The Anonymous Widower

Are Hitachi Designing the Ultimate Battery Train?

In Sparking A Revolution, a post based on an article of the same name in Issue 898 of Rail Magazine, I repeated this about the specification of Hitachi UK Battery Train Specification.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

Does this mean that the train can do 55-65 miles cruising at 90-100 mph?

How Much Energy Is Needed To Accelerate A Five-Car Class 800 Train To Operating Speed?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

Because the kinetic energy of a train is only proportional to the weight of the train, but proportional to the square of the speed, note how the energy of the train increases markedly after 100 mph.

Are these kinetic energy figures a reason, why Hitachi have stated their battery train will have an operating speed of between 90 and 100 mph?

A 100 mph cruise would also be very convenient for a lot of main lines, that don’t have electrification in the UK.

What Battery Size Would Be Needed?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.

For comparison, an InterCity 125 train, had a figure of 2.83 kWh per vehicle-mile.

Hitachi are redesigning the nose of the train for the new Class 804 train and I suspect that these trains can achieve somewhere between 1.5 and 3 kWh per vehicle-mile, if they are cruising at 100 mph.

Doing the calculation for various consumption levels gives the following battery capacity for a five-car train to cruise 65 miles at 100 mph

  • 1.5 kWh per vehicle-mile – 487 kWh
  • 2 kWh per vehicle-mile – 650 kWh
  • 2.5 kWh per vehicle-mile – 812.5 kWh
  • 3 kWh per vehicle-mile – 975 kWh

These figures don’t include any energy for acceleration to line speed from the previous stop or station, but they would cope with a deceleration and subsequent acceleration, after say a delay caused by a slow train or other operational delay, by using regenerative braking to the battery.

The energy needed to accelerate to operating speed, will be as I calculated earlier.

  • 90 mph – 61 kWh
  • 100 mph – 75 kWh

As the battery must have space to store the regenerative braking energy and it would probably be prudent to have a ten percent range reserve, I can see a battery size for a train with an energy consumption of 2 kWh per vehicle-mile, that needed to cruise at 100 mph being calculated as follows.

  • Energy for the cruise – 650 kWh
  • 10% reserve for cruise – 65 kWh
  • Braking energy from 100 mph – 75 kWh

This gives a total battery size of 790 kWh, which could mean that 800 kWh would be convenient.

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, each weigh around two tonnes.

In Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density, I came to these conclusions.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

Suppose two of the MTU 12V 1600 diesel engines were each to be replaced by a two tonne battery, using Tesla’s current energy density, this would mean the following.

  • Each battery would have a capacity of 500 kWh.
  • The train would have one MWh of installed battery power.
  • This is more than my rough estimate of power required for a 65 mile trip.
  • The train would have little or no weight increase.
  • I also wouldn’t be surprised to find that the exchange of a diesel engine for a battery was Plug-and-Play.

Hitachi would have an electric/battery/diesel tri-mode train capable of the following.

  • Range – 55-65 miles
  • Out and Back Range – about 20-30 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Emergency diesel engine.

I feel it would be a very useful train.

Trains That Could Be Fitted With Batteries

The original article in Rail Magazine says this.

For the battery project, positive discussions are taking place with a number of interested parties for a trial, with both Class 385s and Class 800s being candidates for conversion.

So this means that the following operators will be able to use Hitachi’s battery technology o their trains.

  • Avanti West Coast – Class 80x trains
  • East Coast Trains – Class 80x trains
  • East Midlands Railway – Class 80x trains
  • GWR – Class 80x trains
  • Hull Trains – Class 80x trains
  • LNER – Class 80x trains
  • ScotRail – Class 385 trains
  • TransPennine Express – Class 80x trains

Although, I based my calculations on Class 80x trains, I suspect that the methods can be applied to the smaller Class 385 trains.

Possible Out-And-Back Journeys

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle.

  • Edinburgh and Tweedbank – 30 miles from Newcraighall
  • London Paddington and Bedwyn – 30 miles from Reading
  • London Euston and Blackburn – 12 miles from Preston
  • London Kings Cross and Bradford – < 27 miles from Leeds
  • London Euston and Chester – 21 miles from Crewe
  • London Kings Cross and Harrogate – <18 miles from Leeds
  • London Kings Cross and Huddersfield – 17 miles from Leeds
  • London St. Pancras and Leicester – 16 miles from Market Harborough
  • London Kings Cross and Lincoln – 17 miles from Newark
  • London St. Pancras and Melton Mowbray – 26 miles from Corby
  • London Kings Cross and Middlesbrough – 20 miles from Northallerton
  • London Kings Cross and Nottingham – 20 miles from Newark
  • London Paddington and Oxford – 10 miles from Didcot
  • London Kings Cross and Redcar – 29 miles from Northallerton
  • London Kings Cross and Rotherham- 14 miles from Doncaster
  • London Kings Cross and Sheffield – 20 miles from Doncaster
  • London and Weston-super-Mare – 19 miles from Bristol

Note.

  1. Provided that the Out-And-Back journey is less than about sixty miles, I would hope that these stations are comfortably in range.
  2. Leicester is the interesting destination, which would be reachable in an Out-And-Back journey. But trains from the North stopping at Leicester would probably need to charge at Leicester.
  3. I have included Blackburn as it could be a destination for Avanti West Coast.
  4. I have included Melton Mowbray as it could be a destination for East Midlands Railway.
  5. I have included Nottingham, Rotherham and Sheffield as they could be destinations for LNER. These services could prove useful if the Midland Main Line needed to be closed.
  6. I’m also fairly certain, that no new electrification would be needed, although every extra mile would help.
  7. No charging stations would be needed.

I suspect, I’ve missed a few possible routes.

Possible Journeys Between Two Electrified Lines

These are possible journeys between two electrified lines, that  I believe Hitachi’s proposed battery-electric trains could handle.

  • London St. Pancras and Eastbourne via Hastings – 25 miles between Ashford and Ore.
  • Leeds and York via Garforth – 20 miles between Neville Hall and Colton Junction
  • London Kings Cross and Norwich via Cambridge – 54 miles between Ely and Norwich.
  • Manchester Victoria and Leeds via Huddersfield – 43 miles between Manchester Victoria and Leeds.
  • Preston and Leeds via Hebden Bridge – 62 miles between Preston and Leeds.
  • Newcastle and Edinburgh – Would battery-electric trains get round the well-publicised power supply problems on this route?

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. Leeds and York via Garforth has been scheduled for electrification for years.
  4. Preston and Leeds via Hebden Bridge would probably need some diesel assistance.
  5. London Kings Cross and Norwich via Cambridge is a cheeky one, that Greater Anglia wouldn’t like, unless they ran it.
  6. As before no new electrification or a charging station would be needed.

I suspect, I’ve missed a few possible routes.

Possible Out-And-Back Journeys With A Charge At The Destination

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle, if the batteries were fully charged at the destination.

  • Doncaster and Cleethorpes – 52 miles from Doncaster.
  • London Paddington and Cheltenham – 42 miles from Swindon
  • London Kings Cross and Cleethorpes via Lincoln – 64 miles from Newark
  • London Euston and Gobowen – 46 miles from Crewe
  • London Euston and Wrexham – 33 miles from Crewe
  • London Kings Cross and Hull – 45 miles from Selby
  • London Kings Cross and Shrewsbury – 30 miles from Wolverhampton
  • London Kings Cross and Sunderland 41 miles from Northallerton
  • London Paddington and Swansea – 46 miles from Cardiff
  • London Paddington and Worcester – 67 miles from Didcot Parkway
  • London St. Pancras and Derby – 46 miles from Market Harborough
  • London St. Pancras and Nottingham – 43 miles from Market Harborough

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. I am assuming some form of charging is provided at the destination station.
  4. As before no new electrification would be needed.

I suspect, I’ve missed a few possible routes.

Midland Main Line

The Midland Main Line could possibly be run between London St. Pancras and Derby, Nottingham and Sheffield without the use of diesel.

Consider.

  • The route will be electrified between London St. Pancras and Market Harborough.
  • In connection with High Speed Two, the Midland Main Line and High Seed Two will share an electrified route between Sheffield and Clay Cross North Junction.
  • London St. Pancras and Derby can be run with a charging station at Derby, as Market Harborough and Derby is only 46 miles.
  • London St. Pancras and Nottingham can be run with a charging station at Nottingham, as Market Harborough and Nottingham is only 43 miles.
  • The distance between Clay Cross North Junction and Market Harborough is 67 miles.
  • The distance between Sheffield and Leeds is 38 miles.

It looks to me that the range of East Midlands Railway’s new Class 804 trains, will be a few miles short to bridge the gap on batteries, between Clay Cross North Junction and Market Harborough station, but Leeds and Sheffield appears possible, once Sheffield has been electrified.

There are several possible solutions to the Clay Cross North and Market Harborough electrification gap.

  1. Fit higher capacity batteries to the trains.
  2. Extend the electrification for a few miles North of Market Harborough station.
  3. Extend the electrification for a few miles South of Clay Cross North Junction.
  4. Stop at Derby for a few minutes to charge the batteries.

The route between Market Harborough and Leicester appears to have been gauge-cleared for electrification, but will be difficult to electrify close to Leicester station. However, it looks like a few miles can be taken off the electrification gap.

Between Chesterfield and Alfriston, the route appears difficult to electrify with tunnels and passig through a World Heritage Site.

So perhaps options 1 and 2 together will give the trains sufficient range to bridge the electrification gap.

Conclusion On The Midland Main Line

I think that Hitachi, who know their trains well, must have a solution for diesel-free operation of all Midland Main Line services.

It also looks like little extra electrification is needed, other than that currently planned for the Midland Main Line and High Speed Two.

North Wales Coast Line

If you look at distance along the North Wales Coast Line, from the electrification at Crewe, you get these values.

  • Chester – 21 miles
  • Rhyl – 51 miles
  • Colwyn Bay – 61 miles
  • Llandudno Junction – 65 miles
  • Bangor – 80 miles
  • Holyhead – 106 miles

It would appear that Avanti West Coast’s new AT-300 trains, if fitted with batteries could reach Llandudno Junction station, without using diesel.

Electrification Between Crewe And Chester

It seems to me that the sensible thing to do for a start is to electrify the twenty-one miles between Crewe and Chester, which has been given a high priority for this work.

With this electrification, distances from Chester are as follows.

  • Rhyl – 30 miles
  • Colwyn Bay – 40 miles
  • Llandudno Junction – 44 miles
  • Bangor – 59 miles
  • Holyhead – 85 miles

Electrification between Crewe and Chester may also open up possibilities for more electric and battery-electric train services.

But some way will be needed to charge the trains to the West of Chester.

Chagring The Batteries At Llandudno Junction Station

This Google Map shows Llandudno Junction station.

Note.

  1. It is a large station site.
  2. The Conwy Valley Line, which will be run by battery Class 230 trains in the future connects at this station.
  3. The Class 230 train will probably use some of Vivarail’s Fast Charging systems, which use third-rail technology, either at the ends of the branch or in Llandudno Junction station.

The simplest way to charge the London Euston and Holyhead train, would be to build a charging station at Llandudno Junction, which could be based on Vivarail’s Fast Charging technology or a short length of 25 KVAC overhead wire.

But this would add ten minutes to the timetable.

Could 25 KVAC overhead electrification be erected for a certain distance through the station, so that the train has ten minutes in contact with the wires?

Looking at the timetable of a train between London Euston and Holyhead, it arrives at Colwyn Bay station at 1152 and leaves Llandudno Junction station at 1200.

So would it be possible to electrify between the two stations and perhaps a bit further?

This Google Map shows Colwyn Bay Station,

Note how the double-track railway is squeezed between the dual-carriageway of the A55 North Wales Expressway and the sea.

The two routes follow each other close to the sea, as far as Abegele & Pensarn station, where the Expressway moves further from the sea.

Further on, after passing through more caravans than I’ve ever seen, there is Rhyl station.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes.
  • The distance between the two stations is fourteen miles.
  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

It would appear that if the North Wales Coast Line between Rhyl and Llandudno Junction is electrified, that Hitachi’s proposed battery trains can reach Holyhead.

The trains could even changeover between electrification and battery power in Rhyl and Llandudno Junction stations.

I am sure that electrifying this section would not be the most difficult in the world, although the severe weather sometimes encountered, may need some very resilient or innovative engineering.

It may be heretical to say so, but would it be better if this section were to be electrified using proven third-rail technology.

West of Llandudno Junction station, the electrification would be very difficult, as this Google Map of the crossing of the River Conwy shows.

I don’t think anybody would want to see electrification around the famous castle.

Electrification Across Anglesey

Llanfairpwll station marks the divide between the single-track section of the North Wales Coast Line over the Britannia Bridge and the double-track section across Anglesey.

From my virtual helicopter, the route looks as if, it could be fairly easy to electrify, but would it be necessary?

  • Llandudno Junction and Holyhead is forty-one miles, which is well within battery range.
  • There is surely space at Holyhead station to install some form of fast-charging system.

One problem is that trains seem to turn round in only a few minutes, which may not be enough to charge the trains.

So perhaps some of the twenty-one miles between Llanfairpwll and Holyhead should be electrified.

Freight On The North Wales Coast Line

Will more freight be seen on the North Wales Coast Line in the future?

The new tri-mode freight locomotives like the Class 93 locomotive, will be able to take advantage of any electrification to charge their batteries, but they would probably be on diesel for much of the route.

Conclusion On The North Wales Coast Line

Short lengths of electrification, will enable Avanti West Coast’s AT-300 trains, after retrofitting with batteries, to run between Crewe and Holyhead, without using any diesel.

  • I would electrify.
  • Crewe and Chester – 21 miles
  • Rhyl and Llandudno Junction – 14 miles
  • Llanfairpwll and Holyhead – 21 miles

All gaps in the electrification will be handled on battery power.

A Selection Of Possible Battery-Electric Services

In this section, I’ll look at routes, where battery-electric services would be very appropriate and could easily be run by Hitachi’s proposed battery-electric trains.

London Paddington And Swansea

Many were disappointed when Chris Grayling cancelled the electrification between Cardiff and Swansea.

I went along with what was done, as by the time of the cancellation, I’d already ridden in a battery train and believed in their potential.

The distance between Cardiff and Swansea is 46 miles without electrification.

Swansea has these services to the West.

  • Carmarthen – 32 miles
  • Fishguard – 73 miles
  • Milford Haven  71 miles
  • Pembroke Dock – 73 miles

It looks like, three services could be too long for perhaps a three car battery-electric version of a Hitachi Class 385 train, assuming it has a maximum range of 65 miles.

But these three services all reverse in Carmarthen station.

So perhaps, whilst the driver walks between the cabs, the train can connect automatically to a fast charging system and give the batteries perhaps a four minute top-up.

Vivarail’s Fast Charging system based on third-rail technology would be ideal, as it connects automatically and it can charge a train in only a few minutes.

I would also electrify the branch between Swansea and the South Wales Main Line.

This would form part of a fast-charging system for battery-trains at Swansea, where turnround times can be quite short.

I can see a network of battery-electric services developing around Swansea, that would boost tourism to the area.

Edinburgh And Tweedbank

The Borders Railway is electrified as far as Newcraighall station and the section between there and Tweedbank is thirty miles long.

I think that a four-car battery-electric Class 385 train could work this route.

It may or may not need a top up at Tweedbank.

The Fife Circle

The Fife Circle service from Edinburgh will always be difficult to electrify, as it goes over the Forth Rail Bridge.

  • The Fife Circle is about sixty miles long.
  • Plans exist for a short branch to Leven.
  • The line between Edinburgh and the Forth Rail Bridge is partly electrified.

I believe that battery-electric Class 385 train could work this route.

London Kings Cross and Grimsby/Cleethorpes via Lincoln

The Cleethorpes/Grimsby area is becoming something of a  renewable energy powerhouse and I feel that battery trains to the area, might be a significant and ultimately profitable statement.

LNER recently opened a six trains per day service to Lincoln.

Distances from Newark are as follows.

  • Lincoln – 17 miles
  • Grimsby – 61 miles
  • Cleethorpes – 64 miles

A round trip to Lincoln can probably be achieved on battery alone with a degree of ease, but Cleethorpes and Grimsby would need a recharge at the coast.

Note that to get to the Cleethorpes/Grimsby area, travellers usually need to change at Doncaster.

But LNER are ambitious and I wouldn’t be surprised to see them dip a toe in the Cleethorpes/Grimsby market.

The LNER service would also be complimented by a TransPennine Express service from Manchester Airport via Sheffield and Doncaster, which could in the future be another service run by a Hitachi battery train.

There is also a local service to Barton-on-Humber, which could be up for improvement.

London Waterloo And Exeter

This service needs to go electric, if South Western Railway is going to fully decarbonise.

But third-rail electrification is only installed between Waterloo and Basingstoke.

Could battery-electric trains be used on this nearly two hundred mile route to avoid the need for electrification.

A possible strategy could be.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging technology.
  3. The charging around Yrovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.

I estimate that there could be time savings of up to fifteen minutes on the route.

 

To Be Continued…

 

 

 

 

 

 

 

 

 

 

 

February 18, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , | 4 Comments

Sparking A Revolution

The title of this post is the same as that of an article in Issue 898 of Rail Magazine.

The sub-title is.

When it comes to powering a zero-enissions train with no overhead line infrastructure, battery power is clearly the answer, according to Hitachi.

These are the first three paragraphs.

Over the next decade around 1,000 diesel-powered vehicles will need to be replaced with vehicles that meet emissions standards.

Hitachi, which has been building bi-mode trains for the UK since 2012, and electric trains since 2006, says that retro-fitting old vehicles alone will not be good enough to improve capacity, reliability or passenger satisfaction.

Battery power is the future – not only as a business opportunity for the company, but more importantly for the opportunities it offers the rail industry.

Speaking is Andrew Barr of Hitachi Rail.

Some important points are made.

  • Hitachi has identified various towns and cities, where battery trains would be useful include Bristol, Edinburgh, Glasgow, Hastings, Leeds and Manchester.
  • Andrew Barr says he gets a lot of questions about battery power.
  • Battery power can be used as parts of electrification schemes to bridge gaps, where rebuilding costs of bridges and other infrastructure would be too high.
  • Battery trains are ideal for decarbonising branch lines.
  • Batteries could be fitted to Class 385, 800, 802 and 804 trains.

Hitachi would like to run a battery train with passengers, within the next twelve months.

The article also gives the specification of a Hitachi battery train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

These figures are credited to Hitachi.

Hitachi are also thinking about tri-mode trains.

  • Batteries could be installed on Class 800-802/804 trains.
  • Battery-only power for stations and urban areas.
  • 20% performance improvements or 30% fuel savings.

These is also credited to Hitachi.

Costs And Power

This is an insert in the article, which will apply to all applications with traction batteries.

This is said.

The costs if batteries are expected to halve in the next five years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2025 and £47/kWh in 2030.

United Kingdom Research and Innovation (UKRI)  is also predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1,400 Wh/l in 2035, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg now to 12 kW/kg in 2035.

In Batteries On Class 777 Trains, I quoted a source that said that Class 777 trains are built to handle a five tonne battery.

I estimated the capacity as follows.

Energy densities of 60 Wh/Kg or 135 Wh/litre are claimed by Swiss battery manufacturer; Leclanche.

This means that a five tonne battery would hold 300 kWh.

Hitachi’s figures are much higher as it looks like a five tonne battery can hold 15 MWh.

Batteries will be going places on Hitachi trains.

 

February 16, 2020 Posted by | Transport | , , , , , , | 1 Comment

Could High Speed Two Trains Serve Chester?

This may seem a slightly outrageous proposal to run High Speed Two trains to Chester.

  • The city is a major tourist destination.
  • Despite its closeness to Crewe it is a major rail hub, with services across Wales to Cardiff, Holyhead and Llandudno and along the border between England and Wales to Shrewsbury and Newport.
  • Merseyrail serves the city and the station can be considered to be part of Liverpool’s extensive commuting area. This service is likely to be more reliable and faster with the delivery of new Class 777 trains.
  • For parts of Merseyside, travelling to London or Manchester Airport, is easier via Chester than Liverpool Lime Street or Liverpool South Parkway.

If the promoters of High Speed Two are serious about creating a railway for the whole country, then I feel that running trains direct to and from Chester could be very beneficial for the towns and cities, that can be served by the current network at Chester.

Current And Possible Timings

Currently, trains take two minutes over two hours between Euston and Chester.

When Avanti West Coast introduces the new Hitachi AT-300 trains on the route, the following times will be possible.

  • Euston to Crewe via West Coast Main Line – 90 minutes – Fastest Pendelino
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 54 minutes, which is a saving of 8 minutes. But a lot of carbon would not be emitted.

I estimate, that with High Speed Two Phase 2a completed, the following timings will be possible.

  • Euston to Crewe via HS2 – 55 minutes – HS2 website
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 19 minutes, which is a saving of 43 minutes.

Infrastructure Needed

There will need to be some infrastructure changes.

Platform Lengthening At Chester Station

The station would probably be served by two-hundred metre long classic-compatible, which might need some platform lengthening.

This Google Map shows the station.

It looks to me, that there is plenty of space.

Will Chester And Crewe Be Electrified?

We know little about the capabilities of the trains proposed by the various manufacturers.

But, I wouldn’t be surprised that one or more of the proposals use batteries for one of the following purposes.

  • Regenerate braking.
  • Emergency power.
  • Range extension for up to perhaps sixty miles.

As Chester and Crewe stations are only twenty-one miles apart with no intermediate stations, which will be run at an average speed of only 52 mph I don’t think it will be impossible to extend the service to Chester on battery power.

If electrification is required I wrote about it in Hitachi Trains For Avanti.

As it is only just over twenty miles, I don’t think it will be the most challenging of projects, although there does seem to be a lot of bridges.

Electrification would also allow Avanti West Coast’s Hitachi trains to run on electricity to Chester.

What About Holyhead?

Holyhead could become a more important destination in the next few years.

It is probably the best alternative to avoid flying and driving between Great Britain and the Island of Ireland.

And who can accurately predict, what effect Brexit and thinking about global warming will have?

I have a feeling that after electrification to Chester, using on-board energy storage could be used West of Chester.

It is very difficult to predict battery ranges in the future, but I can see a two hundred metre long classic-compatible train on High Speed Two being able to reach Holyhead on battery power, with or without some limited extra electrification.

I estimate that with some track improvements, that it will be possible to travel between Euston and Holyhead in around three hours.

Conclusion

It looks to me, that when High Speed Two, think about adding extra destinations, Chester could be on the list.

I also suspect that if it can be run without full electrification, Euston and Holyhead could be a valuable route for Avanti West Coast.

January 21, 2020 Posted by | Transport | , , , , , , , , , | 2 Comments

Hitachi Trains For Avanti

The title of this post is the same as that of an article in the January 2020 Edition of Modern Railways.

The Bi-Mode Trains

Some more details of the thirteen bi-mode and ten electric Hitachi AT 300 trains are given.

Engine Size and Batteries

This is an extract from the article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

I do wonder if my speculation in Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks? is possible.

After all, why do all the hard work to develop a hybrid drive system, when your engine supplier has done it for you?

Would Avanti West Coast need a train that will do 125 mph on diesel?

The only place, they will be able to run at 125 mph or even higher will be on the West Coast Main Line, where they will be running under electric power from the pantograph.

If I were designing a bi-mode for 90 mph on diesel and 125 mph on electric, I would have batteries on the train for the following purposes.

  • Handle regenerative braking.
  • Provide hotel power in stations or when stationery.
  • Provide an acceleration boost, if required, when running on diesel.
  • Provide emergency power, if the wires go down in electric mode.

I’m sure MTU could work out a suitable size of diesel engine and batteries in an MTU PowerPack, that would meet the required performance.

Or maybe a smaller diesel could be used. An LNER Class 800 train has 1680 kW of installed power to maintain 125 mph. But the Great Western Railway versions have 2100 kW or twenty-five percent more, as their routes are more challenging with steeper gradients.

For the less challenging routes at a maximum of 90 mph between Crewe, Chester, Shrewsbury and North Wales, I wonder what level of power is needed.

A very rough estimate based on the speed required could put the power requirement as low as 1200-1500 kW.

As the diesel engines are only electrical generators, it would not effect the ability of the train to do 125 mph between Crewe and London.

There looks to be a virtuous circle at work here.

  • Lower maximum speed on diesel means smaller diesel engines.
  • Smaller diesel engines means lighter diesel engines and less fuel to carry.
  • Less weight to accelerate needs less installed power.
  • Less power probably means a more affordable train, that uses less diesel.

It looks to me, that Hitachi have designed a train, that will work Avanti West Coast’s routes efficiently.

The Asymmetric Bi-Mode Train

It looks to me that the bi-mode train  that Avanti West Coast are buying has very different performance depending on the power source and signalling

  • 90 mph or perhaps up to 100 mph on diesel.
  • 125 mph on electric power.with current signalling.
  • Up to 140 mph on electric power with in-cab digital signalling.

This compares with the current Class 221 trains, which can do 125 mph on all tracks, with a high enough operating speed.

The new trains’ different performance on diesel and electric power means they could be called asymmetric bi-modes.

Surely, creating an asymmetric bi-mode train, with on-board power; battery, diesel or hydrogen, sized to the route, mean less weight, greater efficiency, less cost and in the case of diesel, Higher carbon efficiency.

Carbon Emissions

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Battery-Electric Conversion

In my quote earlier from the Modern Railways article, I said this.

These (the diesel engines) would be replaceable by batteries in future if specified.

In Thoughts On The Next Generation Of Hitachi High Speed Trains, I looked at routes that could be run by a battery-electric version of Hitachi AT-300 trains.

I first estimated how far an AT-300 train could go on batteries.

How far will an AT-300 train go on battery power?

  • I don’t think it is unreasonable to be able to have 150 kWh of batteries per car, especially if the train only has one diesel engine, rather than the current three in a five-car train.
  • I feel with better aerodynamics and other improvements based on experience with the current trains, that an energy consumption of 2.5 kWh per vehicle mile is possible, as compared to the 3.5 kWh per vehicle mile of the current trains.

Doing the calculation gives a range of sixty miles for an AT-300 train with batteries.

As train efficiency improves and batteries are able to store more energy for a given volume, this range can only get better.

I then said this about routes that will be part of Avanti West Coast’s network.

With a range of sixty miles on batteries, the following is possible.

  • Chester, Gobowen, Shrewsbury And Wrexham Central stations could be reached on battery power from the nearest electrification.
  • Charging would only be needed at Shrewsbury to ensure a return to Crewe.

Gobowen is probably at the limit of battery range, so was it chosen as a destination for this reason.

The original post was based on trains running faster than the 90 mph that is the maximum possible on the lines without electrification, so my sixty mile battery range could be an underestimate.

These distances should be noted.

  • Crewe and Chester – 21 miles
  • Chester and Shrewsbury – 42 miles
  • Chester and Llandudno – 47 miles
  • Chester and Holyhead – 84 miles

Could electrification between Crewe and Chester make it possible for Avanti West Coast’s new trains to go all the way between Chester and Holyhead on battery power in a few years?

I feel that trains with a sixty mile battery range would make operations easier for Avanti West Coast.

Eighty miles would almost get them all the way to Holyhead, where they could recharge!

Rlectrification Between Chester And Crewe

I feel that this twenty-odd miles of electrification could be key to enabling battery-electric trains for the routes to the West of Chester to Shrewsbury, Llandudno and Holyhead.

How difficult would it be to electrify between Chester and Crewe?

  • It is not a long distance to electrify.
  • There doesn’t appear to be difficult viaducts or cuttings.
  • It is electrified at Crewe, so power is not a problem.
  • There are no intermediate stations.

But there does seem to be a very large number of bridges. I counted forty-four overbridges and six underbridges. At least some of the bridges are new and appear to have been built with the correct clearance.

Perhaps it would be simpler to develop fast charging for the trains and install it at Chester station.

Conclusion On The Bi-Mode Trains

It appears to me that Avanti West Coast, Hitachi and Rock Rail, who are financing the trains have done a very good job in devising the specification for a fleet of trains that will offer a good service and gradually move towards being able to deliver that service in a carbon-free manner.

  • The initial bi-mode trains will give a big improvement in performance and reduction in emission on the current Voyagers, as they will be able to make use of the existing electrification between Crewe and London.
  • The trains could be designed for 125 mph on electric power and only 90-100 mph on diesel, as no route requires over 100 mph on diesel. This must save operating costs and reduce carbon emissions.
  • They could use MTU Hybrid PowerPacks instead of conventional diesel engines to further reduce emissions and save energy
  • It also appears that Hitachi might be able to convert the trains to battery operation in a few years.
  • The only new infrastructure would be a few charging stations for the batteries and possible electrification between Chester and Crewe.

I don’t think Avanti West Coast’s ambition of a two-thirds reduction in CO2 is unreasonable and feel it could even be exceeded.

Other Routes For Asymetric Bi-Mode Trains

I like the concept of an asymetric bi-mode train, where the train has the following performance.

  • Up to 100 mph on battery, diesel or hydrogen.
  • Up to 100 mph on electrified slower-speed lines.
  • 125 mph on electrified high-speed lines, with current signalling.
  • Up to 140 mph on electrified high-speed lines, with in-cab digital signalling.

I am very sure that Hitachi can now tailor an AT-300 train to a particular company’s needs. Certainly, in the case of Avanti West Coast, this seems to have happened, when Avanti West Coast, Hitachi, Network Rail and Rock Rail had some serious negotiation.

LNER At Leeds

As an example consider the rumoured splitting and joining of trains at Leeds to provide direct services between London and Bradford, Harrogate, Huddersfield, Ilkley, Skipton and other places, that I wrote about in Dancing Azumas At Leeds.

In the related post, I gave some possible destinations.

  • Bradford – 13 miles – 25 minutes – Electrified
  • Harrogate – 18 miles – 30 minutes
  • Huddersfield – 17 miles – 35 minutes
  • Hull – 20 miles – 60 minutes
  • Ilkley – 16 miles – 26 minutes – Electrified
  • Skipton – 26 miles – 43 minutes – Electrified
  • York – 25 miles – 30 minutes

Note, that the extended services would have the following characteristics.

They would be run by one five-car train.

  1. Services to Bradford, Ilkley and Skipton would be electric
  2. Electrification is planned from Leeds to Huddersfield and York, so these services could be electric in a few years.
  3. All other services would need independent power; battery, diesel or hydrogen to and from Leeds.
  4. Two trains would join at Leeds and run fast to London on the electrified line.
  5. Services would probably have a frequency of six trains per day, which works out at a around a train every two hours and makes London and back very possible in a day.
  6. They would stop at most intermediate stations to boost services to and from Leeds and give a direct service to and from London.

As there are thirty trains per day between London and Leeds in each direction, there are a lot of possible services that could be provided.

Currently, LNER are only serving Harrogate via Leeds.

  • LNER are using either a nine-car train or a pair of five-car trains.
  • The trains reverse in Platforms 6 or 8 at Leeds, both of which can handle full-length trains.
  • LNER allow for a generous time for the reverse, which would allow the required splitting and joining.
  • All trains going to Harrogate are Class 800 bi-mode trains.

Note that the Class 800 trains are capable of 125 mph on diesel, whereas the average speed between Harrogate and Leeds is just 35 mph. Obviously, some of this slow speed is due to the route, but surely a train with a maximum speed of 90-100 mph, with an appropriate total amount of diesel power, would be the following.

  • Lighter in weight.
  • More efficient.
  • Emit less pollution.
  • Still capable of high speed on electrified lines.
  • Bi-mode and electric versions could run in pairs between Leeds and London.

LNER would probably save on track access charges and diesel fuel.

LNER To Other Places

Could LNER split and join in a similar way to other places?

  • Doncaster for Hull and Sheffield
  • Edinburgh for Aberdeen and Inverness
  • Newark for Lincoln and Nottingham
  • York for Middlesbrough and Scarborough.

It should be noted that many of the extended routes are quite short, so I suspect some train diagrams will be arranged, so that trains are only filled up with diesel overnight,

GWR

Great Western Railway are another First Group company and I’m sure some of their routes could benefit, from similar planning to that of Avanti West Coast.

Splitting and joining might take place at Reading, Swindon, Bristol and Swansea.

South Western Railway

South Western Railway will need to replace the three-car Class 159 trains to Exeter, that generally work in pairs with a total number of around 400 seats, in the next few years.

These could be replaced with a fleet of third-rail Hitachi trains of appropriate length.

  • Seven cars sating 420 passengers?
  • They would remove diesel trains from Waterloo station.
  • All South Western Railway Trains running between Waterloo and Basingstoke would be 100 mph trains.

I wonder, if in-cab digital signalling on the route, would increase the capacity? It is sorely needed!

Southeastern

Southeastern need bi-mode trains to run the promised service to Hastings.

  • Trains would need a third-rail capability.
  • Trains need to be capable of 140 mph for High Speed One.
  • Trains need to be able to travel the 25 miles between Ashford International and Ore stations.
  • Trains would preferably be battery-electric for working into St. Pancras International station.

Would the trains be made up from six twenty-metre cars, like the Class 395 trains?

The Simple All-Electric Train

The Modern Railways article, also says this about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It strikes me as strange, that Hitachi are throwing out one of their design criteria, which is the ability of the train to rescue itself, when the overhead wires fail.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I published this extract from this document on the Hitachi Rail web site.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

This is a very comprehensive power system, with a backup in case of power or catenary failure.

So why does it look like Hitachi are throwing that capability out on the trains for Avanti West Coast.

There are several possibilities.

  • The reliability of the trains and the overhead wire is such, that the ability of a train to rescue itself is not needed.
  • The auxiliary generator has never been used for rescuing the train.
  • The West Coast Main Line is well-provided with Thunderbird locomotives for rescuing Pendelinos, as these trains have no auxiliary generator or batteries.
  • Removal of the excess weight of the auxiliary engine and batteries, enables the Hitachi AT-300 trains to match the performance of the Pendelinos, when they are using tilt.

Obviously, Hitachi have a lot of train performance statistics, from the what must be around a hundred trains in service.

It looks like Hitachi are creating a lightweight all-electric train, that has the performance or better of a Pendelino, that it achieves without using tilt.

  • No tilt means less weight and more interior space.
  • No auxiliary generator or batteries means less weight.
  • Wikipedia indicates, that Hitachi coaches are around 41 tonnes and Pendelino coaches are perhaps up to ten tonnes heavier.
  • Less weight means fast acceleration and deceleration.
  • Less weight means less electricity generated under regenerative braking.
  • Pendelinos use regenerative braking, through the catenary.
  • Will the new Hitachi trains do the same instead of the complex system they now use?

If the train fails and needs to be rescued, it uses the same Thunderbird system, that the Pendelinos use when they fail.

Will The New Hitachi Trains Be Less Costly To Run?

These trains will be lighter in weight than the Pendelinos and will not require the track to allow tilting.

Does this mean, that Avanti West Coast will pay lower track access charges for their new trains?

They should also pay less on a particular trip for the electricity, as the lighter trains will need less electricity to accelerate them to line speed.

Are Avanti West Coast Going To Keep The Fleets Apart?

Under a heading of Only South Of Preston, the Modern Railways article says this.

Unlike the current West Coast fleet, the Hitachi trains will not be able to tilt. Bid Director Caroline Donaldson told Modern Railways this will be compensated for by their improved acceleration and deceleration characteristics and that the operator is also working with Network Rail to look at opportunities to improve the linespeed for non-tilting trains.

The routes on which the Hitachi trains will operate have been chosen with the lack of tilt capability in mind, with this having the greatest impact north of Preston, where only Class 390 Pendelinos, which continue to make use of their tilting capability will be used.

Avanti West Coast have said that the Hitachi trains will run from London to Birmingham, Blackpool and Liverpool.

All of these places are on fully-electrified branches running West from the West Coast Main Line, so it looks like there will be separation.

Will The New Hitachi Trains Be Faster To Birmingham, Blackpool And Liverpool?

Using data from Real Time Trains, I find the following data about the current services.

  • Birmingham and Coventry is 19 miles and takes 20 minutes at an average speed of 57 mph
  • Blackpool and Preston is 16.5 miles and takes 21 minutes at an average speed of 47 mph
  • Liverpool and Runcorn is 3.15 miles and takes 15 minutes at an average speed of 52 mph

All the final legs when approaching the terminus seem to be at similar speeds, so I doubt there are much savings to be made away from the West Coast Main Line.

Most savings will be on the West Coast Main Line, where hopefully modern in-cab digital signalling will allow faster running at up to the design speed of both the Hitachi and Pendelino trains of 140 mph.

As an illustration of what might be possible, London to Liverpool takes two hours and thirteen minutes.

The distance is 203 miles, which means that including stops the average speed is 91.6 mph.

If the average speed could be raised to 100 mph, this would mean a journey time of two hours and two minutes.

As much of the journey between London and Liverpool is spent at 125 mph, which is the limit set by the signalling, raising that to 135 mph could bring substantial benefits.

To achieve the journey in two hours would require an overall average speed of 101.5 mph.

As the proportion of track on which faster speeds, than the current 125 mph increase over the next few years, I can see Hitachi’s lightweight all-electric expresses breaking the two hour barrier between London and Liverpool.

What About The Pendelinos And Digital Signalling?

The January 2020 Edition of Modern Railways also has an article entitled Pendolino Refurb Planned.

These improvements are mentioned.

  • Better standard class seats! (Hallelujah!)
  • Refreshed First Class.
  • Revamped shop.

Nothing is mentioned about any preparation for the installation of the equipment to enable faster running using digital in-cab signalling, when it is installed on the West Coast Main Line.

Surely, the trains will be updated to be ready to use digital signalling, as soon as they can.

Just as the new Hitachi trains will be able to take advantage of the digital signalling, when it is installed, the Pendellinos will be able to as well.

Looking at London and Glasgow, the distance is 400 miles and it takes four hours and thirty minutes.

This is an average speed of 89 mph, which compares well with the 91.6 mph between London and Liverpool.

Raise the average speed to 100 mph with the installation of digital in-cab signalling on the route, that will allow running at over 125 mph for long sections and the journey time will be around four hours.

This is a table of average speeds and journey times.

  • 100 mph – four hours
  • 105 mph – three hours and forty-eight minutes
  • 110 mph – three hours and thirty-eight minutes
  • 115 mph – three hours and twenty-eight minutes
  • 120 mph – three hours and twenty minutes
  • 125 mph – three hours and twelve minutes
  • 130 mph – three hours and four minutes

I think that I’m still young enough at 72 to be able to see Pendelinos running regularly between London and Glasgow in three hours twenty minutes.

The paragraph is from the Wikipedia entry for the Advanced Passenger Train.

The APT is acknowledged as a milestone in the development of the current generation of tilting high speed trains. 25 years later on an upgraded infrastructure the Class 390 Pendolinos now match the APT’s scheduled timings. The London to Glasgow route by APT (1980/81 timetable) was 4hrs 10min, the same time as the fastest Pendolino timing (December 2008 timetable). In 2006, on a one off non-stop run for charity, a Pendolino completed the Glasgow to London journey in 3hrs 55min, whereas the APT completed the opposite London to Glasgow journey in 3hrs 52min in 1984.

I think it’s a case of give the Pendelinos the modern digital in-cab signalling they need and let them see what they can do.

It is also possible to give an estimate for a possible time to and from Manchester.

An average speed of 120 mph on the route would deliver a time of under one hour and forty minutes.

Is it possible? I suspect someone is working on it!

Conclusion

I certainly think, that Avanti West Cost, Hitachi and Network Rail, have been seriously thinking how to maximise capacity and speed on the West Coast Main Line.

I also think, that they have an ultimate objective to make Avanti West Coast an operator, that only uses diesel fuel in an emergency.

 

 

January 1, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 3 Comments

New Trains For West Coast Will Be Built By Hitachi

The title of this post, is the same as that of this article on Railnews.

With the new Franchise; Avanti West Coast, starting services in a few days, more detail is starting to be added to their plans.

New Trains

This is said about the new trains to be added to the fleet.

Hitachi is to build 23 new trains for the West Coast Partnership, with the aim of having them in service by 2022.

The fleet will consist of 10 seven-car electric units and 13 five-car bi-mode units, and will be based on Hitachi’s existing Intercity Express models.

These are my thoughts about the trains.

Routes

According to Wikipedia, the bi-mode trains will be used from Euston to Chester, Gobowen, Holyhead, Llandudno and Shrewsbury and the electric trains will be used from Euston to Birmingham New Street, Blackpool North and Liverpool.

In Service Date

The Railnews article and a very similar one in Rail Magazine say that the trains will enter service by or around 2022.

This probably means that they will be built after the Class 804 trains for East Midlands Railway.

Comparison With Class 804 Trains

It has been stated that the Class 804 trains will have the following. characteristics.

  • Twenty-four metre long cars, as opposed to twenty-six metres of a Class 802 train.
  • Four diesel engines in a five-car train, instead of three in a Class 802 train.
  • They will have a reprofiled nose.

They can be considered to be the Mark 2 version of Hitachi’s Intercity Express.

The car length for the Avanti West Coast trains has been specified at twenty-six metres, which is two metres longer than that of the current Class 390 trains on the West Coast Main Line,

So will Avanti West Coast’s trains be based on the Mark 2 version?. It’s logical, that they will.

Performance

The trains for Avanti West Coast will need to keep up with the Class 390 trains, which have the advantage of tilt.

The Railnews article says this about performance.

Although the new trains will not have tilt equipment, their superior acceleration should compensate for slightly slower speeds on some sections of line.

I think that the removal of tilt equipment could be a good thing.

  • Removal could reduce the weight of the train, which would result in increased acceleration.
  • Does tilting reduce the ride quality?
  • Of all the express trains on the UK network, the Class 390 trains, are the ones I avoid because the trains are cramped and so many seats have a bad view.. Is this caused by incorporating tilting or by crap design?

I also wonder if the reprofiled nose will improve the aerodynamics of the new trains for both the East Midlands Railway and Avanti West Coast.

Better aerodynamics would help during a high-speed cruise.

Train Length

Class 390 trains have two car lengths.

  • An intermediate car is 23.9 metres
  • A driving car is 25.1 metres

This means the following.

  • A nine-car Class 390/0 train is 217.5 metres long.
  • An eleven-car Class 390/1 train is 265.3 metres long.

If the Hitachi trains have seven twenty-six metre cars, then they are 182 metres long or 35.5 metres shorter.

I find that surprising, but it does mean they fit shorter platforms. Is this needed for new destinations like Walsall?

Seating Capacity

The Railnews says this about seating.

There will more seats, because a seven-car train will have 453 and five-car sets will have 301. First said the seven-car version will have about the same number of seats as a nine-car Pendolino, because each IET vehicle is longer, at 26m

Seating on current trains is as follows.

  • A nine-car Class 390 train seats 463 passengers.
  • A five-car Class 221 train seats 250 passengers.

It would appear that the bi-mode trains seat another fifty-one passengers, than the trains they are replacing, which must be good for the routes to Chester, Shrewsbury and North Wales.

As the seven car trains are not replacing any other trains, Aventi West Coast will have n increase in capacity.

Adding up the numbers, it appears that the Avanti West Coast fleet will have three more trains and 3443 more seats.

If they should need more cars or trains, Avanti West Coast should be able to buy them easily.

Out of curiosity, how many passengers could be seated in an Hitachi train, that is the same length as an eleven-car Class 390/1 train.

As this train is 265 metres, a ten-car Hitachi train would be almost the same length.

Assuming the same passenger density as the seven-car trains, a ten-car train would have 647 seats. The current Class 390/1 train has 589 seats, so there would be an increase of sixty seats.

Train Finance

The trains are financed by Rock Rail West Coast; a joint venture between Rock Rail and Aberdeen Standard Investments.

If your pension is with Aberdeen Standard, you may ultimately own a seat or a door handle on these trains, as pension funds find trains a good way of turning pension contributions into the long-term pension, we’ll hopefully all need.

Nationalisation of the trains themselves would probably blow a hole in a lot of pension pots.

Food Offering

The Railnews article says this about food.

The details of catering on board have yet to be finalised, but Railnews has learned that there will be a buffet counter as well as trolley services, and that one of the main food suppliers will be Marks and Spencer.

Over the last couple of years, a food war seems to have developed between Virgin and LNER and as a coeliac, I’ve noticed an improvement in gluten-free food.

Marks and Spencer have done a deal with British Airways, so surely a deal with a train company must fit that model.

  • M & S already deliver to shops in most of Avanti West Coast’s destinations.
  • M & S are one of the best on getting allergies correct.
  • M & S are one of the UK’s most trusted brands.

FirstGroup, who are a seventy percent sharewholder in Avanti West Coast, might like to roll this food model out in their other rail franchises; Great Western Railway, Hull Trains, South Western Railway, TransPennine Express and the future East Coast Trains.

Hull

Hull station is an interesting case, although it has nothing to do with Avanti West Coast.

  • It is a major terminus for Hull Trains and TransPennine Express.
  • Hull Trains market themselves as a quality local train service to and from London.
  • Hull station does not have a M & S Simply Food.
  • M & S are closing their main store in Hull.
  • There are reportedly spare units in the large Hull station.

A well-designed M & S food hub in Hull station could be of great benefit to both FirstGroup and M & S.

Conclusion

Hitachi seem to be able to manipulate the train length to give customers the capacity they want.

But that is good design.

 

 

 

December 6, 2019 Posted by | Transport | , , , | 2 Comments

Thoughts On The Next Generation Of Hitachi High Speed Trains

In Rock Rail Wins Again!, I started with this section, describing the new Hitachi AT-300 bi-mode trains for the Midland Main Line.

This article on the Railway Gazette, is entitled Abellio Orders East Midlands Inter-City Fleet.

The order can be summarised as follows.

  • The trains will be Hitachi AT-300 trains
  • There will be thirty-three bi-mode trains of five cars.
  • The trains will be 125 mph capable.
  • Unlike the similar Class 802 trains, the trains will have 24 metre long cars, instead of 26 metres.
  • They will have a slightly modified nose profile.
  • The new trains will have an extra diesel engine.
  • The new trains will cost a total of £400 million.

I also came to these general conclusions.

  • The trains may well have a more sophisticated diesel-electric system using regenerative braking to batteries.
  • Capacity of the trains is difficult to predict, as East Midlands Railway have said there will be lots of tables.
  • The new nose may improve aerodynamics.

I also suspect that the trains will still be able to automatically split and join, as Class 395 and Class 80x trains can do.

Summing Up The Class 80x Trains As A Passenger

I certainly don’t have any seriously negative comments, but I do think a new generation could address some problems.

  • I’d like to see level entry between train and platform.
  • There have been complaints about the carrying of bicycles.
  • Some passengers would like a buffet.

These are not major problems with the basic design of the train itself and surely could be improved reasonably easily.

Further Thoughts On The Car Length

The AT300 trains for East Midlands Railway have a car length of twenty-four metres, as opposed to the twenty-six metres of the Class 80x trains.

If you look at some of the new fleets that are starting to be delivered, they have car lengths as follows.

  • Class 710 trains – 20 metres
  • Class 720 trains – 24 metres.
  • Class 195 and 331 trains – 24 metres

Twenty metres has for decades been the UK standard length, so could it have been replaced with twenty-four metres?

It should be noted that a twelve-car train with twenty metre cars and a ten-car train with twenty-four metre cars are more or less the same length.

With respect to the Midland Main Line, this means that platforms built to take two five-car AT300 trains, will also take a twelve-car formation of Class 360 trains.

Augmenting And Possible Replacement Of The Class 395 Trains

Class 395 trains run Southeastern’s HighSpeed services between St. Pancras and Kent.

  • They are six-car trains.
  • Each set is 121.3 metres long with twenty metre cars.
  • Extra sets are needed for the proposed Hastings service and to possibly serve a second London terminus.
  • Independent power, which could be diesel or batteries is needed for the Hastings service.
  • The trains were built in 2007-2009, so still have plenty of life left.

Extra or replacement trains built with five cars, that were twenty-six metres long, could cause operational issues and possibly mean some platforms needed to be lengthened.

However, trains with a similar size specification to the AT300 trains for the Midland Main Line, might be ideal.

  • Five twenty-four metre cars.
  • A reprofiled nose for better aerodynamics.
  • Regenerative braking to batteries.

But all or some of the diesel engines would be replaced by batteries. As with the Class 801 train, units may always have one diesel engine for use in case of power failure.

Has anybody got any statistics on how often the Class 801 trains that are in service have used their diesel engine?

If Class 395 Trains Were To Be Replaced, Where Would They Go?

These trains are too good to be scrapped, but I’m sure they will find a use.

  • Kings Cross and Kings Lynn via Cambridge – This service uses the Southern section of the East Coast Main Line, which is going to be digitally-signalled to allow 140 mph running. Currently, the Kings Cross and Kings Lynn service is run by 110 mph trains. Class 395 trains could probably run this service and keep out of the way of the Azumas and other 140 mph trains.
  • Waterloo And Portsmouth Harbour Via The Direct Line – Because it is a challenging route, more powerful and faster trains may be an ideal train for this line. The Class 395 trains already have third-rail shoes.
  • Manchester And Blackpool Via The West Coast Main Line – This could be a possibility, especially if High Speed Two connects into Manchester from the West,

I suspect there will be other routes, which would welcome the speed and/or power of Class 395 trains.

Other Uses For Battery-Electric AT300 Trains

In Shapps Wants ‘Earlier Extinction Of Diesel Trains’, I gave this list of main-line services, which are run partly on electricity and partly on diesel.

  • London and Aberdeen – 126 miles
  • London and Bradford – < 27 miles
  • London and Chester – 21 miles
  • London and Cheltenham – 42 miles
  • London and Exeter – 120 miles
  • London and Fishgruard – 119 miles
  • London and Gobowen – 25 miles
  • London and Harrogate – <18 miles
  • London and Hereford – 106 miles
  • London and Holyhead – 108 miles
  • London and Hull – 45 miles
  • London and Inverness – 136 miles
  • London and Lincoln – 17 miles
  • London and Llandudno – 68 miles
  • London and Middlesbrough – 20 miles
  • London and Ocford – 10 miles
  • London and Paignton – 148 miles
  • London and Penzance – 252 miles
  • London and Plymouth – 172 miles
  • London and Shrewsbury – 42 miles
  • London and Sunderland 41 miles
  • London and Swansea – 46 miles
  • London and Weston-super-Mare – 19 miles
  • London and Worcester – 66 miles
  • London and Wrexham – 23 miles

Note.

  1. The distance given is between the end of the electrification and the final destination.
  2. I am assuming continuous electrification from London to Bristol Temple Meads, Cardiff Central, Dunblane and Newbury
  3. Plans already exist from West Coast Rail to use bi-mode trains on the Holyhead route via Chester.

How far will an AT300 train go on battery power?

  • I don’t think it is unreasonable to be able to have 150 kWh of batteries per car, especially if the train only had one diesel engine, rather than the current three in a five-car train.
  • I feel with better aerodynamics and other improvements based on experience with the current trains, that an energy consumption of 2.5 kWh per vehicle mile is possible, as compared to the 3.5 kWh per vehicle mile of the current trains.

Doing the calculation gives a range of sixty miles for an AT300 train with batteries.

As train efficiency improves and batteries are able to store more energy for a given volumn, this range can only get better.

Routes can be divided as follows.

  • Diesel Power Needed – Aberdeen, Exeter, Fishguard, Hereford, Holyhead, Inverness, Llandudno, Paignton, Penzance, Plymouth and Worcester.
  • Battery Charge At Terminus Needed – Cheltenham, Hull, Shrewsbury, Sunderland and Swansea.
  • Battery Power Only – Bradford, Chester, Gobowen, Harrogate, Lincoln, Middlesbrough, Oxford, Weston-super-Mare and Wrexham.

There are some interesting points dug out by my figures.

West Coast Rail Could Reach Chester, Gobowen, Shrewsbury And Wrexham On Battery Power

With a range of sixty miles on batteries, the following is possible.

  • Chester, Gobowen, Shrewsbury And Wrexham Central stations could be reached on battery power from the nearest electrification.
  • Charging would only be needed at Shrewsbury to ensure a return to Crewe.

Gobowen is probably at the limit of battery range, so was it chosen as a destination for this reason.

I feel that trains with a sixty mile battery range would make operations easier for West Coast Rail.

London To Lincoln

LNER have just started an augmented service between Kings Cross and Lincoln from today..

  • There are five trains per day in both directions.
  • The service runs seven days a week.
  • The service is being run using bi-mode Class 800 trains or Azumas to the marketing men.
  • The trains make intermediate stops at Newark North Gate, Grantham, Peterborough and Stevenage..

In some ways it is more of a long-distance high speed commuter, than an inter-city train.

It will get better in future.

  • Digital signalling will allow 140 mph running South of Newark and this will reduce journey times.
  • If demand grows LNER might be sable to extend another Newark train to Lincoln.

As Newark to Lincoln is only seventeen miles, I’m certain that this route could be handled by a battery-equipped train, if Hitachi develop one.

What would it do for Lincoln’s tourism from London, if the train service was advertised as a high speed battery train?

London To Middlesbrough And Sunderland

There has been plans to electrify between Northallerton and Midfdlesbrough for some years, but they never seem to get started.

If electrification were to be erected on the fourteen miles between Northallerton and Eaglescliffe, there would only be a six mile gap without electrification between the end of the electrification and Middlesbrough.

  • Battery-electric Azumas would be able to serve Middlesbrough from London.
  • They wouldn’t need a charging facility at Middlesbrough.
  • It might remove the need to electrify Middlesbrough station, if the proposed Tees Valley Metro could be run on batteries.

In December 2019, TransPennine Express will be extending their Manchester Airport and Middlesbrough service to Redcar Central station, which is just another five miles from Middlesbrough.

Currently, this service is run by a Class 68 locomotive and a rake of Mark 5 coaches, but surely an AT300 train with batteries could handle this end of the route.

There are four sections of lines without electrification between Redcar and Manchester Airport.

  • Redcar and Northallerton – 26 miles – Has been talked about for years.
  • Colton Junction and Leeds – 18 miles – Has been talked about for years.
  • Holbeck Junction and Huddersfield – 16 miles – Currently planned to be electrified.
  • Huddersfield and Stalybridge – 18 miles

It looks to me, that an AT300 with batteries could cross the Pennines, if the Holbeck Junction and Huddersfield section was electrified.

Electrification of this section would also benefit TransPennine services between Manchester and Edinburgh, Newcastle and Scarborough.

  • Some or all could be run by an AT300 train with batteries.
  • A substantial about of carbon emissions would be eliminated.
  • In an ideal world, Hitachi will have a route to add batteries to Class 802 trains.
  • Obviously, the more electrification the better.

It certainly looks as if, progress is being made on the North-Eastern section of Northern Powerhouse Rail.

London To Bradford And Harrogate

These routes are both short extensions from Leeds, that would be easily handled by AT300 trains with a battery capability.

Conclusion

I strongly believe that the next generation of the AT300 train will greatly rxtend the UK’s electrified network

A lot depends on how far it will go on battery power.

I have stated that the train will go for sixty miles on battery power and that it will have a single diesel engine, as does the all-electric Class 801 train.

But even a range of forty miles and charging stations at some terminals like Hull and Redcar could still have a major impact.

October 25, 2019 Posted by | Transport | , , | 8 Comments

HS2 Way Out In Front In Tunnel Design For High-Speed Rail

The title of this post is the same as that of this article on Rail Engineer.

The article describes how Arup and Birmingham University are using physical and computer modelling to obtain the ultimate profiles of both tunnel portal and train nose to both increase train performance and reduce train noise as the trains enter tunnels.

They are even using a huge shed at the former British Rail Research Centre in Derby!

The biggest problem, is that there are aerodynamic effects, as the trains enter the tunnels at very high speeds, which result in what are inevitably called sonic booms, that disturb the local residents.

Because the new trains and tunnel portals are being developed together, there must be a greater chance, they will meet the objectives.

Collateral Benefits

Get the design right and there will be other benefits.

Lower Power In The Cruise

In How Much Power Is Needed To Run A Train At 125 mph?, I said this.

I have found this on this page on the RailUKForums web site.

A 130m Electric IEP Unit on a journey from Kings Cross to Newcastle under the conditions defined in Annex B shall consume no more than 4600kWh.

This is a Class 801 train.

  • It has five cars.
  • Kings Cross to Newcastle is 268.6 miles.
  • Most of this journey will be at 125 mph.
  • The trains have regenerative braking.
  • I don’t know how many stops are included

This gives a usage figure of 3.42 kWh per vehicle mile.

This figure is not exceptional and I suspect that good design of the train’s nose will reduce it, especially as the design speed of High Speed Two will be 360 kph or 224 mph.

Reduced Noise

Stand on a Crossrail platform at say Southall or West Drayton stations and listen to the Class 801 trains passing.

They are only doing about 100 mph and they are certainly not quiet! Noise comes from a variety of sources including aerodynamics, overhead wires and running gear.

Could the nose and profile of high speed trains also be designed to minimise noise, when cruising at high speeds?

Reduced Pantograph Noise

Travelling at up to 360 kph, pantograph noise could be a serious problem.

The only way to cut it down, would be to lower the pantograph in sensitive areas and run the train on battery power.

But if the trains energy consumption could be cut to a much lower level, it might be possible for the cruise to be maintained on battery power alone.

Consider a journey between Euston and Birmingham.

  • The train would accelerate away from Euston and go in a tunnel to Old Oak Common.
  • Batteries could be charged whilst waiting at Euston and in the run to Old Oak Common.
  • Accelerating away from Old Oak Common would bring the train to 360 kph as fast as possible.
  • It would now cruise virtually all the way to Birmingham Interchange at 360 kph.
  • At the appropriate moment the pantograph would be lowered and the train would use the kinetic energy to coast into Birmingham Interchange.
  • There would probably be enough energy in the batteries to take the train into Birmingham Curzon Street station after the stop at Birmingham Interchange.

One technology that will massively improve is the raising and lowering of the pantograph at speed.

So could we see much of the long non-stop intermediate section being run on batteries with the pantograph down. If power is needed, it would raise to power the train directly. If the raising and lowering was efficient, then it might be able to use the pantograph only in tunnels.

Could It Be Possible To Dispence With Wires Outside Of Tunnels?

Probably not on the first phase of High Speed Two, but consider.

  • High Speed Two is designed to have a lot of tunnels.
  • Arup and Birmingham may come up with even better aerodynamic designs.
  • Pantograph raising and lowering will get faster and extremely reliable.
  • Battery technology will hold more electricity for a given weight and volume.
  • Dispensing with visible wires could reduce the problems of getting planning permissions.
  • Noise and visible intrision will be reduced.

I believe there will come a time, when high speed railways could be built without visible overhead electrification.

The only places, where electrification would be used would be in tunnels and stations.

Are There Any Other Applications Of This Research?

These are a few thoughts.

Hitachi Trains For The Midland Main Line

I’m suspicious, that the research or similar research elsewhere, might have already produced a very handy result!

In an article in the October 2019 Edition of Modern Railways, which is entitled EMR Kicks Off New Era, more details of the new Hitachi bi-mode trains for East Midlands Railway (EMR) are given.

This is said.

The first train is required to be available for testing in December 2021 with service entry between April and December 2022.

The EMR bi-modes will be able to run at 125 mph in diesel mode, matching Meridian performance in a step-up from the capabilities of the existing Class 80x units in service with other franchises. They will have 24 metre vehicles (rather than 26 metres), a slightly different nose to the ‘800s’ and ‘802s’, and will have four diesel engines rather than three.

Could the new nose have been designed partly in Birmingham?

Consider.

  • Hitachi’s bi-modes for EMR InterCity could be running at up to 225 kph in a few years.
  • The Midland Main Line between Derby and Chesterfield goes through a number of tunnels in a World Heritage Site.
  • Hitachi have collaborated with UK research teams before, including on the Hyabusa.
  • Hitachi and Bombardier are submitting a joint bid for High Speed Two trains, which is based in Birmingham.

It should be noted that when the Tōkaidō Shinkansen opened in 1964 between Tokyo and Osaka average speed was 210 kph.

So are Hitachi aiming to provide EMR InterCity with almost Shinkansen speeds on a typical UK main line?

Arup and Birmingham University, certainly have the capability to design the perfect nose for such a project.

Aventras

Did the research team also help Bombardier with the aerodynamics of the Aventra?

I’m pretty certain, that somebody did, as these trains seem to have a very low noise signature, as they go past.

Talgo

Tsalgo are building a research centre at Chesterfield.

Will they be tapping in to all the rail research in the Midlands?

Conclusion

It looks to me, that there is some world-class research going on in Birmingham and we’ll all benefit!

October 4, 2019 Posted by | Transport | , , , , , , , , , , | Leave a comment

Protests After Claim That Hitachi Has Lost T&W Contract

The title of this post is the same as that of this article on Railnews.

This is the introductory paragraphs.

There have been protests in north east England after a report claimed that Hitachi has been ruled out of the three-way contest to build a £500 million fleet for Tyne & Wear Metro.

The other contenders are CAF and Stadler, and the source of the claims says ‘insiders’ at Nexus have been told that Hitachi will be ‘overlooked’.

It should be noted that the two other bidders have orders for similar trains in the pipeline.

CAF

In TfL Awards Contract For New DLR Fleet To Replace 30-year-old Trains , I wrote about how CAF had been awarded the contract for new trains for the Docklands Light Railway.

I also said this about the possibility of CAF being awarded the contract for the new trains for the Tyne and Wear Metro.

In Bombardier Transportation Consortium Preferred Bidder In $4.5B Cairo Monorail, I indicated that as the trains on the Tyne and Wear Metro and the trains on the Docklands Light Railway, are of a similar height and width, it might be possible to use the same same car bodies on both trains.

So now that CAF have got the first order for the Docklands Light Railway, they must be in prime position to obtain the Tyne and Wear Metro order!

A second order would fit well with the first and could probably be built substantially in their South Wales factory.

Stadler

Stadler seem to be targeting the North, with new Class 777 trains for Merseyrail and Class 399 tram-trains for Sheffield and bids in for tram-trains and and new trains for the Tyne and Wear Metro.

Their trains are both quirky, accessible and quality and built to fit niche markets like a glove.

Only Stadler would produce a replacement for a diesel multiple unit fleet with a bi-mode Class 755 train, with the engine in the middle, that is rumoured to be capable of running at 125 mph.

Note the full step-free access between train and platform, which is also a feature of the Merseyrail trains.

Does the Tyre and Wear Metro want to have access like this? It’s already got it with the existing trains, as this picture at South Shields station shows.

Stadler’s engineering in this area, would fit their philosophy

I first thought that Stadler would propose a version of their Class 399 tram-trains. for the Tyne and Wear Metro and wrote Comparing Stadler Citylink Metro Vehicles With Tyne And Wear Metro’s Class 994 Trains.

This was my conclusion.

I am led to the conclusion, that a version of the Stadler Citylink Metro Vehicle similar to those of the South Waes Metro, could be developed for the Tyne and Wear Metro.

My specification would include.

  • Length of two current Class 994 trains, which would be around 111 metres.
  • Walk through design with longitudinal seating.
  • Level access between platform and train at all stations.
  • A well-designed cab with large windows at each end.
  • Ability to use overhead electrification at any voltage between 750 and 1500 VDC.
  • Ability to use overhead electrification at 25 KVAC.
  • Pantographs would handle all voltages.
  • A second pantograph might be provided for reasons of reliable operation.
  • Ability to use onboard battery power.
  • Regenerative braking would use the batteries on the vehicle.

Note.

  1. Many of these features are already in service in Germany, Spain or Sheffield.
  2. The train would be designed, so that no unnecessary platform lengthening is required.
  3. As in Cardiff, the specification would allow street-running in the future.
  4. Could battery range be sufficient to allow new routes to be developed without electrification?

I also feel that the specification should allow the new trains to work on the current network, whilst the current trains are still running.

But since I wrote that comparison in June 2018, Merseyrail’s new trains have started to be delivered and Liverpudlians have started to do what they do best; imagine!

The Tyne and Wear Metro has similar ambitions to expand the network and would a version of the Class 777 train fit those ambitions better?

Conclusion

I wouldn’t be surprised if Hitachi misses out, as the experience of the Docklands Light Railway or Merseyrail fed into the expansion of the Tyne and Wear Metro could be the clincher of the deal.

They would also be the first UK customer for the Hitachi trains.

 

September 22, 2019 Posted by | Transport | , , , , , , , | 3 Comments

Will Abellio East Midlands Railway Go Flirting?

Abellio take over the East Midlands franchise in a few days and it will be renamed to East Midlands Railway.

It has already disclosed that it will have three divisions.

  • EMR Intercity for long distance services from London St Pancras
  • EMR Regional for local services
  • EMR Electrics for the London St Pancras to Corby service

It has also confirmed it has ordered thirty-three AT-300 trains for EMR Intercity.

Wikipedia also shows, that the following trains will be transferred to East Midlands Railway.

The first three fleets will come from Abellio-run franchises and the last will be released fairly soon, as Hull Trains new fleet is arriving.

Looking at the EMR Regional fleet it will comprise.

Consider.

  • Many probably feel that the Class 153 trains are inadequate.
  • Except for the Class 170 trains, these trains are around thirty years old.
  • Some of the Class 156 trains, which will be transferred from Greater Anglia, are currently being replaced with brand-new Class 755 trains.
  • Abellio are going through extensive fleet replacement exercises in ScotRail, Greater Anglia and West Midlands Trains.

The EMR Regional routes, that they will run are a mixed bunch.

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

Digging out the blurb for each route shows the following.

Norwich – Nottingham – Derby

Crewe – Derby – Nottingham

Matlock – Derby – Nottingham

Nottingham – Lincoln – Grimsby

Nottingham – Worksop

Nottingham – Skegness

Leicester – Nottingham

Peterborough – Lincoln – Doncaster

Barton-On-Humber – Cleethorpes

Lincoln – London

London – Oakham – Melton Mowbray

London- Leeds – York

 

Newark North Gate – Lincoln

I have come to a few conclusions.

The Fleet Is Not Being Expanded Enough To Retire The Class 153 Trains

Consider.

  • There are twenty-one Class 153 trains.
  • Five Class 170 trains and nine Class 156 trains are being added to the fleet.

Surely, this means that some Class 153 trains will be retained.

Perhaps, the remaining Class 153  trains, will be reorganised into two-car trains to increase capacity.

Extended Services Will Be Run Using New Bi-Mode AT-300 Trains

Services to Leeds and York, Oakham and Melton Mowbray and Lincoln would appear to be run by the new AT-300 trains that have been ordeed from Hitachi.

I’ve no problem with that,but there are three developments that may effect passenger numbers.

  • There is a lot of housing development in the Corby, Oakham and Melton Mowbray area.
  • There is a very large renewable energy sector developing in North Lincolnshire.
  • Sheffield are proposing to add new stations between Sheffield and Leeds, at Rotherham and Barnsley Dearne Valley.

Does the proposed service pattern take this fully into account?

In a way it doesn’t matter, as the worst that could happen, is that East Midlands Railway will need to increase the fleet size by a small number of trains.

Hopefully, they’ll just need to get Hitachi to build the trains!

Most Regional Services Will Be Run By Refurbished Modern Trains

Most services will be run by refurbished modern trains with the following features.

  • More reliable service
  • Improved comfort
  • Passenger information system
  • Free on-board wi-fi
  • At-seat power sockets
  • USB points
  • Air-conditioning
  • Tables at all seats
  • Increased luggage space

Can East Midlands Railway Refurbish Their Augmented Fleet To Meet Their Required Standards?

Consider.

  • The Class 170 trains are relatively recent and were built to a high standard, so can probably meet EMR’s standard.
  • The Class 158 trains are thirty years old and were built to a high standard, so they might be able to be upgraded to EMR’s standard.
  • The Class 156 trains are thirty years old and noisy and old-fashioned, so will need a lot of work to bring them up to EMR’s standard.
  • The Class 153 trains are thirty years old and only one car, so would probably be best retired or reduced to an auxiliary role like a bicycle car.
  • Only the Class 170 and Class 158 trains can be high standard trains.
  • All trains are diesel and only the Class 170 trains are possibly planned to be upgraded to more economical diesel hybrid trains

One additional option might be to refurbish some of the Class 222 trains, when they are replaced by the new Hitachi AT-300 trains on main line services, so they were suitable for the longer regional routes.

Will East Midlands Railway Replace The Fleet?

In their three other franchises in the UK; Greater Anglia, ScotRail and West Midlands Trains, Abellio have opted for replacement of all or a substantial part of the fleet.

So will the same action be taken at East Midlands Railway?

The company could do a lot worse, than invest in a fleet of Class 755 trains like Greater Anglia.

  • They could be a mix of lengths, so each route could have a train with capacity for the traffic.
  • The trains may be capable of 125 mph running on the Midland Main Line and the East Coast Main Line.
  • The interiors meet the company’s requirements.
  • The trains could use electrification , where it exists.
  • The trains could be fast enough to cover for the AT-300 trains.
  • Abellio Greater Anglia will soon have a large knowledge base for the trains.

The clincher could be, that as electrification increases, the trains could fit batteries and generate less carbon.

Conclusion

I wouldn’t be surprised to see Abellio East Midlands Railway buy a fleet of Class 755 trains for their EMR Regional services.

 

 

 

 

 

 

 

August 7, 2019 Posted by | Transport | , , , , , , , , | 4 Comments

Rock Rail Wins Again!

This article on the Railway Gazette, is entitled Abellio Orders East Midlands Inter-City Fleet.

The order can be summarised as follows.

  • The trains will be Hitachi AT-300 trains
  • There will be thirty-three bi-mode trains of five cars.
  • The trains will be 125 mph capable.
  • Unlike the similar Class 802 trains, the trains will have 24 metre long cars, instead of 26 metres.
  • They will have a slightly modified nose profile.
  • The new trains will have an extra diesel engine.
  • The new trains will cost a total of £400 million.

A few of my thoughts.

I shall constantly refer to an earlier post called Vere Promises East Midlands Bi-Modes In 2022.

Cost Of The Trains

In the earlier post, I calculated that the five five-car AT-300 all-electric trains, ordered by First Group for London and Edinburgh services cost four million pounds per car.

Thirty-three trains at this four million pounds per car, works out at £660 million, which is sixty-five percent higher than the price Abellio is quoted as paying.

Abellio are actually paying just £2.42 million per car or forty percent less First Group.

So are Abellio buying a cut price special?

As Abellio East Midlands Railway will be competing up against LNER’s Azumas on some journeys, I can’t see that running a second class train would be a sound commercial decision.

I am left to the conclusion, that Abellio have got a very good deal from Hitachi.

What Diesel Power Is Used?

In a five-car Class 802 train, there are three MTU 12V 1600 R80L diesel engines, each of 700 kW , which gives a total power of 2,100 kW.

If the Abellio train needs this power, with four diesel engines, each must have 525 kW.

Not sure yet, but this could save a couple of tonnes in weight.

I doubt that Hitachi are dissatisfied with the performance of the MTU diesel engines in the current Class 800, 801 and 802 trains, as there are no media reports of any ongoing problems. So I feel that they could go with the same supplier for the trains for Abellio East Midlands Railway.

If you type “Class 800 regenerative braking” into Google, you will find this document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

The only mention of the R-word is in this paragraph.

An RGS-compliant integrated on-train data recorder (OTDR) and juridical recording unit (JRU), and an EN-compliant energy
meter to record energy consumption and regeneration are fitted to the train.

If you search for brake in the document, you find this paragraph.

In addition to the GU, other components installed under the floor of drive cars include the traction converter, fuel tank, fire protection system, and brake system.

Note that GU stands for generator unit.

The document provides this schematic of the traction system.

Note BC which is described as battery charger.

Braking energy doesn’t appear to be re-used to power the train, but to provide hotel power for the train.

I talk about this in more detail in Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?.

In my view, it is an outdated design compared to some of those seen in the latest road vehicles and trains from other manufacturers.

This is a sentence from the Railway Gazette article.

According to Hitachi, the EMR units will be an ‘evolution’ of the AT300 design supplied to other UK operators, with 24 m long vehicles rather than 26 m, and a slightly modified nose profile.

So does that evolution include regenerative braking to batteries on the train.

This could have advantages.

  • improved acceleration and smoother braking
  • Less electricity and diesel consumption.
  • No running of diesel engines in stations.

I’m only speculating, but could the batteries or supercapacitors be under the car without a diesel engine? A balanced design might make this the middle car of the train

There must also be the possibility, that instead of using MTU diesel engines, the trains use MTU Hybrid PowerPacks.

Why shouldn’t Hitachi get their respected supplier to do as much of the hard work as possible?

Train Length

A five-car Class 222 train, which work the Midland Main Line now, consists of two 23.85 metre and three 22.82 metre cars. So it is 116.16 metres long.

The article says the cars in the new trains will be 24 metres long,,so a new train will be 1220 metres long or 3.84 metres longer.

This will probably mean that there will be no need for costly and disruptive platform lengthening at a couple of stations.

Capacity

Abellio have stated that passengers like having a table and that they will be offering a catering service

So will we see most seats having a table?

Chiltern have proved it’s a philosophy that works for all stakeholders!

This means that capacity comparisons with the current trains will be difficult, as you’re comparing apples with oranges.

Hopefully, we’ll get more details soon!

Splitting And Joining

I would assume the new trains will have the ability to split and join an route like the other Hitachi trains.

This could be very useful in organising trains in the limited number of paths South of Kettering.

A ten-car train might leave St. Pancras as two five-car units running as a pair. It could split at East Midlands Parkway station and one train could go to Nottingham and the other to Derby. Coming South the two trains would join at East Midlands Parkway.

A Nose Job

I’m intrigued by the phrase “slightly different nose profile” in the extract I quoted earlier.

Have Hitachi’s champion origamists found a way of designing a train which can split and join with both an aerodynamic nose and a corridor connection?

After their experience with the Class 385 train and its curved windows, I suspect Hitachi have learned a lot. Could for instance one end of the five-car train have a Class 800-style nose and the other an improved Class 385-style front end?

Trains would mate blunt-to-blunt, so the Southern train would always point towards London and the Northern train would always point towards Sheffield.

I used to have a friend, who learned origami skills at Hiroshima in the 1950s, whilst doing National Service in the Army.

I don’t think my proposal is impossible, but I’l admit it’s unusual!

  • The blunt end might have a pair of doors, each with a flat window, thus giving the driver an uninterrupted view, when driving from that end.
  • When the trains connected the doors would open and swing forward. The gang way would unfold probably from under the cab The driver’s desk would probably fold away, as the two cabs wouldn’t be needed in a ten-car train.
  • Connect and disconnect would be totally automatic.

Effectively, two five-car trains would convert into a ten-car train.

The Number Of Trains

In my earlier post, I estimated that Abellio East Midlands Railway would buy 140 bi-mode carriages.

This works out as 35 trains, as against the thirty-three actually ordered.

This is close enough to say, that these new trains are only for main line services and will not be used on the electric services to Corby, which I estimate will be another seven 240 metre-long electric trains

A Complete Fleet Renewal

This is a paragraph from the Railway Gazette article.

Abellio UK Managing Director Dominic Booth said the new trains would ‘form the centrepiece of our ambitious plans for a complete replacement of all the trains on the East Midlands Railway’, representing ‘a more than £600m investment to really improve the region’s railway’.

When Abellio say renewal, they mean renewal.

So will Bombardier or another manufacturer receive a consolation prize of the seven high-capacity 240 metre long electric trains for the St. Pancras and Corby service?

A version of the Abellio part-owned, West Midlands Trains‘s, Class 730 train, would surely do just fine.

The Role Of Rock Rail

The trains will be leased from Rock Rail.

The Rock Rail web site gives this insight.

Rock Rail’s game changing approach to rolling stock funding has:

  • Enabled long term institutional investors to invest directly into a new sector.
  • Driven better value for government, operators and passengers.
  • Extended the market for infrastructure finance.

Rock Rail works closely with the franchise train operators and manufactures to ensure a collaborative approach to design, manufacture and acceptance of the new state of the art trains on time and to budget as well as to manage the long-term residual value and releasing risks.

It’s obviously an approach that has worked, as they have been behind three rolling stock deals at they have funded trains for Moorgate services, Greater Anglia and South Western Railway in recent months.

The Abellio East Midlands Railway makes that a fourth major fleet.

Take a few minutes to explore their web site.

Rock Rail say their backers are institutional investors. So who are these faceless institutions with deep pockets.

I have seen Standard Life Aberdeen mentioned in connection with Rock Rail. This Scottish company has £670 billion of funds under management and it is the second largest such company in Europe.

Companies like these need secure long term investments, that last thirty to forty years, so that pension and insurance funds can be invested safely to perhaps see us through retirement. I know that some of my pension is invested in a product from Standard Life Aberdeen, so perhaps I might ultimately own a couple of threads in a seat cover on a train!

As the Government now insists everybody has a pension, there is more money looking for a safe mattress!

Rock Rail allows this money to be used to purchase new trains.

Rock Rail seem to be bringing together train operators, train manufacturers and money to give train operators, their staff and passengers what they want. I seem to remember that Abellio did a lot of research in East Anglia about the train service that is needed.

Conclusion

Abellio have made a very conservative decision to buy trains from Htachi, but after my experiences of riding in Class 800, 801 and 802 trains in the last few months, it is a decision, that will satisfy everyone’s needs.

Unless of course, Hitachi make a horrendous mess of the new trains!

But the four fleets, they have introduced into the UK, have only suffered initial teething troubles and don’t seem to have any long term problems.

There are some small design faults, which hopefully will be sorted in the new trains.

  • Step-free access between train and platform.
  • The carriage of bicycles and other large luggage.

The second will be more difficult to solve as passengers seem to bring more and more with them every year.

July 31, 2019 Posted by | Finance, Transport | , , , , , , , | 2 Comments