The Anonymous Widower

Neptune Energy, Ørsted And Goal7 Explore Powering Integrated Energy Hubs With Offshore Wind

The title of this post, is the same as that of this press release from Neptune Energy.

These four paragraphs outline the agreement.

Neptune Energy today announced it has signed a Memorandum of Understanding with Ørsted and Goal7 to explore powering new integrated energy hubs in the UK North Sea with offshore wind-generated electricity.

Integrated energy hubs have the potential to combine multiple energy systems, including existing oil and gas production assets, carbon storage and hydrogen production facilities. They could extend the life of producing fields and support the economic case for electrification with renewable energy, to keep carbon emissions low.

The agreement will see the companies examine the potential to supply renewable electricity from Ørsted’s Hornsea offshore windfarm projects to power future Neptune-operated hubs in the UK North Sea.

Goal7 will provide project management support and technical input.

Note.

  1. Neptune Energy has three oil and gas fields in the UK North Sea; Cygnus (operational), Isabella (exploration) and Seagull (development)
  2. Gas from Cygnus comes ashore at the Bacton Gas Terminal.
  3. Ørsted owns the Hornsea wind farm, which when fully developed will have a capacity of around 6.5 GW.
  4. Cygnus and Hornsea could be not much further than 50 km apart.
  5. Seagull and Isabella are further to the North and East of Aberdeen.
  6. Ørsted has an interest in the Broadshore wind farm, which was numbered 8 in the ScotWind Leasing round.

These are my thoughts.

The Cygnus Gas Field And The Hornsea Wind Farm

This could be like one of those stories where boy meets the girl next door and they hit it off from the first day.

This page on the Neptune web site says this about the Cygnus gas field.

The biggest natural gas discovery in the southern North Sea in over 30 years is now the largest single producing gas field in the UK, typically exporting over 250 million standard cubic feet of gas daily. Cygnus contributes six per cent of UK gas demand, supplying energy to the equivalent of 1.5 million UK homes. It has a field life of over 20 years.

Two drilling centres target ten wells. Cygnus Alpha consists of three bridge-linked platforms: a wellhead drilling centre, a processing/utilities unit and living quarters/central control room. Cygnus Bravo, an unmanned satellite platform, is approximately seven kilometres northwest of Cygnus Alpha.

In 2022, we plan to drill two new production wells at Cygnus, with the first of these expected to come onstream in 4Q. The second well is due to be drilled in the fourth quarter and is expected onstream in the first quarter of 2023, with both wells helping to maintain production from the field and offset natural decline.

Gas is exported via a 55 km pipeline. Cygnus connects via the Esmond Transmission System (ETS) pipeline to the gas-treatment terminal at Bacton, Norfolk. Neptune Energy has a 25% minority interest in ETS.

Note.

  1. Cygnus with a twenty year life could be one of the ways that we bridge the gap until we have the two Cs (Hinckley Point and Sizewell) and a few tens of offshore wind gigawatts online.
  2. The two extra wells at Cygnus will help bridge the gap.
  3. The gas field has a pipeline to Bacton.

So what can the gas field and the wind farm, do for each other?

Hornsea Can Supply The Power Needs Of Cygnus

Typically, ten percent of the gas extracted from the wells connected to a gas platform, will be converted into electricity using one or more gas-turbine engines; which will then be used to power the platform.

So, if electricity from the Hornsea wind farm, is used to power the platform, there are two benefits.

  • More gas will be sent through the pipeline to Bacton.
  • Less carbon dioxide will be emitted in recovering the gas.

Effectively, electricity has been turned into gas.

Electricity Can Be Stored On The Sea-Bed

The Hornsea One wind farm has an area in the order of 150 square miles and it is only one wind farm of four, that make up the Hornsea wind farm.

I would argue that there is plenty of space between the turbines and the wells of the Cygnus gas field to install some form of zero-carbon underwater battery to store electricity.

But does this technology exist?

Not yet! But in UK Cleantech Consortium Awarded Funding For Energy Storage Technology Integrated With Floating Wind, I described a technique called Marine Pumped Hydro, which is being developed by the STORE Consortium.

  • Energy is stored as pressurised water in 3D-printed hollow concrete spheres fitted with a hydraulic turbine and pump.
  • The spheres sit on the sea-bed.
  • This page on the STORE Consortium web site, describes the technology in detail.
  • The technology is has all been used before, but not together.

I think it is excellent technology and the UK government has backed it with £150,000 of taxpayers’ money.

I also believe that Marine Pumped Hydro or something like it, could be the solution to the intermittency of wind farms.

Excess Electricity Can Be Converted Into Hydrogen

Any spare electricity from the wind farm can drive an electrolyser to convert it into hydrogen.

The electrolyser could be mounted on one of the Cygnus platforms, or it could even float.

The hydrogen produced would be blended with the gas and sent to Bacton.

Carbon Dioxide Can Be Stored In The Depleted Cygnus Gas Field

As the gas field empties of natural gas, the gas pipes to the Cygnus gas field can be reversed and used to bring carbon dioxide to the gas field to be stored.

The Cygnus gas field has gone full circle from providing gas to storing the same amount of carbon that the gas has produced in its use.

These are two paragraphs from the press release.

Neptune Energy’s Director of New Energy, Pierre Girard, said: “The development of integrated energy hubs is an important part of Neptune’s strategy to store more carbon than is emitted from our operations and the use of our sold products by 2030.

“Neptune has submitted three applications under the recent Carbon Dioxide Appraisal and Storage Licensing Round, and securing the licences would enable us to develop future proposals for integrated energy hubs in the UK North Sea.

I can envisage a large gas-fired power-station with carbon capture being built in Norfolk, which will do the following.

  • Take a supply of natural gas from the Cygnus gas field via the Bacton gas terminal.
  • Convert the hydrogen in the gas into electricity.
  • Convert the carbon in the gas into carbon dioxide.
  • Store the carbon dioxide in the Cygnus gas field via Bacton.
  • I also suspect, that if a Norfolk farmer, manufacturer or entrepreneur has a use for thousands of tonnes of carbon dioxide, they would be welcomed with open arms.

Would the ultra-greens of this world, accept this power station as zero-carbon?

The Isabella And Seagull Gas Fields And The Broadshore Wind Farm

Could a similar set of projects be applied to the Isabella and Seagull gas fields, using the Broadshore wind farm?

I don’t see why not and they could work with the Peterhead power stations.

December 30, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , , , , , | 2 Comments

Increased CCS Can Decarbonise GB Electricity Faster On Route To Net Zero

The title of this post, is the same as that of this news item on the SSE web site.

This is the first paragraph.

Building more power carbon capture and storage plants (Power CCS) could significantly accelerate the UK’s plans to decarbonise the GB electricity system on route to net zero, according to new analysis commissioned by SSE.

I am not surprised, as in my time, I have built several production, storage and distribution mathematical models for products and sometimes bringing things forward has beneficial effects.

These three paragraphs summarise the findings.

The UK Government’s proposed emissions reductions from electricity for 2035 could be accelerated to 2030 by combining its 50GW offshore wind ambition with a significant step up in deployment of Power CCS. This would require 7-9GW (equivalent to 10-12 plants) of Power CCS compared to the current commitment of at least one Power CCS plant mid-decade, according to experts at LCP Delta.

Replacing unabated gas with abated Power CCS generation will deliver significant reductions in greenhouse gas emissions. The analysis suggests that adding 7-9GW Power CCS to the UK’s 2030 offshore wind ambition will save an additional 18 million tonnes of CO2 by 2040, by preventing carbon emissions during periods when the sun isn’t shining, and the wind isn’t blowing.

Gas consumption for electricity generation would not significantly increase, given the 7-9GW Power CCS would displace older and less efficient unabated gas power stations already operating and reduce importing unabated gas generation from abroad via the interconnectors. Importantly, Power CCS can provide a safety net to capture emissions from any gas required to keep the lights on in the event of delays to the roll out of renewables or nuclear.

The report is by LCP Delta, who are consultants based in Edinburgh.

The report says this about the transition to hydrogen.

Power CCS also presents significant opportunities to kickstart, then transition to, a hydrogen economy, benefitting from the synergies between CCS and hydrogen, including proximity to large-scale renewable generation and gas storage facilities which can support the production of both electrolytic and CCS-enabled hydrogen.

And this about the reduction in carbon emissions.

The existing renewables ambition and the accelerated Power CCS ambition are expected to save a total of 72 million tonnes of CO2 by 2040 compared to commitments in the UK’s Net Zero Strategy from October 2021.

I don’t think there’s much wrong with this analysis.

But of course the greens will trash it, as it was paid for by SSE.

I have a few thoughts.

Carbon Capture And Use

I believe we will see a great increase in carbon capture and use.

  • Carbon dioxide is already an ingredient to make Quorn.
  • Carbon dioxide is needed for fizzy drinks.
  • Carbon dioxide can be fed to tomatoes, salad plants, herbs and flowers in giant greenhouses.
  • Carbon dioxide can be used to make animal and pet food.
  • Carbon dioxide can be used to make building products like plasterboard and blocks.
  • Carbon dioxide can be added to concrete.
  • Carbon dioxide can be used as a refrigerant and in air-conditioning. There are one or two old Victorian systems still working.

Other uses will be developed.

Carbon Capture Will Get More Efficient

Carbon capture from power stations and boilers, that use natural gas is a relatively new process and its capture will surely get better and more efficient in the next few years.

Gas From INTOG

I explain INTOG in What Is INTOG?.

One of INTOG’s aims, is to supply electricity to the oil and gas rigs and platforms in the sea around the UK.

Currently, these rigs and platforms, use some of the gas they produce, in gas turbines to create the electricity they need.

  • I have seen reports that ten percent of the gas that comes out of the ground is used in this way.
  • Using the gas as fuel creates more carbon dioxide.

Decarbonisation of our oil and gas rigs and platforms, will obviously be a good thing because of a reduction of the carbon dioxide emitted. but it will also mean that the gas that would have been used to power the platform can be brought ashore to power industry and domestic heating, or be exported to countries who need it.

Gas may not be carbon-neutral, but some gas is more carbon-neutral than others.

SSE’s Plans For New Thermal Power Stations

I have taken this from SSE’s news item.

SSE has deliberately chosen to remain invested in the transition of flexible thermal electricity generation due to the key role it plays in a renewables-led, net zero, electricity system and is committed to decarbonising the generation.

Together with Equinor, SSE Thermal is developing two power stations equipped with carbon capture technology. Keadby 3 Carbon Capture Power Station is based in the Humber, the UK’s most carbon-intensive industrial region, while Peterhead Carbon Capture Power Station is located in the North East of Scotland. Combined, the two stations could capture around three million tonnes of CO2 a year.

Studies have shown that Keadby and Peterhead Carbon Capture Power Stations could make a lifetime contribution of £1.2bn each to the UK economy, creating significant economic opportunity in their respective regions. Both will be vital in supporting the huge amount of renewables which will be coming on the system.

SSE Thermal and Equinor are also collaborating on Keadby Hydrogen Power Station, which could be one of the world’s first 100% hydrogen-fuelled power stations, and Aldbrough Hydrogen Storage, which could be one of the world’s largest hydrogen storage facilities.

Note.

  1. SSE appear to think that gas-fired power stations with carbon capture are an ideal backup to renewables.
  2. If gas is available and it can be used to generate electricity without emitting any carbon dioxide, then why not?
  3. Hydrogen is coming.

Things will get better.

Is A Virtuous Circle Developing?

Consider.

  • Spare wind electricity is turned into hydrogen using an electrolyser or perhaps some world-changing electro-chemical process.
  • The hydrogen is stored in Aldbrough Hydrogen Storage.
  • When the wind isn’t blowing, hydrogen is used to backup the wind in Keadby Hydrogen power station.
  • The other Keadby power stations can also kick in using natural gas. The carbon dioxide that they produce, would be captured for storage or use.
  • Other users, who need to decarbonise, can be supplied with hydrogen from Aldbrough.

Note.

  1. Gas turbines are throttleable, so if National Grid wants 600 MW to balance the grid, they can supply it.
  2. As time progresses, some of the gas-fired power stations at Keadby could be converted to hydrogen.
  3. Rough gas storage is not far away and could either store natural gas or hydrogen.
  4. Hydrogen might be imported by tanker from places like Africa and Australia, depending on price.

Humberside will be levelling up and leading the decarbonisation of the UK.

If you have an energy-hungry business, you should seriously look at moving to Humberside.

 

December 7, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , | 1 Comment

Carbon-Neutral Concrete Prototype Wins €100k Architecture Prize For UK Scientists

The title of this post, is the same as that of this article on the Architect’s Journal.

Under a picture of two white-coated scientists with their protective boots on concrete samples, the story and their invention is outlined.

A pair of PhD students at Imperial College London have won a global architecture prize for devising a groundbreaking method of creating carbon-neutral concrete

Material scientists Sam Draper and Barney Shanks landed the €100,000 2022 Obel Award with their ‘simple way’ to capture carbon from industrial production processes and create an end product that can eliminate the CO₂ footprint of concrete.

The prototype technology, dubbed Seratech, takes industrial CO₂ emissions directly from flues and produces a carbon-negative cement replacement material (silica). According to the scientists, when this is used in combination with Portland cement, the carbon capture associated with producing the silica means the concrete products can be zero carbon.

One of the products, we will need in the world is concrete and if we can make it in a carbon-neutral manner, then that will surely reduce worldwide carbon emissions.

The Technology Explained

This page on the Seratech website is entitled Our Technology.

It gives this description of the technology.

Seratech has developed a process that consumes olivine and waste CO₂ from flue gases and produces two products which both have significant value in construction.

Silica is produced which can be used as a supplementary cementitious material (SCM) in concrete meaning the amount of Portland cement in the concrete can be reduced by up to 40%. As the silica comes from a process that captures CO₂ it is “carbon negative” and the concrete can become carbon neutral.

Magnesium carbonate is produced that can be used to make a range of zero carbon construction materials and consumer products, including alternatives to building blocks and plasterboard.

The aim is for humanity to be able to continue building robust cities and infrastructure, but without the climate cost of traditional cement mixes and with the Seratech technology this goal is achievable!

Note that olivine in Europe is generally mined in Norway.

Replacement Of Steel By Concrete

Could we also replace steel in some applications with concrete?

In UK Cleantech Consortium Awarded Funding For Energy Storage Technology Integrated With Floating Wind, I talked about some of ground-breaking methods used by a company called RCAM Technologies to create infrastructure using 3D printing of concrete.

If Imperial’s concrete, which is called Seratech can be 3D printed, I can see lots of applications for the technology.

So you could kill two sources of large carbon emissions with one technology.

Conclusion

I have said on this blog before, that we will have to keep or even build more gas-fired power stations, as they can be an efficient source of pure carbon dioxide, that will be needed as a feedstock to create an increasing number of agricultural and building products.

October 10, 2022 Posted by | World | , , , , , , , , , , , , , | 1 Comment

Thoughts On The Mini-Budget

This article on the BBC is entitled At A Glance: What’s In The Mini-Budget?.

If nothing else KK has whipped up a storm, with the most tax-cutting budget in decades.

But!

According to my calculations in Will We Run Out Of Power This Winter?, the planned offshore wind that will be installed between 2022 and 2027 will be at least 19 GW. About 3 GW of this offshore wind is already producing electricity.

To this must be added 3.26 GW for Hinckley Point C, 2 GW for solar and 0.9 GW for onshore wind in Scotland, which will be developed by 2027.

So we have 25.2 GW for starters.

Following on from this is the 27.1 GW from ScotWind, about 4 GW from the Celtic Sea, 3 GW from Morecambe Bay and 10 GW from Aker’s Northern Horizons. All of these are firm projects and some are already being planned in detail.

These wind and solar farms are the collateral for KK’s borrowing.

The corporate tax changes will hopefully attract world class energy and manufacturing companies to set up UK-domiciled subsidiaries to develop more offshore wind farms and manufacture the turbines and the electrical gubbins close to where they will be installed.

As more wind farms are built, many GW of electricity and tonnes of hydrogen will be exported to Europe.

Note that 1 GW for a day costs around £ 960,000 and for a year costs £350.4 million.

A big benefit of all this electricity, will be that we won’t need to frack.

Technologies like green hydrogen, that will be created by electrolysis will reduce our need for gas.

We might develop a gas field like Jackdaw, to give us gas for a backup with a few gas-fired power stations, for when the wind doesn’t blow, but gas will only have a minor roll.

The force of the maths is with KK!

September 23, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , | 7 Comments

Have We Missed The Boat On Fracking?

I have just re-read my post from October 2019, which was entitled Fracking Hell…Is It The End?, where these were my conclusions.

  • Fracking for hydrocarbons is a technique that could be past its sell-by date.
  • The use of natural gas will decline.
  • INEOS could see hydrogen as a way of reducing their carbon footprint.
  • The heating on all new buildings should be zero carbon, which could include using hydrogen from a zero-carbon source.
  • There are reasons to think, that electricity from wind-farms creating hydrogen by electrolysis could replace some of our natural gas usage.

So will the Government’s lifting on the ban on fracking make any difference?

The announcement is detailed in this article on the BBC, which is entitled Fracking Ban Lifted, Government Announces.

These are my thoughts.

Fracking Is Not A Quick Fix

My personal view is that to achieve any significant amounts of gas from fracking will take some years, so it is not something that will be available in the short term.

Opposition To Fracking Won’t Help

There are very few inhabitants of the UK, who are enthusiastic about fracking.

Opposition to fracking will make it less likely to be the feasible short term fix we need in the UK.

Suppose There Was An Earthquake Near To A Fracking Site

Fracking also has the problem, that if there were to be a small earthquake near to a site, even if it was very likely to have not been caused by fracking, it would result in massive public uproar, which would shut down all fracking in the UK.

This to me is a big risk!

Would The Jackdaw Oil And Gas Field Be A Medium Term Solution?

I believe that with other gas field developments and imports, Jackdaw could keep us supplied with enough gas until the end of the decade.

Future Renewable Electricity Production

In Will We Run Out Of Power This Winter?, I summarised the likely yearly additions to our offshore wind power capacity in the next few years.

  • 2022 – 3200 MW
  • 2023 – 1500 MW
  • 3024 – 2400 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 7061 GW

Note.

  1. Ignoring 2022 as it’s going, this totals to 19.2 GW.
  2. Hopefully, by the end of 2027, Hinckley Point C will add another 3.26 GW
  3. According to Wikipedia, there are currently 32 active gas fired combined cycle power plants operating in the United Kingdom, which have a total generating capacity of 28.0 GW.

I think it is not unreasonable to assume that some of the electricity will enable some of our gas-fired power stations to be stood down and/or mothballed.

Gas consumption would be reduced and some power stations would be held in reserve for when the wind was on strike!

Using Hydrogen To Eke Out Our Gas

Consider.

  • In Lime Kiln Fuelled By Hydrogen Shown To Be Viable, I wrote about how hydrogen can be used instead of or with natural gas to fuel a lime kiln.
  • There are other processes, where hydrogen can be used instead of or with natural gas.
  • Using more hydrogen will reduce the amount of carbon dioxide emitted.

Perhaps we should strategically build a few huge hydrogen electrolysers, so that some large industrial users can cut back on their natural gas.

Will Energy Storage Help?

Energy storage’s main use is to mop up all the surplus electricity when demand is low at a low price and sell it back, when demand is high.

If we waste less energy, we will use less gas.

Will District Heating Schemes Help?

Consider.

More schemes like this should be developed, where there is a readily-available source of heat or electricity

Conclusion

As we add more renewables to our energy generation, it appears to me, that our gas usage will decline.

If we were to go fracking, we should have done it a lot earlier, so we can bridge the short term gap.

 

 

 

 

September 22, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , | 8 Comments

SSE Thermal And Equinor To Acquire Triton Power In Acceleration Of Low-Carbon Ambitions

The title of this post, is the same as that as this press release from SSE.

These are the first three paragraphs.

SSE Thermal and Equinor have entered into an agreement to acquire Triton Power Holdings Ltd from Energy Capital Partners for a total consideration of £341m shared equally between the partners.

The transaction represents another step forward for the two companies’ existing collaboration, supporting the long-term decarbonisation of the UK’s power system whilst contributing to security of supply and grid stability through flexible power generation in the shorter term.

Triton Power operates Saltend Power Station which is 1.2GW CCGT (Combined Cycle Gas Turbine) and CHP (Combined Heat & Power) power station located on the north of the Humber Estuary in East Yorkshire.

This deal is more complicated than it looks and these are my thoughts.

What About The Triton Power Workers?

The press release says this.

The 82 existing employees will continue to be employed by Triton Power. In line with just transition principles, the joint venture is committed to transitioning the assets for the net zero world through responsible ownership and operation, and in consultation with the local workforce and representatives.

It does sound that they are following the right principles.

Saltend Power Station

Saltend power station is no tired ancient asset and is described like this in Wikipedia.

The station is run on gas using single shaft 3 × Mitsubishi 701F gas Turbines machines with Alstom 400 MWe generators. The station has a total output of 1,200 MW; of that 100 MW is allocated to supply BP Chemicals. Each gas turbine has a Babcock Borsig Power (BBP) heat recovery steam generator, which all lead to one steam turbine per unit (single shaft machine means Gas turbine and Steam Turbine are on the same shaft). The waste product of electricity generation is steam at the rate of about 120 tonnes/h which is sold to BP Chemicals to use in their process. This makes Salt End one of the most efficient[clarification needed] power stations in the UK. The plant is scheduled to use hydrogen from steam reformed natural gas for 30% of its power.

Note.

  1. It was commissioned in 2000.
  2. It appears there are seven CCGT power stations in England that are larger than Saltend.
  3. The power station seems to have had at least four owners.

The press release says this about SSE and Equinor’s plans for Saltend power station.

The transaction underscores SSE Thermal and Equinor’s shared ambition to decarbonise the Humber, which is the UK’s most carbon-intensive industrial region, as well as the UK more widely. Initial steps to decarbonise Saltend Power Station are already underway, targeting partial abatement by 2027 through blending up to 30% of low-carbon hydrogen. In addition, carbon capture provides an additional valuable option for the site. SSE Thermal and Equinor will continue to work towards 100% abatement.

Note.

  1. It appears that initially, Saltend power station will move to running on a mixture of 30 % hydrogen and 70 % natural gas.
  2. Carbon capture will also be applied.
  3. It looks like that in the future all carbon-dioxide emitted by the power station will be captured and either stored or used.

The press release says this about the source of the hydrogen.

Saltend Power Station is a potential primary offtaker to Equinor’s H2H Saltend hydrogen production project. H2H Saltend is expected to kick-start the wider decarbonisation of the Humber region as part of the East Coast Cluster, one of the UK’s first carbon capture, usage and storage clusters.

H2H Saltend is described in this page on the Equinor web site, which has a title of The First Step To A Zero Carbon Humber, where this is said.

This project represents a bold but practical first step towards delivering the world’s first net zero industrial cluster by 2040. This unparalleled project can play a leading role in the UK’s journey to net zero by 2050, renew the UK’s largest industrial cluster, and unlock technology that will put the UK at the forefront of a global hydrogen economy.

There is also a video.

SSE Thermal And Equinor Low-Carbon Thermal Partnership

This is a section in the press release, where after giving their policy about the workers, it says this about the acquisition of Triton Power.

This acquisition strengthens SSE Thermal and Equinor’s portfolio of joint projects, which bring together expertise in power, natural gas, hydrogen and carbon capture and storage. This portfolio includes three development projects within the Humber region:

  • Keadby 3 Carbon Capture Power Station, which could be the UK’s first flexible power station equipped with carbon capture.
  • Keadby Hydrogen Power Station, which could be one of the world’s first 100% hydrogen-fuelled power stations.
  • Aldbrough Hydrogen Storage, located in East Yorkshire, which could be one of the world’s largest hydrogen storage facilities.

The two companies are also developing Peterhead Carbon Capture Power Station, situated on the Aberdeenshire coast in Scotland and there are further opportunities for hydrogen blending across SSE’s generation portfolio, including at Keadby 2.

Note.

  1. There is no mention of the three Dogger Bank Wind Farms, each of which will be 1200 MW, that are owned by SSE Renewables and Equinor.
  2. I wrote about Aldbrough Gas Storage in The Massive Hydrogen Project, That Appears To Be Under The Radar.
  3. According to this press release from Equinor, which is entitled SSE Thermal And Equinor Join Forces On Plans For First-Of-A-Kind Hydrogen And Carbon Capture Projects In The Humber, Keadby Hydrogen power station will have a capacity of 1800 MW.

The Complete System

The system has the following power sources.

  • Dogger Bank A – 1200 MW – Expected commissioning in 2023/24
  • Dogger Bank B – 1200 MW – Expected commissioning in 2024/25
  • Dogger Bank C – 1200 MW – Expected commissioning in 2024/25
  • Keadby power station – 735 MW
  • Keadby 2 power station – 893 MW – Could be Part-Hydrogen
  • Keadby 3 power station – 910 MW – Carbon Capture
  • Keadby Hydrogen power station – 1800 MW – Hydrogen
  • Saltend power station – 1200 MW – Part-Hydrogen

That totals up to 9138 MW.

Fuel will come from three sources.

  • The God of the winds.
  • Natural gas
  • Hydrogen

Hydrogen will be sourced from.

  • Blue hydrogen from H2H Saltend
  • Green Hydrogen could come from electrolysers driven by wind power.

Hydrogen would be stored in Aldbrough Gas Storage.

I am by training a Control Engineer and controlling these power sources is either a wonderful dream or your most entwined and complicated nightmare.

Conclusion

I suspect on an average day, this cluster of power stations and sources could reliably supply as much zero-carbon power as two large nuclear stations.

 

June 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , | 1 Comment

UK Energy Exports To Europe At Record High

The title of this post, is the same as that of this article on The Times.

This is the first two paragraphs.

Britain has exported record amounts of gas to Europe so far this year as its liquefied natural gas terminals receive shipments destined for the Continent.

Electricity exports also have surged to unprecedented highs in recent weeks after an unexpected glut of gas pushed down short-term gas prices and resulted in gas-fired power plants generating more for export.

Who’d have thought it, that all those gas pipelines and electricity interconnectors between the UK and the Continent of Europe would be part of the replacementliqui for Russian gas.

According to Wikipedia, we have three liquified natural gas terminals; two at Milford Haven; South Hook and Dragon, and Grain on the Isle of Grain.

Note.

  1. South Hook is Europe’s largest liquified natural gas terminal and is owned by a partnership of the Qataris, ExxonMobil and Elf.
  2. South Hook and Dragon together can provide 25 % of the UK’s natural gas needs.
  3. Grain is owned by National Grid and according to Wikipedia, is in terms of storage capacity it is the largest LNG facility in Europe and the eighth largest in the world.
  4. Grain can supply 20 % of the UK’s natural gas needs.
  5. Grain has a reloading facility, so that gas can be exported.
  6. Grain seems to be continually expanding.
  7. Both Milford Haven and the Isle of Grain have large gas-fired power-stations.

Politicians say we don’t have enough gas storage, but we do seem to have world-class LNG terminals.

I have a couple of extra thoughts.

Blending Natural Gas With Hydrogen

HyDeploy is a project investigated blending hydrogen natural gas to cut carbon emissions. The project is described in this post called HyDeploy.

Surely, these terminals could be places, where hydrogen is blended with our natural gas supply.

  • The terminals are connected to the UK gas network.
  • Both Milford Haven and the Isle of Grain should have access to large amounts of offshore wind energy in the next few years, which could be used to generate green hydrogen.
  • The terminals would need electrolysers to generate the hydrogen.

The Isle of Grain already has a blending capability.

NeuConnect

NeuConnect is an under-development interconnector between the Isle of Grain in Kent and Wilhelmshaven in Germany.

  • It will have a capacity 1.4 GW.
  • All the planning permissions seem to be in place.
  • Prysmian have won a € 1.2 million contract to deliver the interconnector.
  • Arup and German engineering firm Fichtner have formed a joint venture to provide project services for the interconnector.
  • Construction could start this year.

It looks like the Germans will be replacing some of Putin’s bloodstained gas with clean zero-carbon energy from the UK.

Should We Develop More Gas Fields?

There are some gas fields in the seas around the UK, like Jackdaw, that could be developed.

Suppose, we extracted the gas and sent it to the reloading terminal on the Isle of Grain through the gas transmission network, where it could be exported by ship, to the Continent.

The UK would not be increasing its carbon emissions, as that would surely be the responsibility of the end-user.

Should We Develop More Gas Fired Power-Stations?

I believe it is possible to develop carbon-capture technology for gas-fired power stations.

The carbon dioxide would be either used in a beneficial way or stored in perhaps a worked-out gas field under the North Sea.

So long as no carbon dioxide is released into the atmosphere, I don’t see why more gas-fired power stations shouldn’t be developed.

What is happening at Keadby near Scunthorpe would appear to be one model for zero-carbon power generation.

Keadby Power Station

 

This is an existing

Conclusion

We will be exporting more energy to the Continent.

May 20, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , | 1 Comment

What Happens When The Wind Doesn’t Blow?

In Future Offshore Wind Power Capacity In The UK, I analysed future offshore wind power development in the waters around the UK and came to this conclusion.

It looks like we’ll be able to reap the wind. And possibly 50 GW of it! 

The unpredictable nature of wind and solar power means that it needs to be backed up with storage or some other method.

In The Power Of Solar With A Large Battery, I describe how a Highview Power CRYObattery with a capacity of 500 MWh is used to back up a large solar power station in the Atacama desert in Chile.

But to backup 50 GW is going to need a lot of energy storage.

The largest energy storage system in the UK is Electric Mountain or Dinorwig power station in Wales.

  • It has an output of 1.8 GW, which means that we’d need up to nearly thirty Electric Mountains to replace the 50 GW.
  • It has a storage capacity of 9.1 GWh, so at 1.8 GW, it can provide that output for five hours.
  • To make matters worse, Electric Mountain cost £425 million in 1974, which would be over £4 billion today, if you could fine a place to build one.

But it is not as bad as it looks.

  • Battery technology is improving all the time and so is the modelling of power networks.
  • We are now seeing large numbers of lithium-ion batteries being added to the UK power network to improve the quality of the network.
  • The first Highview Power CRYObattery with an output of 50 MW and a capacity of 250 MWh is being built at Carrington in Manchester.
  • If this full size trial is successful, I could see dozens of CRYOBatteries being installed at weak points in the UK power network.
  • Other battery technology is being developed, that might be suitable for application in the UK.

Put this all together and I suspect that it will be possible to cover on days where the wind doesn’t blow.

But it certainly will need a lot of energy storage.

Gas-Fired Power Stations As A Back Up To Renewable Power

Last summer when the wind didn’t blow, gas-fired power stations were started up to fill the gap in the electricity needed.

Gas-fired power-stations normally use gas turbines similar to those used in airliners, which have a very fast startup response, so power can be increased quickly.

If you look at the specification of proposed gas-fired power stations like Keadby2, they have two features not found in current stations.

  • The ability to be fitted in the future with carbon-capture technology.
  • The ability to be fuelled by hydrogen.

Both features would allow a gas-fired power-station to generate power in a zero-carbon mode.

Carbon Capture And Storage

I am not in favour of Carbon Capture And Storage, as I believe Carbon Capture and Use is much better and increasingly engineers, researchers and technologists are finding ways of using carbon-dioxide.

  • Feeding to tomatoes, salad vegetables, soft fruits and flowers in greenhouses.
  • Producing meat substitutes like Quorn.
  • Producing sustainable aviation fuel.
  • An Australian company called Mineral Decarbonation International can convert carbon dioxide into building products like blocks and plasterboard.

This list will grow.

Using or storing the carbon-dioxide produced from a gas-fired power station running on natural gas, will allow the fuel to be used, as a backup, when the wind isn’t blowing.

Use Of Hydrogen

Hydrogen will have the following core uses in the future.

  • Steelmaking
  • Smelting of metal ores like copper and zinc
  • As a chemical feedstock
  • Natural gas replacement in the mains.
  • Transport

Note that the first four uses could need large quantities of hydrogen, so they would probably need an extensive storage system, so that all users had good access to the hydrogen.

If we assume that the hydrogen is green and probably produced by electrolysis, the obvious place to store it would be in a redundant gas field that is convenient. Hence my belief of placing the electrolyser offshore on perhaps a redundant gas platform.

If there is high hydrogen availability, then using a gas-fired power-station running on hydrogen, is an ideal way to make up the shortfall in power caused by the low wind.

Conclusion

Batteries and gas-fired power stations can handle the shortfall in power.

January 2, 2022 Posted by | Energy, Energy Storage | , , , , | 21 Comments

Is Carbon Dioxide Not Totally Bad?

To listen to some environmentalists, there views on carbon dioxide are a bit like a variant of George Orwell’s famous phrase Four legs good, two legs bad from Animal Farm, with carbon dioxide the villain of the piece.

I have just read the Wikipedia entry for carbon dioxide.

For a start, we mustn’t forget how carbon dioxide, water and sunlight is converted by photosynthesis in plants and algae to carbohydrates, with oxygen given off as waste. Animals like us then breathe the oxygen in and breathe carbon dioxide out.

Various web sites give the following information.

  • The average human breathes out 2.3 pounds of carbon dioxide per day.
  • As of 2020, the world population was 7.8 billion.

This means humans breathe out 17.94 billion pounds of CO2 per day

This equates to 6548.1 billion pounds per year or 2.97 billion tonnes per year.

And I haven’t counted all the other animals like buffalo, cattle, elephants and rhinos, to name just a few large ones.

Wikipedia also lists some of the Applications of carbon dioxide.

  • Precursor To Chemicals – Carbon dioxide can be one of the base chemicals used to make other important chemicals like urea and methanol.
  • Foods – Carbon dioxide has applications in the food industry.
  • Beverages – Carbon dioxide is the fizz in fizzy drinks.
  • Winemaking – Carbon dioxide has specialist uses in winemaking.
  • Stunning Animals – Carbon dioxide can be used to ‘stun’ animals before slaughter.
  • Inert Gas – carbon dioxide has several uses, as it is an inert gas.
  • Fire Extinguisher – Carbon dioxide is regularly used in fire extinguishers and fire protection systems.
  • Bio Transformation Into Fuel – It has been proposed to convert carbon dioxide from power stations  into biodiesel using a route based on algae.
  • Refrigerant – Carbon dioxide can be used as a refrigerant. It was used before CFCs were developed and I know of a large Victorian refrigeration system on a farm in Suffolk, used on a store for apples, that still is in regular use that uses carbon dioxide.
  • Dry Ice – The solid form of carbon dioxide has lots of applications, where cooling is needed.

Other important applications are under development.

  • Agriculture – Carbon dioxide is piped to greenhouses to promote growth of crops. It is also used at higher concentrations to eliminate pests.
  • Low Carbon Building Products – Companies like Mineral Carbonation International are developing ways of creating building products from carbon dioxide.
  • Synthetic Rubber – Research is ongoing to create replacements for synthetic rubber.

I can only assume, that the demand for gaseous carbon dioxide will increase, as scientists and engineers get more innovative about using the gas.

Solving A Shortage Of Carbon Dioxide

At the present time, there is shortage of carbon dioxide, that I wrote about in Food Shortages Looming After Factory Closures Hit Production.

In the related post, I said this.

Perhaps we should fit carbon capture to a handy gas-fired power station, like SSE are planning to do at Keadby and use this carbon dioxide.

Consider.

  • The Keadby complex of gas-fired power stations is close to a lot of depleted gas fields, some of which are in Lincolnshire and some are off-shore.
  • Some gas fields are already being used to store natural gas imported from Norway.
  • SSE plan to fit the later power stations with carbon capture.

I talk about SSE’s plans in Energy In North-East Lincolnshire.

If SSE were to build four large gas-fired power stations at Keadby, I calculated that they would produce 5.4 million tonnes of carbon dioxide per year.

It could be used or stored in depleted gas fields according to demand.

But the complex at Keadby would not release any carbon emissions.

Could Carbon Capture Be A Nice Little Earner?

If demand for carbon dioxide continues to rise, I could see power companies installing carbon capture on gas-fired power stations to generate an extra income stream.

Incidentally, there are 55 operational gas-fired power stations in the UK, that can generate a total of 30 GW, which are owned by perhaps ten different companies.

Development of carbon capture systems could be helped by Government subsidy.

Conclusion

I have long forgotten all the calculations I did with gases, but I do know that when one molecule of methane combusts it produces two molecules of water and one of carbon dioxide.

So I am fairly convinced that if you took X cubic kilometres of natural gas out of a gas field, after combustion there wouldn’t be anything like as much volume of carbon dioxide to put back, specially if a proportion could be used profitably in other processes.

If we are going to use gas to generate zero-carbon power, we probably need to do it with gas fields under our control either onshore or in the seas around our coasts. This is because the depleted gas fields can be used to store the carbon.

Gas-fired power stations with carbon capture supporting industries that need supplies of carbon dioxide will become a large part of our energy economy.

 

September 18, 2021 Posted by | Energy, World | , , , , , , , , | 1 Comment

Food Shortages Looming After Factory Closures Hit Production

The title of this post, is the same as that of this article on The Times.

This is the first paragraph.

Acute food shortages were feared last night after high gas prices forced most of Britain’s commercial production of carbon dioxide to shut down.

In some ways, this is rather ironic, when on the one hand we are trying to stop the emission of carbon dioxide and on the other we haven’t got enough for important uses in the food industry.

Perhaps we should fit carbon capture to a handy gas-fired power station, like SSE are planning to do at Keadby and use this carbon dioxide.

If the shortage continues, there’ll be no dry ice for the pantomimes this Christmas.

September 17, 2021 Posted by | Energy, Food, World | , , , , | 3 Comments