The Anonymous Widower

First Steps To Faster Trains Is Delivered

This is the title of an article in the Hastings and St. Leonards Observer, that has been signed by Amber Rudd.

About Amber Rudd

Amber Rudd is the Home Secretary and in this year’s General Election, she retained the Hastings and Rye constituency with a majority of just 346 votes.

As I doubt she wants to commit political suicide, I therefor consider that what is said in the article is very close to what is intended to happen about the delivery of faster trains between London and Hastings.

London To Hastings In 66 Minutes

This is the first two paragraphs of her article.

Last week I invited Transport Secretary Chris Grayling to visit Ashford International to hear an update on my campaign to secure a high speed rail link between our communities and London St Pancras.

Specifically, I want to see journey times, which are currently around 100 minutes between Hastings and London, reduced to 66 minutes.

The sixty-six minutes is mentioned again later in the article.

Would a politician be so definite about her aims, unless she knew that it was deliverable?

Or is it lucky to say sixty-six in Hastings?

So how feasible is London to Hastings in 66 minutes?

Consider.

  • Southeastern’s Highspeed services between St. Pancras and Ashford, generally take between 37-38 minutes for the journey, with some trains a few minutes faster.
  • The Marshlink Line between Ashford and Hastings is about 26¼ miles in length
  • The operating speed is quoted in Wikipedia as 60 mph.
  • There are some serious level crossings.

So could a train go from Ashford to Hastings in twenty-eight minutes to meet Amber Rudd’s quoted target of 66 minutes?

26¼ miles in 28 minutes works out a an average speed of 56.25 mph.

I would give that time a 9/10 for feasibility.

The problem would be the level crossings on the line, so if Network Rail were to remove these and improve the track a bit, I feel that this could even score highly for reliability.

Currently, there doesn’t appear to be many trains passing through and even if the service was doubled to two trains per hour in both directions, I don’t think they would trouble the timetable compiler.

Track Changes At Ashford

Amber Rudd’s article then says this about track changes at Ashford.

This was a very encouraging meeting. I am pleased to announce that the commitment has been made to supporting the development of a proposed track layout at Ashford International which would allow trains from Hastings, Rye, Bexhill and Eastbourne to travel direct to London St Pancras

Work will now begin towards the necessary track connections to join-up the Marshlink and the High Speed 1 line to London.

This change would help make possible the direct service to St Pancras with a journey time of 81 minutes from Hastings.

That seems to be a plan. But where does the 81 minutes come from?

The current Class 171 trains take around 42 minutes between Hastings and Ashford, so 38+42 would say that 81 minutes is a reasonable claim.

This document on the Network Rail web site, is the Technical Appendix of the South East Route: Kent Area Route Study.

This map was extracted from the document.

This shows the changes needed to connect HS1 to the Marshlink Line.

Diesel-Electric Or Battery-Electric Trains?

Amber Rudd’s article says this about the trains.

Accompanying the track changes at Ashford, hybrid rolling stock – trains running on diesel-electric or battery-electric power – would make these quick journey times a reality.

This fits in with what is said in the Technical Appendix to the  Kent Area Route Study.

The diesel electric train mentioned in the Technical Appendix is a Class 802 train. Production and delivery of these is underway for Great Western Railway, so we’re not talking about an untried class of train.

But there may be problems running trains carrying diesel fuel in the HS1 tunnels.

The battery-electric train mentioned in the Technical Appendix is the IPEMU based on a Class 379 train.

This train is not in production yet and the picture shows the test train, that ran in Essex nearly two years ago.

The Technical Appendix says this about the IPEMU.

In 2015, industry partners worked together to investigate
battery-electric traction and this culminated with a
practical demonstration of the Independently Powered
Electric Multiple Unit IPEMU concept on the Harwich
Branch line in Anglia Route. At the industry launch event,
the train manufacturers explained that battery
technology is being developed to enable trains to run
further, at line speeds, on battery power, indeed, some
tram lines use this technology in the city centres and many
London buses are completely electric powered.

The IPEMU project looked at the feasibility of battery power
on the Marshlink service and found that battery was
sufficient for the train to run from Brighton to Ashford
International and back but there was insufficient charge to
return to Ashford International on a second round trip. A
solution to this could be that the unit arrives from Ashford
International at Brighton and forms a service to Seaford and
back before returning to Ashford International with a
charged battery.

The IPEMU demonstration train was a Class 379, a similar
type to the Class 377 units currently operated by Southern, it
was found that the best use of the battery power was to
restrict the acceleration rate to that of a modern diesel
multiple unit, such as a Class 171 (the current unit type
operating the line) when in battery mode and normal
acceleration on electrified lines.

Note the following from Network Rail’s text.

  • Brighton to Ashford is about 60-70 miles.
  • Acceleration should be limited.
  • The Class 377 train would not be suitable for HS1, as it is only a 100 mph train.

It is my opinion, that a battery-electric train with the following characteristics could be designed.

  • Five to eight cars.
  • 140 mph on HS1 using 25 KVAC overhead electrification.
  • 100 mph on the East Coastway Line between Brighton and Hastings using 750 VDC third-rail electrification.
  • Class 171 train performance using batteries on the Marshlink Line.
  • A battery range of sixty miles to allow a fully charged train to go from Ashford to Hastings and back.

Effectively, it’s a dual-voltage high speed train, that can also run on battery power.

How Would A Battery Train Operate?

A train working from St. Pancras to Hastings would go through the following operations.

  • Run from St. Pancras to Ashford along HS1, as the current Class 395 trains do using the 25KVAC overhead power.
  • Stop in Platform 2 at Ashford station and switch to battery power.
  • Run to Hastings on battery power.
  • Run to Aahford on battery power.
  • Stop in Platform 2 at Ashford station and switch to 25 KVAC overhead power.
  • Run from Ashford to St. Pancras along HS1 using the 25 KVAC overhead power

The battery would be charged on HS1 and using the third-rail electrification at Hastings.

How Big Would The Battery Need To Be?

The test IPEMU had a battery capacity of 500 kWh and based on what is said in the Technical Appendix was capable of perhaps 150 miles on battery power.

This works out as a consumption of under one kWh per car per mile.

So a six-car train would need perhaps 200 kWh to do a single trip on the 26¼ mile Marshlink Line. Providing of course it was fully charged before starting the journey.

Could Hitachi Modify a Class 395 Train To Have A Battery Option?

Hitachi have been developing battery trains for several years.

I believe that if Bombardier can create and test a battery-electric version of a Class 379 train, in under a year, then Hitachi could do the same with any of their A train family, which includes Class 800/801/802/395 trains.

This page on the Hitachi web site is entitled AT300 – INTERCITY HIGH SPEED.

The page has a picture of a Class 395 train and it has this caption.

The Class 395 is the first High Speed commuter train in the UK and part of Hitachi’s family of AT300 units. Its introduction to HS1 in 2009 continues to be a success story and it has set new standards for performance in High Speed trains in the UK.

Underneath the picture, it gives a Technical Outline for the trains, where this is said.

Power Supply: (25kVAC / 750 Vdc / Battery)

This may only be for train hotel power, but certainly the trains can use batteries.

Conclusion On The Type Of Train

I have no reason to believe that St. Pancras to Hastings copuldn’t be run by either type of train.

Although there is the problem of whether trains carrying diesel can go throyugh the HS1 tunnels.

The new operator for the Southeastern Franchise will chose the deal they liked.

Destination Stations

The Technical Appendix to the Kent Area Route Study proposes three possible destination stations.

Hastings

Hastings station has some advantages.

  • It may be easier for operational reasons.
  • Using Platform 1 would allow cross-platform interchange with trains going West.
  • Only minimal signalling and track changes are needed.
  • A 25-30 minute dwell time at the station is good for recovery after a late arrival.

The big disadvantage is that Bexhill will not be served.

Bexhill

Stakeholders would like the service to go to Bexhill station.

Train operation doesn’t appear to be as simple as at Hastings.

Eastbourne

Eastbourne station also offers advantages.

  • There could be a 20-25 minute dwell time at Eastbourne, which would help in service recovery.
  • Sic-car trains would offer signification extra capacity between Hastings and Eastbourne, where it is needed.
  • The line between Bexhill and Eastbourne was resignalled in 2015.
  • Eastbourne to St. Pancras would be a good alternative route in times of perturbation.
  • With extra work at Hampden Park station, it could provide a faster route to Brighton and Gatwick Airport.

The only disadvantage is that an extra train would be needed to run the service.

Conclusion On The Destination

All three stations could be a suitable destination.

I feel that if the choice of trains favours battery-electric, that Eastbourne might have a useful advantage in recharging the batteries.

Track Improvements

The Technical Appendix to the Kent Area Route Study proposes various track improvements in various places from Ashford to Brighton.

It looks like Network Rail are preparing the infrastructure for faster services all along the South Coast.

Conclusion

Amber Rudd has put her name to a well-worked article.

 

 

 

 

 

November 10, 2017 Posted by | Travel | , , , , | Leave a comment

Regenerative Braking On A Dual-Voltage Train

Yesterday, I found this document on the Railway People website, which is entitled Regenerative Braking On The Third Rail DC Network.

Although, the document dates from 2008, it is very informative.

Regenerative Braking On 25 KVAC Trains

The document says this.

For AC stock, incoming power from the National Grid at high voltage is stepped down by a transformer. The AC power is transmitted via OHL to the trains. When the train uses regenerative braking, the motor is used as a generator, so braking the axle and producing electrical energy. The generated power is then smoothed and conditioned by the train control system, stepped up by a transformer and returned to the outside world. Just about 100% of regenerated power is put back into the UK power system.

But I have read somewhere, that you need a 25 KVAC overhead electrification system with more expensive transformers to handle the returned electricity.

Regenerative Braking On 750 VDC Trains

The document says this.

After being imported from the National Grid, the power is stepped down and then AC power is rectified to DC before being transmitted via the 3rd rail. Regenerated Power can not be inverted, so a local load is required. The power has to be used within the railway network. It cannot be exported.

So the electricity, is usually turned into heat, i there is no train nearby.

The Solution That Was Applied

The document then explains what happened.

So, until such time as ATOC started to lobby for a change, regenerative DC braking was going nowhere. But when they did start, they soon got the backing of the DfT and Network Rail. It takes a real combined effort of all organisations to challenge the limiting assumptions.

In parallel, there were rolling stock developments. The point at which all the issues started to drop away was when the Infrastructure Engineers and Bombardier, helped out by some translating consultants (Booz & Company), started to understand that new trains are really quite clever beasts. These trains do understand what voltage the 3rd rail is at, and are able, without the need to use any complicated switch gear – just using software, to decide when to regenerate into the 3rd rail or alternatively, use the rheostatic resistors that are on the train.

Effectively, the trains can sense from the voltage if the extensive third-rail network can accept any more electricity and the train behaves accordingly.

As most of the electric units with regenerative braking at the time were Bombardier Electrostars, it probably wasn’t the most difficult of tasks to update most of the trains.

Some of the Class 455 trains have recently been updated. So these are now probably compatible with the power network. Do the new traction motors and associated systems use regenerative braking?

This document on the Vossloh-Kiepe web site is entitled Vossloh Kiepe enters Production Phase for SWTs Class 455 EMU Re-Tractioning at Eastleigh Depot and describes the updating of the trains. This is said.

The new IGBT Traction System provides a regenerative braking facility that uses the traction motors as generators when the train is braking. The electrical energy generated is fed back into the 750 V third rail DC supply and offsets the electrical demands of other trains on the same network. Tests have shown that the energy consumption can be reduced by between 10 per cent and 30 per cent, depending on conditions. With the increasing cost of energy, regenerative braking will have a massive positive cost impact on the long-term viability of these trains. If the supply is non-receptive to the regenerated power, the generated power is dissipated by the rheostatic brake.

So thirty-five year old British Rail trains now have a modern energy-saving traction system.

Has The Solution Worked On The Third-Rail Network?

The Railway People document goes on to outline how they solved various issues and judging by how little there is about regenerative braking on the third-rail network, I think we can assume it works well.

One Train, Two Systems

If you have a train that has to work on both the 25 KVAC and 750 VDC networks, as Thameslink and Southeastern Highspeed trains do, the trains must be able to handle regenerative braking on both networks.

So is there a better way, than having a separate system for each voltage?

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I investigated how Hitachi’s new Class 800 trains handle regenerative braking.

A document on Hitachi’s web site provides this schematic of the traction system.

Note BC which is described as battery charger.

The regenerative braking energy from the traction motors could be distributed as follows.

  • To provide power for the train’s  services through the auxiliary power supply.
  • To charge a battery.
  • It could be returned to the overhead wires.

Hitachi’s system illustrates how using a battery to handle regenerative braking could be a very efficient way of running a train.

Hitachi’s diagram also includes a generator unit or diesel power-pack, so it could obviously fit a 750 VDC supply in addition to the 25 KVAC system on the Class 800 train.

So we have now have one train, with three power sources all handled by one system.

What Has Happened Since?

As the Hitachi document dates from 2014, I suspect Hitachi have moved on.

Siemens have produced the Class 700 train for Thameslink, which is described in this Siemens data sheet.

Regenerative braking is only mentioned in this sentence.

These new trains raise energy efficiency to new levels. But energy efficiency does not stop at regenerative braking.

This is just a bland marketing statement.

Bombardier are building the first batches of their new Aventra train, with some Class 345 trains in service and Class 710 trains about to enter testing.

Nothing has been said about how the trains handle regenerative braking.

But given that Bombardier have been experimenting with battery power for some time, I wouldn’t be surprised to see batteries involved.

They call their battery technology Primove and it has its own web site.

There is also this data sheet on the Bombardier web site.

Class 387 Trains

There is another train built by Bombardier, that is worth investigating.

The Class 387 train was the last and probably most advanced Electrostar.

  • The trains have been built as dual-voltage trains.
  • The trains have regenerative braking that works on both electrification types.
  • They were built at around the time Bombardier were creating the Class 379 BEMU demonstrator.
  • The trains use a sophisticated propulsion converter system called MITRAC, which is also used in their battery trams.

On my visit to Abbey Wood station, that I wrote about in Abbey Wood Station Opens, I got talking to a Gatwick Express driver about trains, planes and stations, as one does.

From what he said, I got the impression that the Class 387/2 trains, as used on Gatwick Express, have batteries and use them to keep the train and passengers comfortable, in case of an electrification failure.

So do these trains use a battery to handle the regenerative braking?

How Big Would Batteries Need To Be On A Train For Regenerative Braking?

I asked this question in a post with the same name in November 2016 and came to this conclusion.

I have a feeling that using batteries to handle regenerative braking on a train could be a very affordable proposition.

As time goes on, with the development of energy storage technology, the concept can only get more affordable.

Bombardier make a Primove battery with a capacity of 50 kWh, which is 180 mega-Joules.

So the braking energy of what mass of train could be stored in one of these batteries?

I got these figures.

  • 100 mph – 180.14 tonnes.
  • 110 mph – 148.88 tonnes.

What is the mass of a Class 387 train?

This is not available on the Internet but the mass of each car of a similar Class 378 train averages out at 32 tonnes.

Consider these points.

  • A Class 387/2 train, has 219 seats, so if we assume each passenger and baggage weighs eighty kilograms, that adds up to 17.5 tonnes.
  • As the Class 387 trains have a maximum speed of 100  mph on third-rail electrification, it would appear that a Primove 50 kWh battery could handle the braking energy.
  • A Primove 50 battery with its controller weighs 827 Kg. according to the data sheet.

It all looks like using one of Bombardier’s Primove 50 batteries on a Class 387 train to handle the regenerative braking should be possible.

But would Bombardier’s MITRAC be able to use that battery power to drive the train in the most efficient manner? I suspect so!

If the traction layout is as I have outlined, it is not very different to the one published by Hitachi in 2014 on their web site for the Class 800 train.

Conclusion

Hitachi have got their traction layout right, as it can handle any number of power sources.

 

 

October 26, 2017 Posted by | Travel | , , , , | 2 Comments

The Intelligent Multi-Mode Train And Affordable Electrification

Some would say we are at a crisis point in electrification, but I would prefer to call it a crossroads, where new techniques and clever automation will bring the benefits of electric traction to many more rail lines in the UK.

Lines That Need Electric Passenger Services

I could have said lines that need to be electrified, but that is probably a different question, as some lines like the Felixstowe Branch Line need to be electrified for freight purposes, but electric passenger services can be provided without full electrification.

Lines include.

  • Ashford to Hastings.
  • Borderlands Line.
  • Caldervale Line from Preston to Leeds
  • Camp Hill Line across Birmingham.
  • Huddersfield Line from Manchester to Leeds via Huddersfield.
  • Midland Main Line from Kettering to Derby, Nottingham and Sheffield.
  • Uckfield Branch Line

There are many others, too numerous to mention.

What Is A Multi-Mode Train?

If a bi-mode train is both electric and diesel-powered, a multi-mode train will have at least three ways of moving.

The Intelligent Multi-Mode Train

The  intelligent multi-mode train in its simplest form would be an electric train with these characteristics.

  • Electric drive with regenerative braking.
  • Diesel or hydrogen power-pack.
  • Onboard energy storage to handle the energy generated by braking.
  • 25 KVAC and/or 750 VDC operation.
  • Automatic pantograph and third-rail shoe deployment.
  • Automatic power source selection.
  • The train would be designed for low energy use.
  • Driver assistance system, so the train was driven safely, economically and to the timetable.

Note the amount of automation to ease the workload for the driver and run the train efficiently.

Onboard Energy Storage

I am sure that both the current Hitachi and Bombardier trains have been designed around energy storage. Certainly, there are several quotes from Bombardier executives that say so.

The first application will be to handle regenerative braking, so that energy can be stored on the train, rather than returned to the electrification.

Onboard energy storage is also important in modern electric trains for other reasons.

  • Features like remote train wake-up can be enabled.
  • Moving the train short distances in case of power failure.
  • When Bombardier started developing the use of onboard energy storage, they stated that one reason was to reduce electrification in depots for reasons of safety.

Onboard energy storage will improve in several ways.

  • The energy density will get higher, meaning lighter and smaller storage.
  • The energy storage capacity will get higher, meaning greater range.
  • The cost of energy storage will become more affordable.
  • Energy storage will last longer before needing replacement.
  • CAF use a supercapacitor to get fast response and a  lithium-ion battery for good capacity.

We underestimate how energy storage will improve over the next few years at our peril.

Automatic Onboard Storage Management

The use of the energy storage will also be optimised for route, passenger load, performance and battery life by the trains automatic power source selection system.

Diesel Power Pack

A conventional diesel power pack to drive the train on lines without electrification.

As the train is electrically-driven, when running under diesel, regenerative braking can still be used, with the generated energy being stored onboard the train.

Hydrogen Power Pack

I believe that hydrogen could be used to generate the electricity required, as it is in some buses.

Operation Of The Multi-Mode Train

I’ve read somewhere that Greater Anglia intend to run their Class 755 trains using electricity, where electrification is available, even if it only for a short distance. This is enabled, by the ability of the train to be able to raise and lower the pantograph quickly and at line speed.

The train’s automatic power source selection will choose the most appropriate power source, from perhaps electrification, stored energy and diesel, based on route, load and the timetable.

Do Any Multi-Mode Trains Exist?

The nearest is probably the Class 800 train, which I believe uses onboard energy storage to handle regenerative braking, as I outlined in Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?.

This article in RailNews is entitled Greater Anglia unveils the future with Stadler mock-up and says this.

The bi-mode Class 755s will offer three or four passenger vehicles, but will also include a short ‘power pack’ car to generate electricity when the trains are not under the wires. This vehicle will include a central aisle so that the cars on either side are not isolated. Greater Anglia said there are no plans to include batteries as a secondary back-up.

So does that mean that Class 755 trains don’t use onboard energy storage to handle regenerative braking?

At the present time, there is no bi-mode Bombardier Aventra.

But in Is A Bi-Mode Aventra A Silly Idea?, I link to an article on Christian Wolmar’s web site, which says that Bombardier are looking into a 125 mph bi-mode Aventra.

My technical brochure for the new Class 769 train, states that onboard energy storage is a possibility for that rebuild of a Class 319 train.

I don’t think it is a wild claim to say that within the next few years, a train will be launched that can run on electric, diesel and onboard stored power.

The Pause Of Electrification

Obviously, for many reasons, electrification of all railway lines is an ideal.

But there are problems.

  • Some object to electrification gantries marching across the countryside and through historic stations.
  • Network Rail seem to have a knack of delivering electrification late and over budget.
  • The cost of raising bridges and other structures can make electrification very bad value for money.

It is for these and other reasons, that the Government is having second thoughts about the direction of electrification.

Is There A Plan?

I ask this question deliberately, as nothing has been disclosed.

But I suspect that not for the first time, the rolling stock engineers and designers seem to be getting the permanent way and electrification engineers out of trouble.

As far as anybody knows, the plan seems to be to do no more electrification and use bi-mode trains that can run under both electrification and diesel-power to provide new and improved services.

Use Of Bi-Mode Trains

Taking a Liverpool to Newcastle service, this would use the electrification to Manchester, around Leeds and on the East Coast Main Line, with diesel power on the unelectrified sections.

If we take a modern bi-mode train like a Class 800 train, some features of the train will help on this route.

  • The pantograph can raise or lower as required at line speed.
  • It is probably efficient to use the pantograph for short sections of electrification.
  • Whether to use the pantograph is probably or certainly should be controlled automatically.

On this route the bi-mode will also be a great help on the fragile East Coast Main Line electrification.

Improving Bi-Mode Train Efficiency

Bi-mode trains may seem to be a solution.

However, as an electrical engineer, I believe that what we have at the moment is rather primitive compared to how the current crop of trains will develop.

Onboard Energy Storage

I said this earlier.

  • I am sure that both the current Hitachi and Bombardier trains have been designed to use energy storage.
  • CAF use a supercapacitor to get fast response and a  lithium-ion battery for good capacity.

This is an extract from the the Wikipedia entry for supercapacitor.

They typically store 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerate many more charge and discharge cycles than rechargeable batteries.

Supercapacitors are used in applications requiring many rapid charge/discharge cycles rather than long term compact energy storage: within cars, buses, trains, cranes and elevators, where they are used for regenerative braking.

Pairing them with a traditional lithium-ion battery seems to be good engineering.

The most common large lithium-ion batteries in public transport use are those in hybrid buses. In London, there are a thousand New Routemaster buses each with a 75 kWh battery.

In the past, there has have been problems with the batteries on New Routemasters and other hybrid buses, but things have improved and I suspect there is a mountain of knowledge both in the UK and worldwide on how to build a reliable, affordable and safe lithium-ion battery in the 75-100 kWh range.

As on the New Routemaster the battery is squeezed under the stairs, these batteries are not massive and I suspect one or more could easily be fitted underneath the average passenger train.

Look at this picture of a Class 321 train.

The space underneath is typical of many electrical multiple units.

How Far Could A Train Travel On Stored Energy?

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So if we take a battery from a New Routemaster bus, which is rated at 75 kWh, this would propel a five-car electric multiple unit between three and five miles.

Suppose though you put a battery of this size in every car of the train. This may seem expensive, but a typical car in a multiple unit and a double-deck bus carry about the same number of passengers.

A battery in each car would give advantages, especially in a Bombardier Aventra.

  • Most cars in an appear to be powered, so each traction motor would be close to a battery, which must reduce electrical transmission losses and ease regenerative braking.
  • Each car would have its own power supply, in case the main supply failed.
  • The weight of the batteries is spread along the train.

If you take any Aventra, with a 75 kWh battery in each car, using Ian’s figures, they would be able to run between fifteen and twenty-five miles on battery power alone.

Quotes by Bombardier executives of a fifty mile range don’t look so fanciful.

What Onboard Energy Storage Capacity Would Be Needed For Fifty Miles?

This article in Rail Engineer, which is entitled An Exciting New Aventra, quotes Jon Shaw of Bombardier on onboard energy storage.

As part of these discussions, another need was identified. Aventra will be an electric train, but how would it serve stations set off the electrified network? Would a diesel version be needed as well?

So plans were made for an Aventra that could run away from the wires, using batteries or other forms of energy storage. “We call it an independently powered EMU, but it’s effectively an EMU that you could put the pantograph down and it will run on the energy storage to a point say 50 miles away. There it can recharge by putting the pantograph back up briefly in a terminus before it comes back.

What onboard energy storage capacity would be needed for the quoted fifty miles?

I will use these parameters.

  • Ian Walmsley said a modern EMU consumes between 3 and 5 kWh for each vehicle mile.
  • All vehicles are powered and there is one battery per vehicle.

This will result in the following battery sizes for different EMU consumption rates.

  • 3 kWh/vehicle-mile – 150 kWh
  • 4 kWh/vehicle-mile – 200 kWh
  • 5 kWh/vehicle-mile – 250 kWh

These figures show that to get a smaller size of battery, you need a very energy-efficient train. At least lighting, air-conditioning and other electrical equipment is getting more efficient.

The 379 IPEMU Experiment On The Mayflower Line

In 2015, I rode the battery-powered Class 379 train on the 11.2 mile long Mayflower Line.

I was told by the engineer monitoring the train on a laptop, that they generally went to Harwich using the overhead electrification, charging the battery and then returned on battery power.

Ian Walmsley in his Modern Railways article says that the batteries on that train had a capacity of 500 kWh.

This works out at just over 11 kWh per vehicle per mile.

Considering this was an experiment conducted on a scheduled passenger service, it fits well with the conssumption quoted in Ian Walmsley’s article.

Crossrail’s Emergency Power

If you look at Crossrail’s Class 345 trains, they are nine cars, with a formation of

DMSO+PMSO+MSO+MSO+TSO+MSO+MSO+PMSO+DMSO

All the Ms mean that eight cars are motored.

Suppose each of the motored cars have a battery of 75 kWh.

  • This means a total installed battery size of 600 kWh.
  • Suppose the nine-car train needs Ian’s Walmsley’s high value of 5 kWh per vehicle mile to proceed through Crossrail.
  • Thus 45 kWh will be needed to move the train for a mile.
  • Dividing this into the battery capacity gives the range of 13.3 miles.

If this were Crossrail’s emergency range on stored energy, it would be more than enough to move the train to the next station or place of safety in case of a complete power failure.

Trains Suitable For Onboard Energy Storage

I have a feeling that for any train to run efficiently with batteries, there needs to be a lot of powered axles and batteries distributed along the train.

Aventras certainly have a lot of powered axles and I think Hitachi trains are similar.

Perhaps this explains, why after the successful trial of battery technology on a Class 379 train, it has not been retrofitted to any other Electrostars.

There might not be enough powered axles!

Topping Up The Onboard Energy Storage

There are three main ways to top up the onboard energy storage.

  • From regenerative braking.
  • From the diesel or hydrogen powerpack.
  • From the electrification, where it is available.

The latter is probably the most efficient and is ideal, where a route is partly electrified.

Affordable Electrification

Although the Government has said that there will be no more electrification, I think there will be selective affordable electrification to improve the efficiency of multi-mode trains.

Why Is Electrification Often Late And Over Budget?

The reasons I have found or been told are varied.

  • Electrification seems regularly to hit unexpected infrastructure like sewers and cables on older routes.
  • There have been examples of poor engineering.
  • There is a large amount of Victorian infrastructure like bridges and stations that need to be rebuilt.
  • There is a certain amount of opposition from the Heritage lobby.
  • Connecting the electrification to the National Grid can be a large cost.

My experience in Project Management, also leads me to believe that although Network Rail seems to plan large station and track projects well, they tend to get in rather a mess with large electrification projects.

Electrification Of New Track

It may only be a personal feeling, but where new track has been laid and it is electrified Network Rail don’t seem to have the same level of problems.

These projects are generally smaller, but also I suspect the track-bed has been well-surveyed and well-built, to give a good foundation for the electrification.

It was interesting to note a few weeks ago at Blackpool, where they are electrifying the line, that Network Rail appeared to be relaying all of the track as well.

I know they were also re-signalling the area, but have Network Rail decided that the best way to electrify the line was a complete rebuild?

Short Lengths Of New Electrification

Short lengths of new electrification could make all the difference on routes using multi-mode trains with onboard energy storage.

As a simple example, I’ll take the Felixstowe Branch Line, that I know well. Ipswwich to Felixstowe is about sixteen miles, which is probably too far for a train running on onboard energy storage. But there are places, where short lengths of electrification would be beneficial to both the Class 755 trains and trains with onboard energy storage.

  • Ipswich to Westerfield
  • On the section of double-track to be built in 2019.
  • Felixstowe station

There is also the large number of diesel-hauled freight trains passing through the area, quite a few of which change to and from electric haulage at Ipswich.

So would some selective short lengths of electrification enable the route to be run by trains using onboard energy storage?

Electrification Of Tunnels

Over the last few years, there has been some very successful electrification of tunnels like the seven kilometre long Severn Tunnel. This is said about the problems of electrification in Wikipedia.

As part of the 21st-century modernisation of the Great Western Main Line, the tunnel was prepared for electrification. It has good clearances and was relatively easy to electrify, although due to its age, the seepage of water from above in some areas provided an engineering challenge. The options of using either normal tunnel electrification equipment or a covered solid beam technology were considered and the decision was made to use a solid beam. Over the length of the tunnel, an aluminium conductor rail holds the copper cable, which is not under tension. A six-week closure of the tunnel started on 12 September 2016. During that time, alternative means of travel were either a longer train journey via Gloucester, or a bus service between Severn Tunnel Junction and Bristol Parkway stations. Also during that time, and possibly later, there were direct flights between Cardiff and London City Airport. The tunnel was reopened on 22 October 2016.

It appears to have been a challenging but successful project.

This type of solid beam electrification has been used successfully by Crossrail and Chris Gibb has suggested using overhead beam to electrify the three tunnels on the Uckfield Branch Line.

In the North of England, there are quite a few long tunnels.

Could these become islands of electrification to both speed the trains and charge the onbosrd energy storage?

Third-Rail Electrification Of Stations

Ian Walmsley in his Modern Railways article proposes using third rail electrification at Uckfield station to charge the onboard energy storage of the trains. He also says this.

This would need only one substation and the third rail could energise only when there is a train on it, like a Bordeaux tram, hence minimal safety risk.

There needs to be some serious thought about how you create a safe, affordable installation for a station.

I also feel there is no need to limit the use of short lengths of third-rail electrification to terminal stations. On the Uckfield Branch, some stations are very rural, but others are in centres of population and/or industry, where electricity to power a short length of third-rail might be available.

Overhead Beams In Stations

This picture shows the Seville trams, which use an overhead beam at stops to charge their onboard energy storage.

Surely devices like these can be used in selective stations, like Hull, Scarborough and Uckfield.

Third-Rail Electrification On Bridges And Viaducts

Some bridges and high rail viaducts like the Chappel Viaduct on the Gainsborough Line, present unique electrification problems.

  • It is Grade II Listed.
  • Would overhead electrification gantries be welcomed by the heritage lobby?
  • It is 23 metres high.
  • Would this height present severe Health and Safety problems for work on the line?
  • The viaduct is 320 metres long.

Could structures like this be electrified using third-rail methods?

  • The technology is proven.
  • As in stations, it could only be switched on when needed.
  • The electrification would not be generally visible.

The only minor disadvantage is that dual-voltage trains would be needed. But most trains destined for the UK market are designed to work on both systems.

Getting Power To Short Lengths Of Electrification

One thing that is probably needed is innovation in powering these short sections of electrification.

Conclusion

There are a very large number of techniques that can enable a multi-mode train to roam freely over large parts of the UK.

It is also a team effort, with every design element of the train, track, signalling and stations contributing to an efficient low-energy train, that is not too heavy.

 

 

 

 

 

?

 

 

 

 

 

 

October 7, 2017 Posted by | Travel | , , , , , , | 1 Comment

Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?

I ask this question, because I think that it could be key to the announcements about electrification yesterday, as reported  in this article in Global Rail News, which is entitled UK Ditches Electrification Plans In Wales, The Midlands And The North.

If you look at all these Wikipedia entries for Hitachi trains being built for the UK.

You will find no reference to regenerative braking.

If you type “Class 800 regenerative braking” into Google, you will find this document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

The only mention of the R-word is in this paragraph.

An RGS-compliant integrated on-train data recorder (OTDR) and juridical recording unit (JRU), and an EN-compliant energy
meter to record energy consumption and regeneration are fitted to the train.

If you search for brake in the document, you find this paragraph.

In addition to the GU, other components installed under the floor of drive cars include the traction converter, fuel tank, fire protection system, and brake system.

Note that GU stands for generator unit.

Traction System

I will start by having a detailed look at the traction system as described in the document.

The document provides this schematic of the traction system.

Note BC which is described as battery charger.

This is said in the text.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

This is all very comprehensive.

But nothing is said about how regenerative brake currents from the traction motors are handled.

Any trained Control Engineer, of which I’m a life-expired example, can see all sorts of questions to ask.

  • Could it be that all regenerative brake currents are fed into the Auxiliary Power Supply and then used for hotel power and to charge the battery?
  • Is the generator unit switched on and off by a sophisticated control system, that uses GPS, train velocity, train weight battery level etc.
  • We know battery power can move the train in emergency, but is battery power used to help start the train?
  • How big is that mysterious battery?

In 2010, I wrote Edinburgh to Inverness in the Cab of an HST, after taking a memorable trip.

One memory of that trip is of the skill of the driver as he adjusted the twin throttles of the power cars and used the brakes, as the train travelled up hill and down dale.

This line will be Class 800 territory and I suspect that it will be worked by two five car units working as a ten-car train.

As I think that each five-car unit will have three generator units, does this mean that the driver will have six throttles?

Control Engineering has moved on in the forty years since the InterCity 125 entered service and I suspect that like an Airline Pilot, the driver of a Class 800 train, will have little control about how power is delivered. Except probably in a supervisory role.

So on routes like the Highland Main Line, the Class 800 will come into its own, using the generator units and stored energy as appropriate.

Obviously, the less the generator unit is used the better, as this minimises noise and vibration, and cuts carbon emissions.

Other features in the train design have been disclosed.

All Class 801 Trains Have At Least One Generator Unit

All Class 801 trains have at least one GU (generator unit), so it can obviously provide hotel power and probably enough power to limp to the next station, in case of overhead line failure.

Third Rail Class 800/801 Trains Are Possible

The layout of the traction system surely makes a third rail  or even a dual-voltage version of the trains possible.

After all, their cousin; the Class 395 train is a dual voltage train.

Locomotive Haulage Is Possible

As I said, the specification is comprehensive.

The document is also forthcoming in other areas.

Train Configuration

This is said.

Trains have a unit configuration of up to 12 cars, including the ability to add or remove standardised intermediate cars and the generator units (GUs)
(generators with diesel engines) needed to operate commercial services on non-electrified lines.

So if say GWR wanted an eleven-car train, it would be possible.

Automatic Coupling And Uncoupling

This is said.

Because the coupling or uncoupling of cars in a trainset occurs during commercial service at an intermediate station, the automatic coupling device is able to perform this operation in less than 2 minutes.

This is definitely in line with Class 395 train performance.

Automatic Train Identification Function

This is said.

To simplify the rearrangement and management of train configurations, functions are provided for identifying the train (Class 800/801), for automatically determining the cars in the trainset and its total length, and for coupling and uncoupling up to 12 cars in
normal and 24 cars in rescue or emergency mode.

I suspect most modern trains can do this.

One Twelve-Car Train Can Rescue Another

See the previous extract.

Flexible Interior Layout

This is said.

The rolling stock is designed to facilitate changes to the interior layout to accommodate changes to services or to the number of cars in the train.

I suspect that was expected.

An Interim Conclusion

In answer to the question, I posed with this post, I suspect that the answer is in the affirmative.

Extra Evidence

I also found this article on the Hitachi Rail web site, which is entitled Hybrid Propulsion with a sub-title of Energy-saving hybrid propulsion system using storage–battery technology.

This is the introductory paragraph.

As a step toward producing environmentally friendly propulsion systems, Hitachi has supplied a hybrid propulsion system that combines an engine generator, motor, and storage batteries. This system provides regenerative braking which has not been previously possible on conventional diesel-powered trains, and enables increased energy savings via regenerated energy.

They list the advantages as.

  1. 10% improvement of fuel consumption
  2. 60% reduction of the hazardous substances in engine exhaust
  3. 30db reduction of noise in stopping at the station

They also give various links that are worth reading.

All of these pages seem to have been published in 2013.

Conclusion

I will be very surprised if Class 800/801/802 trains don’t have batteries.

Will the Class 385 trains for ScotRail have similar traction system?

 

July 21, 2017 Posted by | Travel | , , , , | 12 Comments

Hitachi Class 385 Trains, Batteries And Charging Stations

This article in the International Railway Journal is entitled JR Kyushu battery EMU to enter service in October.

This is said.

JAPAN’s Kyushu Railway Company (JR Kyushu) announced on August 24 that its pre-series Dual Energy Charge Train (Dencha) battery-assisted EMU will enter revenue service on the 11km Orio – Wakamatsu section of the Chikuho Line on October 19.

The two-car 819 series set draws power from the 20 kV ac 60Hz electrification system to feed a bank of onboard batteries, which give the train a wire-free range of up to 90km.

At least it can do 11 km. This is said about the train’s manufacture.

The 819 series is based on the existing 817 series EMU and was built by Hitachi at its plant in Kudamatsu in Yamaguchi prefecture.

Note the word Hitachi!

Hitachi call it a BEC819 train and it is one of their ubiquitous A-trains.

On the Hitachi Rail Europe web site, three new trains are mentioned.

All are A-trains and on all pages, the word battery is mentioned under power supply.

So will Scotrail’s new Class 385 trains have a battery capability?

Probably not initially!

But Hitachi have obviously been doing a lot of research into battery trains and the JR Kyushu is the first practical application.

Scotland’s rail system outside Edinburgh and Glasgow is not electrified, but it is well-known that Scotland’s Government would like more electrified services and also links to places like Leven and St. Andrews.

Both of these places, and there are probably others as well, are a few miles from a main line, that is very likely to be electrified.

So could we see a battery train charged as the JR Kyushu train on a main line, serving these branch lines on battery power?

I feel that the chance of this happening is very high.

Put a charging station, like a Railbaar at the terminal station and it could be done as soon as the train is built.

 

April 21, 2017 Posted by | Travel | , , , , | 4 Comments

Hitachi To Power Up Before Hinckley

This is the title of a small article in the Sunday Times, which talks about Hitachi’s plans to build a new nuclear power plant at Wylfa on Anglesey.

Hitachi would build a proven commercial reactor, that could be built by 2025.

Why are we bothering to still even think about the gold-plated Franco-Chinese dead elephant at Hinckley Point?

Hitachi is a private company and have to live from good designs, technology and engineering, whereas those behind Hinckley Point are governments or their agencies.

When you consider that the last big project of Hitachi in the UK, was to build a factory at Newton Aycliffe to construct trains and it would appear that that has gone to the plans, I suspect that going for Wylfa and putting Hinckley Point out of its misery, would be a pair of decisions, that have the much lesser risk.

August 28, 2016 Posted by | World | , , , , | Leave a comment

Is This A Significant Move In The Rolling Stock Market?

This article in the Railway Gazette is entitled Bombardier-Hitachi joint venture to bid for New Tube for London.

I think it makes sense for several reasons.

  • The New Tube for London order is massive in that it will re-equip the some of the deep-level tube lines with state-of-the-art, air-conditioned and automated trains.
  • Bombardier have lots of experience with dealing with Transport for London, in recent years.
  • Hitachi haven’t built a complete train for London.
  • Both companies have large factories in the UK.
  • Over the next few years, if speculation is confirmed, Bombardier will be building a lot of Aventras for East Anglia, the Midland Main Line and Merseyside.
  • Hitachi will also be building a lot of Class 800/801 trains.
  • Hitachi have said, that both factories would produce the trains.
  • Financially, a joint bid is probably better.
  • As we are now in a post-Brexit world, accepting a bid from a European company would not be a good idea.

But I also feel that this could be a strategic partnership, where there is a good mix of experience, that combined with the UK’s undoubted skills in providing reliable and modern underground railways, could open up a world-wide market in the future, as other cities and regions in the world look to improve transportation in cities crowded with traffic.

I will finish this post with a little bit of speculation about what the New Tube for London will be like.

  • Walk-through like the S-Stock built by Bombardier.
  • More headroom for tall standees.
  • Air-conditioning and other passenger comforts.
  • Level access to all platforms.
  • Wi-fi and mobile phone signals.
  • USB ports in arm-rests.
  • Lots of passenger information.
  • Novel features, designed with the future in mind.
  • Automated, at least to the standard of the Victoria Line.
  • I doubt they will be driver-less like the Docklands Light Railway.
  • A limited battery capability to get trains to the next station on power failure and allow depots to have less electrification for safety.

As these trains will still be in service past 2050, I think that we’ll see the best designers wanting to be associated with this project and the New Tube for London will benefit.

Eventually identical trains will be running on all lines, although some lines might have extra cars inserted.

August 5, 2016 Posted by | Travel | , , , | Leave a comment