storage and inter-seasonal heat.

This could turn out to be one of the most significant energy storage announcements of 2022.

Conclusion

I am not disappointed that I invested a small sum in Gravitricity through a crowd funding.

May 20, 2022 Posted by | Energy Storage, Hydrogen | , , | Leave a comment

Wind And Solar Boom Will Bring Energy Surplus

The title of this post, is the same as that of this article on The Times.

Under the picture, is this sub-title.

The government has set a target of 50 gigawatts of offshore wind farms by 2030, up from about 10 gigawatts at present.

According to this Wikipedia list of offshore wind farms, the UK currently has 2180 offshore turbines with a capacity of 8113 MW.

These wind farms appear to be planned.

Hornsea

The Hornsea wind farm is currently supplying 1.2 GW to the grid, but it is planned to be expanded to 6 GW, which is another 4.8 GW.

East Anglia Array

The East Anglia Array is currently supplying 0.7 GW to the grid, but it is planned to be expanded to 7.2 GW, which is another 6.5 GW.

Sofia

The Sofia wind farm will supply 1.4 GW from 2026.

Moray East

The Moray East wind farm will supply 0.95 GW from 2022.

Neart Na Gaoithe

The Neart Na Gaoithe wind farm will supply 0.45 GW from 2023.

Triton Knoll

The Triton Knoll wind farm will supply 0.86 GW from 2022.

Seagreen

The Seagreen wind farm will supply 1.1 GW from 2023.

Dogger Bank

The Dogger Bank wind farm will supply 3.6 GW from 2025.

Moray West

The Moray West wind farm will supply 1.2 GW from 2025.

Rampion 2

The Rampion 2 wind farm will supply 1.2 GW before 2030.

Norfolk Boreas

The Norfolk Boreas wind farm will supply 1.8 GW before 2030

Norfolk Vanguard

The Norfolk Vanguard wind farm will supply 1.8 GW before 2030

These wind farms total up to 31.1 GW

Morgan And Mona

The Morgan and Mona wind farms will supply 3 GW from 2028.

ScotWind

This map shows the wind farms in the latest round of leasing in Scotland.

These wind farms should be providing 24.8 GW by 2030.

Celtic Sea

In Two More Floating Wind Projects In The Celtic Sea, I give details of six wind farms to be developed in the Celtic Sea, that will produce a total of 1.2 GW.

All should be delivered by 2030.

Northern Horizons

In Is This The World’s Most Ambitious Green Energy Solution?, I talk about Northern Horizons, which will produce 10 GW of wind energy from 2030.

An Armada Of Wind Farms

As many of these wind farms will be floating and wind-powered, the collective noun must surely be an armada.

These are some figures.

  • The size is certainly spectacular at 70.1 GW.
  • As the UK electricity consumption in 2020-2021 was 265.4 TWh, the average hourly production throughout the year is 30.3 GW.
  • As I write this post, the UK is generating 30.1 GW.

As the best offshore wind farms have a capacity factor of around fifty percent, we should be able to power the UK with wind power alone.

So when The Times says this in the first two paragraphs of the article.

Britain will have excess electricity supplies for more than half of the year by 2030 as a huge expansion of wind and solar power transforms the energy system, a new analysis suggests.

Energy storage technologies, including batteries and electrolysers to make hydrogen, will need to be deployed at massive scale to prevent this surplus electricity going to waste, according to LCP, a consultancy.

The article would appear to correct.

The Need For Energy Storage

If we look at energy production at the current time, energy production is as follows.

  • Biomass – 0.5 GW
  • Gas – 17 GW
  • Nuclear – 5 GW
  • Onshore Wind – 12 GW with 20 % capacity factor – 2.4 GW
  • Offshore Wind – 8.1 GW with 30 % capacity factor – 2.4 GW
  • Interconnects – 0.4 GW
  • Others – 0.5 GW

This totals up to 28.2 GW.

In 2030, energy production could be as follows.

  • Biomass – 0.5 GW
  • Nuclear – 5 GW
  • Onshore Wind – 12 GW with 20 % capacity factor – 2.4 GW
  • Offshore Wind – 30 GW with 30 % capacity factor – 9 GW
  • Floating Offshore Wind – 40 GW with 50 % capacity factor – 20 GW
  • Others – 0.5 GW

This totals up to 37.4 GW.

So if you take a typical day, where on average throughout the day we are producing around 7 GW more of electricity than we need, we will actually produce around 7 * 24 GWh = 168 GWh of excess electricity

Whichever was you look at it, we have got to do something concrete with a large amount of electricity.

  • Store it in batteries of various types from lithium ion, through new types of batteries like those being developed by Highview Power and Gravitricity to pumped hydro storage.
  • Store the energy in the batteries of electric cars, vans, buses, trucks, trains and ships.
  • Store the energy in Norwegian pumped hydro storage.
  • Convert it to hydrogen using an electrolyser and blend the hydrogen with the natural gas supply.
  • Convert it to hydrogen using an electrolyser and use the hydrogen to make zero-carbon steel, concrete and chemicals.
  • Convert it to hydrogen using an electrolyser and develop new zero-carbon industries.
  • Convert it to hydrogen using an electrolyser and store the hydrogen in a depleted gas field.
  • Sell it to Europe, either as electricity or hydrogen.

Note.

  1. We are going to have to build a lot of batteries and I suspect they will be distributed all round the country.
  2. We are going to have to build a lot of hydrogen electrolysers.
  3. We have world class battery and electrolyser companies.

We should also fund the following.

  • Developments of technology, that makes better batteries, electrolysers, boilers and heat pumps.
  • I would also do a lot of work to increase the capacity factor of wind farms.

I also believe that if we have masses of electricity and hydrogen, we might find as a country, it’s very beneficial in terms of jobs, exports and a healthier economy to invest in certain industries.

Conclusion

The future is rosy.

 

May 7, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , | 4 Comments

Australian Start-Up Eyes Disused Mine Shafts For Giga-Scale Gravity Energy Storage

Thye title of this post, is the same as that of this article on Renew Economy.

This is the first paragraph.

A newly launched Australian start-up has unveiled its own take on gravitational energy storage technology that will use super-heavy weights in legacy mine shafts to capture and release energy, with around 3GWh of potential storage capacity already identified for development.

Note.

  1. The company is called Green Gravity.
  2. I can’t find a web site.

The idea seems very much like Gravitricity.

Gravitricity’s ideas may be patented.

March 28, 2022 Posted by | Energy Storage | , , , | Leave a comment

ScotWind N3 Offshore Wind Farm

I introduced this wind farm in ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations as Lease 15 – The Odd Bid Out.

I said this.

In any design competition, there is usually at least one design, that is not look like any of the others.

In the successful bids for the ScotWind leases, the bid from Magnora ASA stands out.

  • The company has an unusual home page on its offshore wind web site.
  • This page on their web site outlines their project.
  • It will be technology agnostic, with 15MW turbines and a total capacity of 500MW
  • It will use floating offshore wind with a concrete floater
  • It is estimated, that it will have a capacity factor of 56 %.
  • The water depth will be an astonishing 106-125m
  • The construction and operation will use local facilities at Stornoway and Kishorn Ports.
  • The floater will have local and Scottish content.
  • The project will use UK operated vessels​.
  • Hydrogen is mentioned.
  • Consent is planned for 2026, with construction starting in 2028 and completion in 2030.

This project could serve as a model for wind farms all round the world with a 500 MW power station, hydrogen production and local involvement and construction.

I have some thoughts.

The Location Of The Windfarm

This Google Map shows the area between Stornaway and Kishorn.

Note.

  1. The island in the North-West of the map is Lewis and Harris.
  2. The windfarm will be to the North-West of the island.
  3. Stornaway is on the isthmus, that connects the small peninsular on the East of the island.
  4. The port of Stornaway is on the South side of the isthmus.
  5. The port of Kishorn is shown by the red arrow.

This second Google Map shows the town of Stornaway.

Note that Stornaway has a substantial airport in the East and a large port.

This third Google Map shows Loch Kishorn in more detail.

Kishorn Yard at the Kishorn Port was originally built to create the large structures in steel and concrete for the development of North Sea Oil. This is an extract from the Wikipedia entry.

The yard was therefore well suited to build the 600,000-tonne concrete Ninian Central Platform, which was built in 1978. Material was supplied by sea and when complete the platform needed seven tugs to tow it to its operating position in the North Sea. The Ninian Central Platform still holds the record as the largest movable object ever created by man.

If the yard could build the Ninian Central Platform, I’m sure that Magnora ASA intend to build the concrete floater in Loch Kishorn.

The Floating Wind Turbines

In visualisations on the site, the floating wind turbines are shown as sitting on floating three-pointed star structures.

As Technip UK are partners in the project and I suspect they are a subsidiary of  TechnipFMC, who are a well-known company described like this in Wikipedia.

TechnipFMC plc is a French-American, UK-domiciled global oil and gas company that provides complete project life cycle services for the energy industry.

The company would certainly have the expertise to design a floating platform for a wind farm.

Like the WindFloat, it could be based on semi-submersible offshore platform technology.

The Magnora web site, say that 15 MW wind turbines will be used, so these will probably be some of the largest wind turbines in the world.

Currently, the largest floating wind turbines are the 9.5 MW units at the Kincardine Wind Farm in Scotland.

33 x 15 MW wind turbines would give a capacity of 495 MW.

I suspect the turbines would be towed to Stornaway or Kishorn for major servicing.

What Will The Concrete Floater Do?

There are a variety of tasks that the concrete floater could handle.

  • It could collect the electricity from the wind turbines. I suspect this would give advantages in the connection and disconnection of individual turbines into the windfarm.
  • Any electricity conversion necessary would be handled on the floater.
  • The floater would handle the seaward end of the connection to the shore.
  • There could be a battery or energy storage device on the floater.
  • Could a Gravitricity battery or something similar be built into the floater?
  • Magnora mention hydrogen on their web site. Could an electrolyser be built on the floater and the hydrogen distributed to Lewis and Harris by pipeline?

Some oil and gas platforms are very comprehensive and there is no reason why there can’t be substantial processing done on the floater.

The Concrete Floater

According to Wikipedia, offshore concrete structures have been in use successfully for about 50 years. Nearly fifty are in use in the oil and gas industry.

Wikipedia introduces its section on floating concrete structures like this.

Since concrete is quite resistant to corrosion from salt water and keeps maintenance costs low, floating concrete structures have become increasingly attractive to the oil and gas industry in the last two decades.

I also wonder if a floating concrete structure would make a good hydrogen storage tank, if there is electrolysis on the floater on the to turn electricity into hydrogen.

Conclusion

My original conclusion after reading about this wind farm was.

This project could serve as a model for wind farms all round the world with a 500 MW power station, hydrogen production and local involvement and construction.

I have no reason to change my mind and feel that the concept may have even more possibilities.

March 27, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , | 3 Comments

Longer Duration Energy Storage Demonstration Programme, Stream 1 Phase 1: Details Of Successful Projects

The title of this post, is the same as that of this document from the UK Government.

This is the introduction.

Stream 1 aims to accelerate commercialisation of innovative longer duration energy storage projects through to actual demonstrations. During Phase 1, projects will be expected to mobilise their proposed technologies to prepare for potential deployment on the UK energy system.

These are the projects.

Ballylumford Power-to-X

This is the description of this project in Northern Ireland.

B9 Energy Storage will receive £986,082 to mobilise a 20MW membrane free electrolyser green hydrogen project. Using otherwise curtailed wind power, hydrogen produced will be stored in local underground salt caverns for later use as a fuel in transport and electricity sectors, creating a full-cycle hydrogen economy (production, storage, distribution and usage) on site.

Note.

Ballylumford power station is a 600 MW gas-fired power station, that provides half of Northern Ireland’s electricity.

A 20 MW electrolyser will produce just under nine tonnes of hydrogen per day.

This Google Map shows the location of the power station opposite the port of Larne.

Note.

Ballylumford power station is clearly visible to the East of the channel towards the bottom of the map.

Ballylumford is also the Irish end of the HVDC Moyle interconnector from Scotland, which has a capacity of 500 MW.

Ballylumford would appear to have enough power for a large electrolyser.

Salt Beds In Northern Ireland

This document on the British Geological Survey web site is entitled Geological Storage In Northern Ireland.

The document discusses Irelands energy needs and gives a good description of using compressed air energy storage in salt caverns.

Then these two paragraphs describe the salt bed in Northern Ireland compare them to other deposits under Great Britain.

Thick halite deposits, found both onshore in Northern Ireland and immediately offshore in the North Channel, offer potential for salt cavern storage facilities. The salt deposits occur as bedded deposits with minor halokinesis (geological movement of salt) forming salt swells rather than pillows or domes so that the height of any cavern may be restricted by bed thickness. Pure salt beds tend to be thin (approximately 100-250 metres maximum thickness) compared to those used elsewhere and the presence of significant insoluble impurities and minor intrusive dolerite dykes or sills may reduce their suitability.

The Larne and Carrickfergus area of County Antrim is the only part of the whole island where thick salt beds occur. Elsewhere in the UK parts of Cheshire, Lancashire, Teesside, Humberside and Dorset have similar, or thicker, developments of salt beds and gas storage facilities are either in construction, or are already in operation.

It would appear that the thick salt beds in the Larne and Carrickfergus area could be suitable for gas storage.

Ballylumford might actually be on top of the salt beds, as Carrickfergus is a few miles to the South.

On a personal note, I used to work for ICI Mond Division and during that time and immediately afterwards, I met many people, who had been into the salt mines and worked with boreholes extracting the salt and the one thing everybody said about the salt mine, was that water must not get in.

Membrane-Free Electrolysis

I saw this in operation when I worked at ICI Mond. Most of their hydrogen and chlorine was produced using the main Castner-Kellner process at Castner-Kellner works in Runcorn. That is a nasty process that uses a lot of mercury, which got into the air and plant operators’ bodies.

But ICI also had a much smaller plant, where they used simple electrolysers, that had a metal cell, with a concrete top, with the anode and cathode going through the concrete into the brine. I seem to remember that its main purpose was to provide mercury-free hydrogen, chlorine and sodium hydroxide. I can remember seeing workers rebuilding the cells, as was done on a regular basis.

These were membrane free electrolysers and had been running successfully for many years.

Searching the Internet for “membrane free electrolyser” I found a company in Doncaster called CPH2.

The home page on their web site declares

Clean Power Hydrogen are the manufacturers of the unique Membrane-Free Electrolyser

Turning to the About page, this is said.

Being passionate about hydrogen as clean energy for the future, we wanted to find an alternative to PEM electrolysers as these had barriers to adoption. We realised that the cleanest way to produce hydrogen was by membrane-free water electrolysis, and in doing so, it would be a less expensive and more robust technology.

Dr. Nigel Williamson and Joe Scott established CPH2 (Ireland) in 2012 with the ambition to help clean up the environment for our children and future generations. Entering the green technology sector; a high growth and profitable market, they developed a Membrane-Free Electrolyser™ to produce hydrogen faster, more reliably, and more cost-effectively than other electrolysers.

They also have the ambition to be leading developer and manufacturer of green hydrogen technologies and an Irish connection.

My experience says that their technology will work. Especially, with the application of modern materials.

Have the Government backed the Ballylumford Power-to-X project, as they can back two promising technologies with one grant?

GraviSTORE

This is the description of this project.

Gravitricity Limited will receive £912,410.84 to design their multiweight energy store demonstrator project, which will store and discharge energy by lifting and lowering multiple weights in a vertical underground shaft.

Note.

  1. I like the Gravitricity concept and have invested through crowdfunding.
  2. The project will be based on a brownfield site in Northern England.
  3. Gravitricity’s current demonstrator in Edinburgh, which I wrote about in Gravitricity Celebrates Success Of 250kW Energy Storage Demonstrator, only uses a single weight, but this project talks about multiple weights.

According to other sources on the Internet, the demonstrator will have a storage capacity of 4 MWh and will be built on a brownfield site.

Will we see Gravitricity coming to a disused deep coal mine near you?

Long Duration Offshore Storage Bundle

This is the description of this project.

Subsea 7 Limited and FLASC B.V. will receive £471,760.00 to further develop the Long Duration Offshore Storage Bundle which will store energy as a combination of pressurised seawater and compressed air, using an innovative hydro-pneumatic technology.

Note.

  1. Subsea 7 Limited are a subsea engineering, construction and services company serving the offshore energy industry, domiciled in Luxembourg with headquarters in London.
  2. According to their web site, FLASC B.V. is a spin-off of the University of Malta, established in The Netherlands in 2019.

On the page on the FLASC web site, which is labelled The Technology, this is said.

FLASC is an energy storage device that can be integrated directly into a floating offshore platform. Energy is stored using a hydro-pneumatic liquid piston, driven by a reversible pump-turbine.

Charging Mode: electricity is used to pump water into a closed chamber containing pre-charged air.

Discharging Mode: the pressurised water is released through a hydraulic turbine to generate electricity.

FLASC leverages existing infrastructure and supply chains, along with the marine environment itself as a natural heatsink, resulting in a safe, reliable and cost-effective solution.

There is also this video.

The news page on the FLASC web site is a comforting read.

My knowledge of modelling vessel systems for chemical plants, tells my brain to like it.

Vanadium Flow Battery Longer Duration Energy Asset Demonstrator

This is the description of this project.

Invinity Energy Systems will receive £708,371 to demonstrate how a 40 MWh Vanadium Flow Battery could deliver long duration storage-enabled power on demand from UK-based solar generation.

Note.

  1. I wrote about Invinity Energy Systems in UK’s Pivot Power Sees First Battery On Line By 2021.
  2. Invinity Energy Systems was formed by a merger of RedT and Avalon Battery.
  3. The project appears to be located at Bathgate in Scotland.

This picture from EdF shows a large vanadian flow battery.

Invinity Energy Systems flow battery at Energy Superhub Oxford

If this project works out, vanadium flow batteries would be a good replacement for lithium-ion batteries.

Cheshire Energy Storage Centre

This is the description of this project.

io consulting will receive £1 million to enable its consortium to develop an electricity storage facility which could use mothballed EDF gas cavities in Cheshire utilising Hydrostor’s Advanced Compressed Air Energy Storage technology

Note.

  1. This is another project based on salt caverns.
  2. I wrote about Canadian company; Hydrostor in Gigawatt-Scale Compressed Air: World’s Largest Non-Hydro Energy-Storage Projects Announced.
  3. Hydrostor have received at least one large order for their system.

I have put Hydrostor on my list of tecnologies that should make it.

Conclusion

This is a well-balanced list of projects.

I would rate success as follows.

  • Ballylumford Power-to-X – 60 %
  • GraviSTORE – 80 %
  • Long Duration Offshore Storage Bundle – 60 %
  • Vanadium Flow Battery Longer Duration Energy Asset Demonstrator – 70 %
  • Cheshire Energy Storage Centre – 80 %

But then all these projects are a bit of a gamble

 

February 24, 2022 Posted by | Energy, Energy Storage, Finance | , , , , , , , , , , , , | 2 Comments

Disused Coal Mine Could Host Gravity Energy Storage Project

The title of this post, is the same as that of this article on Power Engineering International.

It does seem that Gravitricity has made a breakthrough, with the announcement of a full-size demonstration project in the Czech Republic.

  • The project is based at the mothballed Staříč coal-mine in the Moravian Silesian region.
  • They have backing from the European Investment Bank.
  • This project will be delivered through the European Commission’s Project Development Assistance scheme.
  • The Czech Republic seem to have carried out checks, with their own consultants.

It looks to me, that Gravitricity have passed the due diligence procedures of some high-powered agencies.

But this paragraph from the article must be important.

Gravitricity estimates there are around 14,000 mines worldwide which could be suitable for gravity energy storage.

If they can successfully store energy in one mine in the Czech Republic, how many of the 14,000 will be suitable for use?

I doubt it will be a small number, as mining engineers tend to be a conservative bunch and most of those mines will have been built to similar rules by similar machines and techniques.

A search of the Internet indicates that Staříč coal-mine has a depth of over a kilometre.

Using Omni’s Potential energy calculator, 12,000 tonnes and a kilometre give a figure of 32.69 MWh.

32 MWh may seem a small amount, but it would power one of these 4 MW Class 90 locomotives for eight hours.

At their typical operating speed of 100 mph, whilst hauling eight coaches, they’d travel a distance of eight hundred miles or from London to Edinburgh and back!

February 3, 2022 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

Could Norfolk And Suffolk Be Powered By Offshore Wind?

This week this article on the BBC was published, which had a title of Government Pledges £100m For Sizewell Nuclear Site.

These are the first three paragraphs.

The government is putting up £100m to support the planned Sizewell C nuclear plant in Suffolk, Business and Energy Secretary Kwasi Kwarteng has announced.

The investment marks the latest stage in efforts to build the £20bn reactor on the east coast of England.

However, it does not commit the government to approving the project, which is still subject to negotiations.

My view of the proposed Sizewell C nuclear plant is that of an engineer, who used to live within thirty minutes of the Sizewell site.

  • Hinckley Point C power station, which is currently being constructed, will have a nameplate capacity of 3.26 GW.
  • Sizewell C would probably be to a similar design and capacity to Hinckley Point C.
  • Sizewell C would likely be completed between 2033-2036.
  • Sizewell B is a 1250 MW station, which has a current closing date of 2035, that could be extended to 2055.
  • East Anglia and particularly the mega Freeport East, that will develop to the South at the Ports of Felixstowe and Harwich will need more electricity.
  • One of the needs of Freeport East will be a large supply of electricity to create hydrogen for the trains, trucks, ships and cargo handling equipment.
  • Sizewell is a large site, with an excellent connection to the National Grid, that marches as a giant pair of overhead cables across the Suffolk countryside to Ipswich.

But.

  • We still haven’t developed a comprehensive strategy for the management of nuclear waste in the UK. Like paying for the care of the elderly and road pricing, it is one of those problems, that successive governments have kept kicking down the road, as it is a big vote loser.
  • I was involved writing project management software for forty years and the building of large nuclear power plants is littered with time and cost overruns.
  • There wasn’t a labour problem with the building of Sizewell B, as engineers and workers were readily available. But with the development of Freeport East, I would be very surprised if Suffolk could provide enough labour for two mega-projects after Brexit.
  • Nuclear power plants use a lot of steel and concrete. The production of these currently create a lot of carbon dioxide.
  • There is also a large number of those objecting to the building of Sizewell C. It saddened me twenty-five years ago, that most of the most strident objectors, that I met, were second home owners, with no other connection to Suffolk.

The older I get, the more my experience says, that large nuclear power plants aren’t always a good idea.

Small Modular Nuclear Reactors

In Is Sizewell The Ideal Site For A Fleet Of Small Modular Nuclear Reactors?, I looked at building a fleet of small modular nuclear reactors at Sizewell, instead of Sizewell C.

I believe eight units would be needed in the fleet to produce the proposed 3.26 GW and advantages would include.

  • Less land use.
  • Less cost.
  • Less need for scarce labour.
  • Easier to finance.
  • Manufacturing modules in a factory should improve quality.
  • Electricity from the time of completion of unit 1.

But it would still be nuclear.

Wind In The Pipeline

Currently, these offshore wind farms around the East Anglian Coast are under construction, proposed or are in an exploratory phase.

  • East Anglia One – 714 MW – 2021 – Finishing Construction
  • East Anglia One North 800 MW – 2026 – Exploratory
  • East Anglia Two – 900 MW – 2026 – Exploratory
  • East Anglia Three – 1400 MW – 2026 – Exploratory
  • Norfolk Vanguard – 1800 MW – Exploratory
  • Norfolk Boreas – 1800 MW – Exploratory
  • Sheringham Shoal/Dudgeon Extension – 719 MW – Exploratory

Note.

  1. The date is the possible final commissioning date.
  2. I have no commissioning dates for the last three wind farms.
  3. The East Anglia wind farms are all part of the East Anglia Array.

These total up to 8.13 GW, which is in excess of the combined capacity of Sizewell B and the proposed Sizewell C, which is only 4.51 GW.

As it is likely, that by 2033, which is the earliest date, that Sizewell C will be completed, that the East Anglia Array will be substantially completed, I suspect that East Anglia will not run out of electricity.

But I do feel that to be sure, EdF should try hard to get the twenty year extension to Sizewell B.

The East Anglia Hub

ScottishPower Renewables are developing the East Anglia Array and this page on their web site, describes the East Anglia Hub.

This is the opening paragraph.

ScottishPower Renewables is proposing to construct its future offshore windfarms, East Anglia THREE, East Anglia TWO and East Anglia ONE North, as a new ‘East Anglia Hub’.

Note.

  1. These three wind farms will have a total capacity of 3.1 GW.
  2. East Anglia ONE is already in operation.
  3. Power is brought ashore at Bawdsey between Felixstowe and Sizewell.

I would assume that East Anglia Hub and East Anglia ONE will use the same connection.

Norfolk Boreas and Norfolk Vanguard

These two wind farms will be to the East of Great Yarmouth.

This map from Vattenfall web site, shows the position of the two wind farms.

Note.

  1. Norfolk Boreas is outlined in blue.
  2. Norfolk Vanguard is outlined in orange.
  3. I assume the grey areas are where the cables will be laid.
  4. I estimate that the two farms are about fifty miles offshore.

This second map shows the landfall between Eccles-on-Sea and Happisburgh.

Note the underground cable goes half-way across Norfolk to Necton.

Electricity And Norfolk And Suffolk

This Google Map shows Norfolk and Suffolk.

Note.

  1. The red arrow in the North-West corner marks the Bicker Fen substation that connects to the Viking Link to Denmark.
  2. The East Anglia Array  connects to the grid at Bawdsey in the South-East corner of the map.
  3. Sizewell is South of Aldeburgh in the South-East corner of the map.
  4. The only ports are Lowestoft and Yarmouth in the East and Kings Lynn in the North-West.

There are few large towns or cities and little heavy industry.

  • Electricity usage could be lower than the UK average.
  • There are three small onshore wind farms in Norfolk and none in Suffolk.
  • There is virtually no high ground suitable for pumped storage.
  • There are lots of areas, where there are very few buildings to the square mile.

As I write this at around midday on a Saturday at the end of January, 49 % of electricity in Eastern England comes from wind, 20 % from nuclear and 8 % from solar. That last figure surprised me.

I believe that the wind developments I listed earlier could provide Norfolk and Suffolk with all the electricity they need.

The Use Of Batteries

Earlier, I talked of a maximum of over 7 GW of offshore wind around the cost of Norfolk and Suffolk, but there is still clear water in the sea to be filled between the existing and planned wind farms.

Batteries will become inevitable to smooth the gaps between the electricity produced and the electricity used.

Here are a few numbers.

  • East Anglian Offshore Wind Capacity – 8 GW
  • Off-Peak Hours – Midnight to 0700.
  • Typical Capacity Factor Of A Windfarm – 20 % but improving.
  • Overnight Electricity Produced at 20 % Capacity Factor – 11.2 GWh
  • Sizewell B Output – 1.25 GW
  • Proposed Sizewell C  Output – 3.26 GW
  • Largest Electrolyser – 24 MW
  • World’s Largest Lithium-Ion Battery at Moss Landing – 3 GWh
  • Storage at Electric Mountain – 9.1 GWh
  • Storage at Cruachan Power Station – 7.1 GWh

Just putting these large numbers in a table tells me that some serious mathematical modelling will need to be performed to size the batteries that will probably be needed in East Anglia.

In the 1970s, I was involved in three calculations of a similar nature.

  • In one, I sized the vessels for a proposed polypropylene plant for ICI.
  • In another for ICI, I sized an effluent treatment system for a chemical plant, using an analogue computer.
  • I also helped program an analysis of water resources in the South of England. So if you have a water shortage in your area caused by a wrong-sized reservoir, it could be my fault.

My rough estimate is that the East Anglian battery would need to be at least a few GWh and capable of supplying up to the output of Sizewell B.

It also doesn’t have to be a single battery. One solution would probably be to calculate what size battery is needed in the various towns and cities of East Anglia, to give everyone a stable and reliable power supply.

I could see a large battery built at Sizewell and smaller batteries all over Norfolk and Suffolk.

But why stop there? We probably need appropriately-sized batteries all over the UK, with very sophisticated control systems using artificial intelligent working out, where the electricity is best stored.

Note that in this post, by batteries, I’m using that in the loosest possible way. So the smaller ones could be lithium-ion and largest ones could be based on some of the more promising technologies that are under development.

  • Highview Power have an order for a 50 MW/500 MWh battery for Chile, that I wrote about in The Power Of Solar With A Large Battery.
  • East Anglia is an area, where digging deep holes is easy and some of Gravitricity’s ideas might suit.
  • I also think that eventually someone will come up with a method of storing energy using sea cliffs.

All these developments don’t require large amounts of land.

East Anglia Needs More Heavy Consumers Of Electricity

I am certainly coming to this conclusion.

Probably, the biggest use of electricity in East Anglia is the Port of Felixstowe, which will be expanding as it becomes Freeport East in partnership with the Port of Harwich.

One other obvious use could be in large data centres.

But East Anglia has never been known for industries that use a lot of electricity, like aluminium smelting.

Conversion To Hydrogen

Although the largest current electrolyser is only 24 MW, the UK’s major electrolyser builder; ITM Power, is talking of a manufacturing capacity of 5 GW per year, so don’t rule out conversion of excess electricity into hydrogen.

Conclusion

Who needs Sizewell C?

Perhaps as a replacement for Sizewell B, but it would appear there is no pressing urgency.

 

 

January 29, 2022 Posted by | Computing, Energy, Energy Storage | , , , , , , , , , , , , , , , , , , , | 8 Comments

Edinburgh Energy Storage Firm Gravitricity Hooks Up To European Backing

The title of this post, is the same as that of this article on The Scotsman.

This is the first paragraph.

Gravitricity, the Edinburgh-based company looking to build an energy storage project in a disused mineshaft, has secured support from the European Investment Bank (EIB).

It’s all to support a project at the recently mothballed Staric coal mine in the Moravian Silesian region of Czechia.

January 24, 2022 Posted by | Energy Storage | , , | 3 Comments

Energy Storage Could Emerge As The Hottest Market Of 2022

The title of this post, is the same as that as this article on Nasdaq.

This is the introductory paragraph.

A few years ago, battery energy storage began drawing attention as what one industry executive at the time called the Holy Grail of renewable energy. In the years since, EVs have stolen the spotlight but now battery storage is back, larger than life and, quite likely, twice as expensive.

I would wholeheartedly agree.

Although, I do think, that some of the major players over the next few years will not be based on lithium-ion batteries.

I have invested in Gravitricity and Rheenergise and would have invested in Highview Power, if I had had the chance.

My stockbroker has also invested some of my pension in energy storage and battery funds.

January 20, 2022 Posted by | Energy, Energy Storage, Finance | , , , | Leave a comment

Mine Water Heat

The title of this post, is the same as that of this press release from the Coal Authority.

This is the introductory paragraph.

The Coal Authority is working with partners to unlock the heat within our historical coal mine network, to transform the homes and workplaces of the future.

The Coal Authority doesn’t have much of a historic product, so selling the heat from the mines could be an environmentally-friendly revenue scheme.

These four paragraphs are the heart of the press release.

As part of our work to make a better future for people and the environment in mining areas, we’re exploring opportunities to use mine water to heat and cool homes and businesses.

Water within the mines is warmed by natural processes and can, if sustainably managed, provide a continuous supply of heat. Mine water temperatures are not affected by seasonal variations and, subject to the right support, mine water can provide renewable, secure, low carbon heating for buildings in coalfield areas.

With heating accounting for 40% of energy use in the UK, mine water heat could improve the sustainability of the places where we live and work. Mine water heat could also play a part in the UK’s efforts to tackle climate change and support its net zero future.

The Coal Authority are working with academics, local authorities, central government and others to help realise the potential of mine water heat. We’re supporting the delivery of mine water heat projects and working with others to make them happen.

The press release then adds more details and describes specific projects.

Mines For Storing Electricity

We also mustn’t forget other uses for abandoned coal mines.

I particularly like Gravitricity’s idea of used abandoned deep mines to store energy, that I wrote about in Gravitricity Explores Czech Coal Mine For MW-Scale Storage.

I hope the Coal Authority has its eyes on this ball.

Conclusion

I first became aware of the ability to extract heat from abandoned coal mines at a lecture at the Geological Society of London, after which I wrote Can Abandoned Mines Heat Our Future?.

I believe that for some parts of the country, this could become the preferred technology for heating homes and businesses.

The technology was even featured on the BBC tonight.

 

January 6, 2022 Posted by | Energy, Energy Storage | , , , , | 1 Comment