The Anonymous Widower

Contracts Signed For Eastern Green Link 2 Cable And Converter Stations

The title of this post, is the same as that of this press release from National Grid.

These four bullet points, act as sub-headings.

  • Eastern Green Link 2 (EGL2) is a 525kV, 2GW high voltage direct current (HVDC) subsea transmission cable from Peterhead in Scotland to Drax in England delivered as a joint venture by National Grid and SSEN Transmission
  • The joint venture has signed a contract with the Prysmian Group to supply around 1,000km of cable for the project and a contract with Hitachi Energy and BAM for the supply of converter stations at either end of the subsea cable
  • Contract signing is a significant milestone for the project as it progresses towards the delivery phase
  • EGL2 will be the longest HVDC cable in the UK and the UK’s single largest electricity transmission project ever, providing enough electricity to power two million UK homes

This paragraph outlines the project.

EGL2, a joint venture between SSEN Transmission and National Grid Electricity Transmission (NGET), has reached another milestone in the development of a new subsea electricity superhighway after sealing contracts this week with specialist HVDC cable supplier, Prysmian, and with Hitachi Energy and BAM for the supply of converter stations at either end of the project.

These four paragraphs add more detail.

EGL2 will see the creation of a 525kV, 2GW HVDC subsea transmission cable from Peterhead in Scotland to Drax in England. The longest HVDC cable in the UK and the UK’s single largest electricity transmission project ever, it will provide enough electricity to power two million UK homes.

Prysmian has confirmed it has the capability to deliver the project with its manufacturing facilities for the production of the HVDC cable and its cable laying vessels for the installation in the timescale required for EGL2 to meet its targeted energisation date in 2029, supporting the timely delivery of this project and mitigating risks associated with global constraints in the HVDC supply chain.

Hitachi Energy is partnering with BAM to provide the engineering works and technology for the HVDC converter stations which form the terminals for the HVDC cable and convert direct current to the alternating current used in the onshore transmission network. This latest milestone is another significant step as the project moves towards delivery and, following final approval from Ofgem, work is expected to commence later this year, with a targeted operational date of 2029.

The subsea HVDC cable system is approximately 436km in length with new converter stations at either end to connect it into the existing transmission network infrastructure. HVDC technology provides the most efficient and reliable means of transmitting large amounts of power over long distances subsea.

Note.

  1. EGL2 can handle 2 GW.
  2. There is a targeted operational date of 2029.
  3. Eastern Green Link 2 now has its own web site.
  4. Most of these links now seem to be HVDC.

A map in the press release, shows the undersea route may be shorter.

It  also appears to me, that moving electricity around the UK under the sea, is possibly the most environmentally-friendly and least intrusive way to do it.

We already have four HVDC interconnectors.

There will be many more,

 

 

March 13, 2024 Posted by | Energy | , , , , , , , | 9 Comments

Ørsted Secures Exclusive Access To Lower-Emission Steel From Dillinger

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Ørsted will be offered the first production of lower-emission steel from German-based Dillinger, subject to availability and commercial terms and conditions. The steel plates are intended to be used for offshore wind monopile foundations in future projects.

These three paragraphs outline the deal.

Under a large-scale supply agreement entered into in 2022, Ørsted will procure significant volumes of regular heavy plate steel from 2024, giving the company access at scale to and visibility of the most crucial raw material in offshore wind while supporting Dillinger to accelerate investments in new lower-emission steel production, according to Ørsted.

The Danish renewable energy giant expects to be able to procure lower-emission steel produced at Dillinger’s facility in Dillingen, Germany, from 2027-2028.

Taking the current technology outlook into account, the reduction of the process-related carbon emissions from production is expected to be around 55-60 per cent compared to conventional heavy plate steel production, Ørsted said.

Increasingly, we’ll see lower emission steel and concrete used for wind turbine foundations.

This press release on the Dillinger web site is entitled Historic Investment For Greater Climate Protection: Supervisory Boards Approve Investment Of EUR 3.5 billion For Green Steel From Saarland.

These are two paragraphs from the press release.

Over the next few years leading up to 2027, in addition to the established blast furnace route, the new production line with an electric arc furnace (EAF) will be built at the Völklingen site and an EAF and direct reduced iron (DRI) plant for the production of sponge iron will be built at the Dillinger plant site. Transformation branding has also been developed to visually represent the transformation: “Pure Steel+”. The message of “Pure Steel+” is that Saarland’s steel industry will retain its long-established global product quality, ability to innovate, and culture, even in the transformation. The “+” refers to the carbon-neutrality of the products.

The availability of green hydrogen at competitive prices is a basic precondition for this ambitious project to succeed, along with prompt funding commitments from Berlin and Brussels. Local production of hydrogen will therefore be established as a first step together with the local energy suppliers, before connecting to the European hydrogen network to enable use of hydrogen to be increased to approx. 80 percent. The Saarland steel industry is thus laying the foundation for a new hydrogen-based value chain in the Saarland, in addition to decarbonizing its own production. In this way, SHS – Stahl-Holding-Saar is supporting Saarland on its path to becoming a model region for transformation.

It sounds to me, that Tata Steel could be doing something similar at Port Talbot.

  • Tata want to build an electric arc furnace to replace the blast furnaces.
  • There will be plenty of green electricity from the Celtic Sea.
  • RWE are planning a very large hydrogen electrolyser in Pembroke.
  • Celtic Sea offshore wind developments would probably like a supply of lower emission steel on their door-step.

I would suspect, that Welsh steel produced by an electric arc furnace will match the quality of the German steel, that is made the same way.

March 13, 2024 Posted by | Energy | , , , , , , , , , , , , , | Leave a comment

Japan Expands Offshore Wind Development Into Exclusive Economic Zone

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

The Japanese Government has passed an amendment to the “Act on Promoting the Utilization of Sea Areas”, expanding the area for setting up offshore wind to the Exclusive Economic Zone (EEZ).

These two paragraphs give more details.

The Japanese government aims to deploy 10 GW of offshore wind capacity by 2030 and 30-45 GW by 2040, including floating wind, as part of its target to reach net-zero emissions by 2050.

The new legislation would allow wind farms to be installed further out to sea from current territorial and internal waters, according to a joint statement by the government, the Ministry of Economy, Trade and Industry and the Ministry of Land, Infrastructure, Transport and Tourism.

The Japanese seem to have devised a simple bid process, that gives rights to generate electricity for thirty years.

But then as a Director of Lockheed told me thirty years ago, the Japanese don’t have the same high levels of lawyers that the US, UK and other countries have, so they can move a lot faster and are easier to do business with.

This Wikipedia entry is entitled Wind Power in Japan.

This is the opening paragraph.

In Japan’s electricity sector, wind power generates a small proportion of the country’s electricity. It has been estimated that Japan has the potential for 144 gigawatts (GW) for onshore wind and 608 GW of offshore wind capacity. As of 2020, the country had a total installed capacity of 4.2 GW.

From the potential of 608 GW of offshore wind capacity, it looks like Japan is in a very similar position to the UK and the Japanese can also reap the wind.

March 13, 2024 Posted by | Business, Energy | , , , , | Leave a comment