The Anonymous Widower

Understanding Floatovoltaics

Floatovoltaics is mounting panels on floats, on an appropriate stretch of water.

This video, which I think from some of the words in the commentary, is shown to visitors who visit the floating solar farm at Yamakura Dam.

It describes all the advantages of floating solar and shows how this 13.7 MW solar farm was constructed.

We’ve even got a couple of these floating solar farms in the UK.

This Google Map shows the farm in the Queen Elizabeth II Reservoir, near Walton-on-Thames.

There is also this article in the Guardian, which is entitled World’s Biggest Floating Solar Farm Powers Up Outside London. It gives a good description of the project.

The article also states that unlike large solar arrays on land, no planning permission is required.

United Utilities have also installed a system at Godley Reservoir in Hyde, near Manchester, as this Google Map shows.

They must like the first installation, as this Press Release from United Utilities indicates that they are now building a second floating solar farm at Langthwaite Reservoir near Lancaster.

Some points from the Press Release.

  • The floats are made locally.
  • Godley is three times the size of Langthwaite.
  • Godley can generate up to 3 GWh per year.
  • It is thought that the panels help to stop the growth of algae in the water.
  • United Utilities already has 45 MW of installed solar and intends to add 22 more sites in the next two years.

In some ways, this embracing of solar is a bit surprising, as the North West, is England’s wettest region.

Conclusion

If my excellent physics teacher in the 1960s had said that it will be commonplace by 2020 to generate electricity using solar panels floating on water, I would not have believed him!

 

June 5, 2020 Posted by | World | , , , , | 2 Comments

UK’s Largest Solar Park Cleve Hill Granted Development Consent

The title of this post, is the same as that of this article on Solar Power Portal.

These are the two introductory paragraphs.

Cleve Hill Solar Park, set to be the largest in the UK, has been granted development consent by the energy secretary.

The colossal 350MW project will include 880,000 panels along with battery storage, and sit just one mile northeast of Faversham, in Kent, situated close to the village of Graveney.

Other points from the article.

  • Cleeve Hill Solar Park is a £450million project.
  • It is the first solar project to be considered a Nationally Significant Infrastructure Project.
  • It is being developed as a joint venture between Hive Energy and Wirsol.
  • It is due to be operational by 2022.
  • To complete the project 700 MWh of energy storage will be added later.

The article also contains this quote from Solar Trade Associations chief executive Chris Hewett.

Solar has a significant role to play in boosting the economy in the wake of the coronavirus crisis. With the right policies we can expect to see an 8GW pipeline of solar projects unlocked and rapidly deployed, swiftly creating a wealth of skilled jobs and setting us on the path towards a green recovery.

8 GW of intermittent energy will need a lot of storage.

As Cleeve Hill’s developers are planning to provide 700 MWh of storage for 700 MW of solar panels, it would appear that 8 GW of solar panels could need up to 16 GWh of energy storage.

As our largest energy storage system is the pumped storage Electric Mountain in Snowdonia with a capacity of 9.1 GWh and most of the large solar developments are towards the South of England, the UK needs to develop a lot more energy storage, where the solar is generated and much of the energy is used.

I can see the following environmentally-friendly developments prospering.

  • Highview Power‘s CRYOBattery, which uses liquid air to store energy. Systems have a small footprint and up to a GWh could be possible.
  • Electrothermal energy storage like this system from Siemens.
  • Using electrolysers from companies like ITM Power to convert excess energy into hydrogen for transport, steelmaking and injecting into the gas main.
  • Zinc8‘s zinc-air battery could be the outsider, that comes from nowhere.

Developers could opt for conservative decision of lithium-ion batteries, but I don’t like the environmental profile and these batteries should be reserved for portable and mobile applications.

Floatovoltaics

One concept, I came across whilst writing was floatovoltaics.

The best article about the subject was this one on Renewable Energy World, which is entitled Running Out of Precious Land? Floating Solar PV Systems May Be a Solution.

A French company call Ciel et Terre International seem to be leading the development.

Their web site has this video.

Perhaps, some floatovoltaics, should be installed on the large reservoirs in the South of England.

  • The Renewable Energy World article says that panels over water can be more efficient due to the cooling effect of the water.
  • Would they cut evaporative losses by acting as sunshades?
  • As the French are great pecheurs, I suspect that they have the answers if anglers should object.

This Google Map shows the reservoirs to the West of Heathrow.

Note.

  1. Wraysbury Reservoir has an area of two square kilometres.
  2. King George VI Reservoir has an area of one-and-a-half square kilometres.
  3. Using the size and capacity of Owl’s Hatch Solar Farm, it appears that around 65 MW of solar panels can be assembled in a square kilometre.
  4. All these reservoirs are Sites of Special Scientific Interest because of all the bird life.
  5. Heathrow is not an airport, that is immune to bird-strikes.

Could floatovoltaics be used to guide birds away from the flightpaths?

Incidentally, I remember a report from Tomorrow’s World, probably from the 1960s, about a porous concrete that had been invented.

  • One of the uses would have been to fill reservoirs.
  • The capacity of the reservoir would only have been marginally reduced, as the water would be in the voids in the concrete like water in a sponge.
  • Soil would be placed at the surface and the land used for growing crops.

I wonder what happened to that idea from fifty years ago!

June 5, 2020 Posted by | World | , , , , , , , , , | Leave a comment

‘Chernobyl’ Fears Dismissed As Herne Bay Hydrogen Plant Bid Approved

The title of this post, is the same as that of this article on Kent Online.

it would appear that Kent Online got their prediction right. that I wrote about in Hydrogen Power Plant Bid In Herne Bay Set For Green Light From Canterbury City Council.

June 4, 2020 Posted by | Transport, World | , , , | Leave a comment

UK Energy Storage ‘Nears 4GW’

The title of this post, is the same as that of this article on ReNews.biz.

This is the introductory paragraph.

Almost 4GW of energy storage capacity is now connected to the UK network with a further 9GW in the planning process, according to a new report released today by the Electricity Storage Network (ESN).

It is a small article, where GW is mentioned nine times.

June 3, 2020 Posted by | World | | 2 Comments

After Coronavirus, What’s Next? China: More Coal, US: More Oil, EU: More Renewables

The title of this post, is the same as that of this article on CleanTechnica.

The title says it all, but read the article to get the detail.

June 2, 2020 Posted by | Health, World | , , , , , , , , , , | 3 Comments

Hydrogen Pilot Projects Could Eventually Boost Nuclear Plants’ Bottom Lines

The title of this post, is the same as that of this article on Energy News Network.

The article discusses in depth. how producing hydrogen can help to improve the economics of nuclear power plants in the Mid-West, with particular reference to a plant called Davis-Besse at Oak Harbor, Ohio.

June 2, 2020 Posted by | World | , , , | Leave a comment

UK Energy Production

This web site, seems to ask a lot of my questions about UK Energy Production.

May 30, 2020 Posted by | World | | 2 Comments

Joint Venture With Linde AG And £38M Strategic Investment

The title of this post, is the same as that as this Press Release from ITM Power.

This is the first paragraph.

ITM Power plc  is pleased to announce its intention to raise at least £52.0 million (before expenses) through (i) a strategic investment of £38.0 million at 40 pence per share by Linde UK Holdings No. 2 Limited, a member of the Linde AG group (Linde) (the Share Subscription); and (ii) a conditional placing of £14.0 million at 40 pence per share (the Firm Placed Shares) with certain existing and new institutional investors (the Firm Placing).   The Group has also entered into a 50/50 joint venture with Linde (the Joint Venture) which will focus on delivering green hydrogen to large scale industrial projects, principally those with an installed electrolyser capacity of 10 Megawatts (“MW”) and above.

There is all the usual financial stuff and these sentences.

The net proceeds of the fundraising will be used principally to enhance the manufacturing capabilities of the Group, particularly for the development and production of large scale 5MW electrolysers, to facilitate product standardisation and manufacturing cost reduction.

The Joint Venture will focus on delivering green hydrogen to large scale industrial projects (generally being opportunities with installed electrolyser capacities of 10 Megawatts and above)

As ITM Power are constructing the largest electrolyser factory in the world, at Bessemer park in Sheffield, it appears to me that ITM Power are going for the larger scale hydrogen market.

Recently, I wrote these three posts.

News stories generated about the company or the production of hydrogen seem to require large electrolysers in excess of 5 MW.

It looks like ITM Power are setting themselves up to tap this market substantially.

How Much Hydrogen Would A 5 MW Electrolyser Create In A Day?

I found the key to the answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

I will use that figure in the calculation.

  • A 5MW electrolyser will consume 120 MWh in twenty-four hours.
  • This amount of electricity will produce 2,182 Kg or 2.182 tonnes of hydrogen.
  • It will also consume 19.64 tonnes of water.

In Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses, I described how Jo Bamford and his company; Ryse Hydrogen, have applied for planning permission to build the UK’s largest electrolyser at Herne Bay in Kent.

  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.

So could the electrolyser be a 25 MW unit built of five 5 MW modular electrolysers?

Linde and their UK subsidiary; BOC, must have a lot of knowledge in transporting tonnes of hydrogen by road. I can remember seeing BOC’s trucks behind ICI’s Castner-Kellner works in the 1970s, where they collected hydrogen to see to other companies.

 

May 29, 2020 Posted by | Transport, World | , , , , , , , | 2 Comments

Hydrogen Gas From Biogas

The title of this post, is the same as that of this article on Finance News Network.

This is the introductory paragraph.

Managing Director and CEO Geoff Ward talks about the Hazer process for low emissions hydrogen gas and high purity graphite production from biogas, CAPEX approval to proceed with the company’s commercial demonstration plant and offtake discussions.

The process doesn’t create any CO2, as it extracts the carbon as a crystalline graphite. So are there two worthwhile products from the biogas?

According to this page on Graphene Info, the graphite can be made to create graphene.

May 27, 2020 Posted by | World | , , , | Leave a comment

Sizewell C: Nuclear Power Station Plans For Suffolk Submitted

The title of this post, is the same as that as this article on the BBC.

A few points from the article.

  • It will provide enough electricity for six million homes.
  • It will create 25,000 jobs during construction.
  • Sizewell C will be a near replica to Hinckley Point C.
  • It will generate 3.2 GW of electricity.
  • It will be low-carbon electricity.

As a well-read and experienced engineer, I am not against the technologies of nuclear power.

But I do think, by the time it is completed , other technologies like wind and energy storage will be much better value. They will also be more flexible and easier to expand, should we get our energy forecasts wrong.

  • We will see higher power and more efficient wind farms, further out in the North Sea.
  • Massive energy storage systems, based on improved pumped storage technology and using new technology from companies like Highview Power, Zinc8 and others will be built.
  • Wind and solar power an energy storage are much easier to fund and financial institutions like L & G, Aberdeen Standard and Aviva have invested in the past for our future pensions.
  • If you want to go nuclear, small modular reactors, look to be much better value in the longer term.
  • I also don’t like the involvement of the Chinese in the project. History tells me, that all pandemics seem to start in the country!

It is my view that the biggest mistake we made in this country over energy was not to built the Severn Barrage.

My preferred design would be based on the ideas of Sir Frederick Snow.

There would have been a high and a low lake, either side of a central spine, behind an outer barrage.

  • Reversible turbines and pumps between the lakes would both generate and store electricity.
  • When proposed in the 1970s, it would have generated ten percent of the UK’s electricity.
  • A new road and rail crossing of the Severn, could have been built into the outer barrage.
  • A lock would have provided access for shipping.
  • It would have controlled the periodic, regular and often devastating flooding of the River Severn.

Some versions of the original design, even incorporated an international airport.

  • The runways would be in the right direction for the prevailing wind, with regard to take-off and landing.
  • Take-off would be over open sea.
  • High speed trains could speed travellers to and from London on an updated Great Western Railway.

I believe a modern design could be even better.

  • The central spine and the outer barrage would be the foundations for a large wind farm.
  • There would also be a large number of powerful floating wind turbines to the West of the outer barrage in the Severn Estuary.
  • A giant electrolyser on the central spine would produce hydrogen, that could be used to decarbonise the UK’s gas network.
  • A power interconnector could be built into the outer barrage to connect Wales to the nuclear power stations at Hinckley :Point.
  • A cluster of small nuclear reactors could be built on the central spine.
  • In the intervening fifty years, we have probably learned how to build a barrage like this, so that it can benefit birds and other wildlife.

I believe, it will never be too late to build a Severn Barrage.

 

May 27, 2020 Posted by | Transport, World | , , , , , , , , , , , | 3 Comments