The Anonymous Widower

UK Energy Grid Needs £60bn Upgrade To Hit Green Target, Plan Says

The title of this post, is the same as that of this article on the BBC.

This is the sub-heading.

The UK’s electricity network needs almost a further £60bn of upgrades to hit government decarbonisation targets by 2035, according to a new plan.

These five paragraphs explain the plan.

About 4,000 miles of undersea cables and 1,000 miles of onshore power lines are needed, said the National Grid’s Electricity Systems Operator (ESO).

The investment would add between £20 to £30 a year to customer bills, it said.

The government said the ESO’s plans were preliminary and yet to pass a “robust planning process”.

The plans were written up by the ESO, the organisation which runs the electricity network and would run the updated system it is calling for too. It is currently owned by National Grid but will transfer into government ownership later this year.

Its latest £58bn estimate is for work needed between 2030 and 2035 and comes on top of a previous £54bn estimate for work taking place between now and 2030.

These are my thoughts.

The Amount Of Undersea Cable

Edinburgh and London are roughly 400 miles apart as the train runs, so it looks like there could be the equivalent of ten underwater cables between the North of Scotland and England.

In Contracts Signed For Eastern Green Link 2 Cable And Converter Stations, I talked about the proposed 2 GW link between Peterhead in Scotland and Drax in England, which will be a double cable. So there’s the first two of these long cables.

It looks to me, that National Grid are proposing to use underwater cables wherever they can, so they avoid large expensive planning rows stirred up by Nimbies.

Monitoring The Undersea Cables

Last week Ofgem gave National Grid a £400,000 grant to develop new innovative technologies, which I wrote about in £400k For National Grid Innovation Projects As Part Of Ofgem Fund To Help Shape Britain’s Net Zero Transition.

One of the project is called HIRE – Hybrid-Network Improvement & Reliability Enhancement and will be used to check all these cables are performing as they should.

My electrical engineering experience tells me, that there must be some cunning way, that will detect that something is happening to the cable. The involvement of a technology company called Monitra in the project is a bit of a giveaway.

How Much Will It Cost Me?

Currently, UK consumers pay about £30 per year to have electricity delivered, so this will rise to between £50 and £60 per year.

That is just over a pound a week. I would pay about the same for a resident’s parking permit outside my house for an electric car and probably three times more for a petrol or diesel car.

Do We Have Enough Cable?

Two undersea cable factories are under development in Scotland and I suspect the 4,000 miles of undersea cables will be delivered on schedule and covered in saltires.

What About T-Pylons?

The latest onshore electricity transmission line between Hinckley Point C and Bristol, doesn’t use traditional pylons.

It uses T-pylons like these to connect the 3.26 GW nuclear power station.

Note that they are shorter, designed to be less intrusive, have a smaller footprint and are made from only ten parts.

I suspect they will cost less to install and maintain.

There is more on T-pylons in National Grid Energise World’s First T-Pylons.

I wouldn’t be surprised that some of the oldest traditional pylons will be replaced by T-pylons.

I am surprised that T-pylons are not mentioned in the BBC article.

I like T-pylons. How do you feel about them?

Eastern Green Link 2

This press release from National Grid, describes Eastern Green Link 2 like this.

Eastern Green Link 2 (EGL2) is a 525kV, 2GW high voltage direct current (HVDC) subsea transmission cable from Peterhead in Scotland to Drax in England delivered as a joint venture by National Grid and SSEN Transmission.

This map from National Grid, shows the route of the Eastern Green Link 2.

The Northern landfall is at Sandford Bay and the Southern landfall is at Wilsthorpe Beach.

This Google Map shows Sandford Bay and Peterhead power station.

Note.

  1. Sandford Bay occupies the North-East corner of the map.
  2. The red arrow indicates the main 400kV sub-station at Peterhead.
  3. The 2177 MW gas-fired Peterhead power station is to the East of the sub-station marked as SSE.

This second Google Map shows the onshore route of the cable from Wilsthorpe to Drax.

Note.

  1. Flamborough Head is in the North-East corner of the map.
  2. Wilsthorpe Beach is at Bridlington a couple of miles South of Flamborough Head.
  3. The red arrow indicates Drax Power station.
  4. An onshore underground cable will be installed from landfall in Wilsthorpe to a new onshore converter station built in Drax.

The EGL2 HVDC cable connection from Scotland to England consists of 436km of submarine cable and 69km of onshore cable.

Both converter stations will be on existing power station sites and the major onshore works will be the underground cable between Wilsthorpe and Drax.

Where Does Drax Go From Here?

Currently, Drax power station is a 2595 MW biomass-fired power station.

There are now other large power sources that could replace some or all of the output of Drax power station.

  • 2GW of Scottish wind power coming to Drax on Eastern Green Link 2.
  • 6 GW of offshore wind is being developed at the Hornsea wind farms.
  • 8 GW of offshore wind is being developed at the Dogger Bank wind farms.
  • 2.5 GW from the three gas-fired power stations at Keadby, two of which are likely to be fitted with carbon capture.
  • 1.8 GW from the proposed hydrogen-fired Keadby Hydrogen power station.

Given the bad feelings many have about Drax burning biomass, with 20.3 GW of electricity, you might think that shutting down Drax would be a simple solution.

But, according to Drax’s Wikipedia entry, it has a unique property.

Despite this intent for baseload operation, it was designed with a reasonable ability for load-following, being able to ramp up or down by 5% of full power per minute within the range of 50–100% of full power.

So Drax could be very useful in balancing the grid, by ramping up and down to fill the gap between production and need.

In addition, there is good biomass. This is from the Wikipedia entry.

A 100,000 tonne pa capacity straw pelletization facility was constructed at Capitol Park, Goole in 2008.

Drax are also promoting BECCS or Bioenergy carbon-capture and storage.

There is a Wikipedia entry for Bioenergy With Carbon Capture And Storage, of which this is the first couple of sentences.

Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. BECCS can theoretically be a “negative emissions technology” (NET).

I do feel that carbon capture and storage is a bit like sweeping the dust under the carpet, when you sweep the floor around it.

But carbon capture and use could be another matter.

This Google Map shows the Drax site.

Note how it is surrounded by agricultural land.

Could the power station be the source of pure carbon dioxide to be fed in greenhouses to flowers, herbs, salad vegetables, tomatoes and other plants?

I suspect there’s productive life left in Drax power station yet!

LionLink

LionLink, that is being developed by National Grid is a new type of interconnector, called a multi-purpose interconnector, that will connect Suffolk and The Netherlands via any convenient wind farms on the way. This means that the electricity generated can go where it is needed most.

I wrote about LionLink in World’s Largest-Of-Its-Kind Power Line To Deliver Clean Power To 1.8m UK Homes And Boost Energy Security.

Other Multi-Purpose Interconnectors

I can see other multi-purpose interconnectors like LionLink being built around the UK.

  • There could be one across the Dogger Bank to link out 8 GW of Dogger Bank wind farms with those of the Dutch, Danes and Germans on their section of the bank.
  • NorthConnect could be built between Scotland and Norway via some of the wind farms being developed to the North-East of Scotland.
  • Could wind farms to the North of Ireland use a multi-purpose interconnector between Scotland and Northern Ireland.
  • I can also see one or possibly two, being built across the Celtic Sea to link Devon, South Wales and Southern Ireland via the wind farms being developed in the area.
  • Will we also see a Channel multi-purpose interconnector to transfer electricity along the South Coast of England?

Some of these multi-purpose interconnectors could be key to creating a revenue stream, by exporting electricity, to countries in Europe, that have a pressing need for it.

Conclusion

National Grid’s excellent plan will lead to the end of the practice of shutting down wind turbines. The spare electricity will be exported to Europe, which will surely create a good cash-flow for the UK. This in turn will encourage developers to create more wind farms in the seas around the UK’s coasts.

March 19, 2024 Posted by | Energy | , , , , , , , , , , , , , , , , , , , , , | 8 Comments

£400k For National Grid Innovation Projects As Part Of Ofgem Fund To Help Shape Britain’s Net Zero Transition

The title of this post, is the same as that, of this press release from National Grid.

These three bullet points, act as sub-headings.

  • Three transmission and distribution network innovation projects receive green light 
  • Funding kickstarts projects for the discovery phase of Ofgem innovation scheme
  • 14 National Grid projects worth £4m have won innovation funding since scheme began

These are the three projects.

HIRE – Hybrid-Network Improvement & Reliability Enhancement

This is National Grid’s description of the £135,000 project.

Researching new state-of-the-art condition monitoring to improve the commissioning and operation of offshore cables. This new, robust system will mitigate the risk of failure, overcome the limitations of existing techniques (e.g. cable length) and aid network operators in decision making for a more flexible grid. PROJECT PARTNERS: University of Manchester, DNV, Monitra, SSEN Transmission.

With all the offshore cables, that have been laid around the UK, Europe and the world in recent years, I am surprised that such a system has not been developed before.

But I suspect, that the project partners know that if they can develop a superior cable monitoring system, then it could be a nice little earner in addition to its job with UK offshore cables.

According to their web site, Monitra seem to be the monitoring experts.

This is the mission statement on their home page.

Our aim is to maximise the uptime of every high voltage asset worldwide.

I like this company’s attitude and it should make the world a better place.

I certainly think that the £135,000 will be well spent.

REACH – Rural Energy And Community Heat

This is National Grid’s description of the £120,000 project.

Working with rural community energy groups to develop a modular rural energy centre that will help communities make cost effective decarbonisation plans. The solution will offer shared low carbon heating, rapid EV charging, and renewable generation in areas not served by commercial markets, and where there is limited electricity network capacity.

Rolls-Royce mtu seem to have a system, that might go some way to satisfy National Grid’s ambitions, that I wrote about in Would You Buy A Battery Energy Storage System From Rolls-Royce?.

Road to Power

This is National Grid’s description of the £140,000 project.

Developing specific tools to forecast future energy consumption and infrastructural impact of works, to support the street and road works sector as it decarbonises 7.8TWh of energy demand across 700,000 major works in the sector’s pivotal transition to net zero by 2030.

This sounds like an excellent idea. Especially, if it makes street and road works quieter and less polluting.

Conclusion

I like these three projects and have already added them to my list of Google Alerts.

March 18, 2024 Posted by | Energy | , , , , , , , | 3 Comments