The Anonymous Widower

Plans Announced For ‘Low Carbon’ Power Stations In Lincolnshire

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Hundreds of jobs could be created after plans were announced to build two “low carbon” power stations in North Lincolnshire.

Last year, I only had one night away from home and that was in Doncaster, from where I explored North East Lincolnshire and wrote Energy In North-East Lincolnshire, where I made a few predictions.

These are my thoughts on my predictions and other points made in the BBC article.

Keadby 1

Keadby 1 is a 734 MW gas-fired power station, that was commissioned in 1996.

Keadby 2

  • Keadby 2 will be a 840 MW gas-fired power station.
  • It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  • Keadby 2 will be able to run on hydrogen.

Keadby 2 is under construction.

Keadby 3 And Keadby 4

I predicted that two new power stations would be added to the Keadby cluster.

  • When I wrote the other post, SSE were still designing Keadby 3, but had said it would be a 910 MW station.
  • This would mean that Keadby 1, Keadby 2 and Keadby 3 would have a combined capacity of 2484 MW of electricity.
  • Adding a fourth station, which I called Keadby 4, which I proposed to be the same size as Keadby 3 would give a combined capacity of 3394 MW.

This will be more than the planned capacity of the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.

The BBC article says this about the plans for Keadby.

One plant would burn natural gas and use carbon capture technology to remove the CO2 from its emissions. The CO2 would then be transported along pipelines before being securely stored in rocks under the North Sea.

The hydrogen power station would produce “zero emissions at the point of combustion”, its developers claimed.

It looks like Keadby will have the power of a Hinckley Point nuclear station, but running on gas.

Carbon Capture And Storage

From what I read on the sseThermal web site and published in Energy In North-East Lincolnshire, it looks like Keadby 2 and Keadby 3 will use carbon capture and storage and Keadby 4 will use hydrogen.

There are plenty of depleted gas fields connected to the Easington terminal that can be used for carbon-dioxide storage.

The Zero Carbon Humber Network

The Zero Carbon Humber is going to be a gas network along the Humber, that will distribute hydrogen to large industrial users and return carbon dioxide for storage under the North Sea.

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Enter The Vikings

This article on The Times is entitled SSE and Equinor’s ‘Blue Hydrogen’ Power Plant Set To Be World First.

This is the introductory paragraph.

The world’s first large-scale power station to burn pure hydrogen could be built in Britain this decade by SSE and Equinor to generate enough low-carbon energy to supply more than a million homes.

This second paragraph explains the working of the production of the blue hydrogen.

The proposed power station near Scunthorpe would burn “blue hydrogen”, produced by processing natural gas and capturing and disposing of waste CO2 in a process that has low but not zero emissions. Equinor is already working on plans for a blue hydrogen production facility at Saltend in the Humber.

This may seem to some to be a wasteful process in that you use energy to produce blue hydrogen from natural gas and then use the hydrogen to generate power, but I suspect there are good reasons for the indirect route.

I believe that green hydrogen will become available from the North Sea from combined wind-turbine electrolysers being developed by Orsted and ITM Power, before the end of the decade.

Green hydrogen because it is produced by electrolysis will have less impurities than blue hydrogen.

Both will be zero-carbon fuels.

According to this document on the TNO web site, green hydrogen will be used for fuel cell applications and blue hydrogen for industrial processes.

Blue hydrogen would be able to power Keadby 2, 3 and 4.

I can see a scenario where Equinor’s blue hydrogen will reduce the price of hydrogen steelmaking and other industrial processes. It will also allow the purer and more costly green hydrogen to be reserved for transport and other fuel cell applications.

Using The Carbon Instead Of Storing

The document on the TNO web site has this surprising paragraph.

Hydrogen produced from natural gas using the so-called molten metal pyrolysis technology is called ‘turquoise hydrogen’ or ‘low carbon hydrogen’. Natural gas is passed through a molten metal that releases hydrogen gas as well as solid carbon. The latter can find a useful application in, for example, car tyres. This technology is still in the laboratory phase and it will take at least ten years for the first pilot plant to be realised.

This technical paper is entitled Methane Pyrolysis In A Molten Gallium Bubble Column Reactor For Sustainable Hydrogen Production: Proof Of Concept & Techno-Economic Assessment.

This may be a few years away, but just imagine using the carbon dioxide from power stations and industrial processes to create a synthetic rubber.

But I believe there is a better use for the carbon dioxide in the interim to cut down the amount that goes into long-term storage, which in some ways is the energy equivalent of landfill except that it isn’t in the least way toxic, as carbon-dioxide is one of the most benign substances on the planet.

Lincolnshire used to be famous for flowers. On a BBC Countryfile program a couple of weeks ago, there was a feature on the automated growing and harvesting of tulips in greenhouses.

There are references on the Internet to  of carbon dioxide being fed to flowers in greenhouses to make them better flowers.

So will be see extensive building of greenhouses on the flat lands of Lincolnshire growing not just flowers, but soft fruits and salad vegetables.

Conclusion

The plans of SSE and Equinor as laid out in The Times and the BBC could create a massive power station cluster.

  • It would be powered by natural gas and hydrogen.
  • Blue hydrogen will be produced by an efficient chemical process.
  • Green hydrogen will be produced offshore in massive farms of wind-turbine/electrolysers.
  • It would generate as much electricity as a big nuclear power station.
  • All carbon-dioxide produced would be either stored or used to create useful industrial products and food or flowers in greenhouses.

Do power stations like this hasten the end of big nuclear power stations?

Probably, until someone finds a way to turn nuclear waste into something useful.

 

April 9, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , | Leave a comment

Batteries Could Save £195m Annually By Providing Reserve Finds National Grid ESO Trial

The title of this post, is the same as that of this article on Current News.

The title gives the findings of the Arenko-led trial.

What Is The National Grid Reserve Service?

It’s all about providing capacity for the National Grid Reserve Service, which is described in this Wikipedia entry. This is the introductory paragraph.

To balance the supply and demand of electricity on short timescales, the UK National Grid has contracts in place with generators and large energy users to provide temporary extra power, or reduction in demand. These reserve services are needed if a power station fails for example, or if forecast demand differs from actual demand. National Grid has several classes of reserve services, which in descending order of response time are: Balancing Mechanism (BM) Start-Up, Short-Term Operating Reserve, Demand Management and Fast Reserve.

The Wikipedia entry is very comprehensive.

A Collateral Benefit

This is a paragraph from the article.

Additionally, unlike CCGT plants, batteries do not need to be producing power in order to provide Reserve as they can charge when there is abundant renewable energy on the grid, and then wait to react when needed. As CCGT’s need to be producing power to provide this service, it can led to renewables switched off in favour of the more carbon intensive fossil fuel generation, to ensure Reserve is available if needed.

The article concludes that Reserve from Storage could help National Grid ESO’s reach their target of net-zero operation by 2025.

Could We Replace CCGT Plants With Batteries?

CCGT or combined cycle gas-turbine power plants are efficient ways to turn natural gas into electricity.

  • Typical sizes are around 800 MW.
  • They are reasonably quick and easy to build.
  • As their fuel comes by a pipeline, they don’t need to be connected to the rail network, unlike biomass and coal power plants.

Because they burn methane, they still emit a certain amount of carbon dioxide, although levels much less than an equivalent coal-fired power station.

In Energy In North-East Lincolnshire, I described the three Keadby power stations.

  • Keadby – In operation – 734 MW
  • Keadby 2 – Under construction – 840 MW
  • Keadby 3 – In planning – 910 MW

In total, these three power stations will have a capacity of 2484 MW.

By comparison, Hinckley Point C will have a capacity of 3200 MW.

Add Keadby 4 and the four CCGTs would provide more electricity, than Hinckley Point C.

I think it would be very difficult to replace a cluster of CCGT gas-fired power stations or a big nuclear power plant with the sort of batteries being deployed today. 2.5 to 3 GW is just so much electricity!

I do believe though, that instead of building a 3200 MW nuclear power plant, you could build a cluster of four 800 MW CCGTs.

But What About The Carbon Dioxide?

Using the Keadby cluster of CCGTs as an example.

  • Keadby 2 and Keadby 3 are being built to be upgraded with carbon-capture technology.
  • The HumberZero gas network will take the carbon dioxide away for  storage in worked-out gas fields in the North Sea.
  • Some carbon dioxide will be fed to salad vegetables and soft fruits in greenhouses, to promote growth.
  • Keadby 2 and Keadby 3 are being built to be able to run on hydrogen.
  • The HumberZero network will also be able to deliver hydrogen to fuel the power stations.

I’m certain we’ll see some of the next generation of wind turbines delivering their energy from hundreds of miles offshore, in the form of hydrogen by means of a pipe.

The technology is being developed by ITM Power and Ørsted, with the backing of the UK government.

  • Redundant gas pipelines can be used, to bring the hydrogen to the shore
  • The engineering of piping hydrogen to the shore is well-understood.
  • Redundant gas pipelines can be used if they already exist.
  • Gas networks can be designed, so that depleted gas fields can be used to store the gas offshore, in times when it is not needed.

But above all gas pipelines cost less than DC  electricity links, normally used to connect turbines to the shore.

I can see very complicated, but extremely efficient networks of wind turbines, redundant gas fields and efficient CCGT power stations connected together by gas pipelines, which distribute natural gas, hydrogen and carbon dioxide as appropriate.

Could Offshore Hydrogen Storage And CCGTs Provide The Reserve Power

Consider.

  • Using a CCGT power station  to provide Reserve Power is well understood.
  • Suppose there is a large worked out gasfield, near to the power station, which has been repurposed to be used for hydrogen storage.
  • The hydrogen storage is filled using hydrogen created by offshore wind turbines, that have built in electrolysers, like those being developed by ITM Power and Ørsted.
  • One of more CCGTs could run as needed using hydrogen from the storage as fuel.
  • A CCGT power station running on hydrogen is a zero-carbon power station.

Effectively, there would be a giant battery, that stored offshore wind energy as hydrogen.

I can see why the UK government is helping to fund this development by ITM Power and Ørsted.

Could We See Cradle-To-Grave Design Of Gas Fields?

I suspect that when a gas field is found and the infrastructured is designed it is all about what is best in the short term.

Suppose a gas field is found reasonably close to the shore or in an area like the Humber, Mersey or Tees Estuaries, where a lot of carbon dioxide is produced by industries like steel, glass and chemicals!

Should these assessments be done before any decisions are made about how to bring the gas ashore?

  • After being worked out could the gas field be used to store carbon dioxide?
  • After being worked out could the gas field be used to store natural gas or hydrogen?
  • Is the area round the gas field suitable for building a wind farm?

Only then could a long-term plan be devised for the gas-field and the infrastructure can be designed accordingly.

I suspect that the right design could save a lot of money, as infrastructure was converted for the next phase of its life.

Conclusion

It does appear that a lot of money can be saved.

But my rambling through the calculations shows the following.

Wind Turbines Generating Hydrogen Give Advantages

These are some of the advantages.

  • Hydrogen can be transported at less cost.
  • Hydrogen is easily stored if you have have a handy worked-out gas field.
  • The technology is well-known.

Hydrogen can then be converted back to electricity in a CCGT power station

The CCGT Power Station Operates In A Net-Zero Carbon Manner

There are two ways, the CCGT station can be run.

  • On natural gas, with the carbon-dioxide captured for use or storage.
  • On hydrogen.

No carbon-dioxide is released to the atmosphere in either mode.

The Hydrogen Storage And The CCGT Power Station Or Stations Is Just A Giant Battery

This may be true, but it’s all proven technology, that can be used as the Power Reserve.

Power Networks Will Get More Complicated

This will be inevitable, but giant batteries from various technologies will make it more reliable.

 

 

 

February 12, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , | 1 Comment

Rolls-Royce signs MoU With Exelon For Compact Nuclear Power Stations

The title of this post, is the same as that of this press release on the Rolls-Royce web site.

These are the first two paragraphs.

Rolls-Royce and Exelon Generation have signed a Memorandum of Understanding to pursue the potential for Exelon Generation to operate compact nuclear power stations both in the UK and internationally. Exelon Generation will be using their operational experience to assist Rolls Royce in the development and deployment of the UKSMR.

Rolls-Royce is leading a consortium that is designing a low-cost factory built nuclear power station, known as a small modular reactor (SMR). Its standardised, factory-made components and advanced manufacturing processes push costs down, while the rapid assembly of the modules and components inside a weatherproof canopy on the power station site itself avoid costly schedule disruptions.

This is the first paragraph of the Wikipedia entry of Exelon.

Exelon Corporation is an American Fortune 100 energy company headquartered in Chicago, Illinois and incorporated in Pennsylvania. It generates revenues of approximately $33.5 billion and employs approximately 33,400 people. Exelon is the largest electric parent company in the United States by revenue, the largest regulated electric utility in the United States with approximately 10 million customers, and also the largest operator of nuclear power plants in the United States and the largest non-governmental operator of nuclear power plants in the world.

These two paragraphs from the press release flesh out more details.

The consortium is working with its partners and UK Government to secure a commitment for a fleet of factory built nuclear power stations, each providing 440MW of electricity, to be operational within a decade, helping the UK meet its net zero obligations. A fleet deployment in the UK will lead to the creation of new factories that will make the components and modules which will help the economy recover from the Covid-19 pandemic and pave the way for significant export opportunities as well.

The consortium members feature the best of nuclear engineering, construction and infrastructure expertise in Assystem, Atkins, BAM Nuttall, Jacobs, Laing O’Rourke, National Nuclear Laboratory, Nuclear Advanced Manufacturing Research Centre, Rolls-Royce and TWI. Exelon will add valuable operational experience to the team.

This is not what you call a small deal.

This is the last section of the press release.

By 2050 a full UK programme of a fleet of factory built nuclear power stations in the UK could create:

  • Up to 40,000 jobs
  • £52BN of value to the UK economy
  • £250BN of exports

The current phase of the programme has been jointly funded by all consortium members and UK Research and Innovation.

But that is not all, as there is also a second press release, which is entitled Rolls-Royce Signs MoU With CEZ For Compact Nuclear Power Stations.

These are the first two paragraphs.

Rolls-Royce and CEZ have signed a Memorandum of Understanding to explore the potential for compact nuclear power stations, known as small modular reactors (SMR), to be built in the Czech Republic.

Rolls-Royce is leading the UK SMR Consortium that is designing this type of low-cost nuclear power station. Its standardised, factory-made components and advanced manufacturing processes push down costs; and the rapid assembly of the modules inside a weatherproof canopy at the power station site itself speeds up schedules.

These are my thoughts.

What Is A Small Modular Reactor or SMR?

This is the first paragraph of the Wikipedia entry for Small Nuclear Reactor.

Small modular reactors (SMRs) are a type of nuclear fission reactor which are smaller than conventional reactors. This allows them to be manufactured at a plant and brought to a site to be assembled. Modular reactors allow for less on-site construction, increased containment efficiency, and enhanced safety due to passive nuclear safety features. SMRs have been proposed as a way to bypass financial and safety barriers that have plagued conventional nuclear reactors.

This section on Wikipedia gives more details of the Rolls-Royce SMR.

Rolls-Royce is preparing a close-coupled three-loop PWR design, sometimes called the UK SMR.] The power output is planned to be 440 MWe, which is above the usual range considered to be a SMR. The design targets a 500 day construction time, on a 10 acres (4 ha) site. The target cost is £1.8 billion for the fifth unit built.

The consortium developing the design is seeking UK government finance to support further development. In 2017 the UK government provided funding of up to £56 million over three years to support SMR research and development. In 2019 the government committed a further £18 million to the development from its Industrial Strategy Challenge Fund.

The construction time, site size and cost make for one of the big advantages of SMRs.

Say you need to create a 3260 MW nuclear power station like Hinckley Point C.

  • This would need a fleet of eight 440 MW SMRs.
  • These would cost £14.4 billion
  • Wikipedia lists Hinkley Point C as costing between £21.5 billion and £ 22.5 billion.
  • I suspect there will be an adjustment for the connection to the National Grid, which is probably included in the Hinckley Point C figures.
  • Eight SMRs will occupy 80 acres.
  • Hinckley Point C will occupy 430 acres.
  • Hinckley Point C was planned to be built in seven years.
  • Eight SMRs built one after the other would take 11 years. But, they would probably be planned to be built in an optimal way, where reactors came on-line, when their power was needed.

The biggest advantage though, is that as each of the eight SMRs is commissioned, they can start supplying power to the grid and earning money. This means that financing is much easier and the first reactor helps to pay for its siblings.

Could An SMR Replace A Fossil Fuel Power Station?

Suppose you have a coal-fired power station of perhaps 800 MW.

The power station will have a connection to the grid, which will be able to handle 800 MW.

If the power station is closed, there is no reason, why it can’t be replaced by an appropriately-sized fleet of SMRs, provided the site is suitable.

Who Are TWI?

I would assume that TWI is The Welding Institute, who are described like this in their Wikipedia entry.

The Welding Institute (TWI) is a research and technology organisation, with a specialty in welding. With headquarters six miles south of Cambridge, Cambridgeshire, England, since 1946, and with facilities across the UK and around the world. TWI works across all industry sectors and in all aspects of manufacturing, fabrication and whole-life integrity management technologies.

It strikes me, this organisation could be a very important part of the consortium.

 

November 10, 2020 Posted by | Energy | , , , , | 3 Comments

Energy In North-East Lincolnshire

A few weeks ago, I took a train from Doncaster to Cleethorpes and back.

These pictures show the area is all about energy.

Keadby Power Station

Keadby power station is a 734 MW gas-fired power-station, that opened in 1996.

Keadby 2 Power Station

Keadby 2 is described on this page of the sseThermal web site.

These are the three opening paragraphs.

Keadby 2 is a new 840MW gas-fired power station in North Lincolnshire currently being constructed by our EPC contractor Siemens Energy. The project is adjacent to our operational Keadby 1 Power Station.

SSE Thermal has partnered with Siemens Energy to introduce first-of-a-kind, high-efficiency gas-fired generation technology to the UK. When completed, Keadby 2 is expected to become the cleanest and most-efficient gas-fired power station in Europe.

The station will also be capable of being upgraded to further decarbonise its generation through carbon capture or hydrogen technology, as routes to market develop.

Note.

  1. It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  2. Keadby 2 will be able to run on hydrogen.
  3. Keadby 2 is the under-construction power station in my pictures.

Could this be the prototype gas-fired power station of the future?

Keadby 3 Power Station

Keadby 3 is described on this page of the sseThermal web site.

These are the two opening paragraphs.

SSE Thermal is developing the option for a low-carbon combined cycle gas turbine (CCGT) at our Keadby site in North Lincolnshire, which will be known as Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

Keadby 3 is still in the consultation and planning stage.

This newsletter on the sseThermal web site, gives some useful information about Keadby 3.

These are the first three paragraphs.

We are proposing to build a new gas fired power station at Keadby, North Lincolnshire. The project, known as Keadby 3, will have a generating capacity of up to 910 megawatts (MW) and will provide the essential back up to renewable generation and reliable and flexible energy during the country’s transition to Net Zero.

Keadby 3 will be a highly efficient gas fired power station. It will either use natural gas as the fuel and be fitted with a Carbon Capture Plant (CCP) to remove carbon dioxide (CO2) from the emissions to air from the plant, or it will be fired on primarily hydrogen, with no carbon dioxide emissions to air from its operation. Both options are currently being considered, and government is also currently considering the roles of carbon capture and hydrogen in the power sector nationally.

Keadby 3 will require connections for natural gas and possibly hydrogen fuel, water for use in the process
and for cooling and possibly for a pipeline to export the captured CO2 into a gathering network being provided by others and from there to a permanent geological storage site. An electricity connection to export the generated electricity to the UK transmission system will also be required. The plant would be capable of operating as a dispatchable low-carbon generating station to complement the increasing role of renewables in supplying the UK with electricity

Note.

  1. The three Keadby gas-fired power stations can generate 2484 MW of electricity in total.
  2. By comparison, the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.
  3. The addition of a Keadby 4 power station, if it were the same size as Keadby 3, would mean the Keadby cluster of gas-fired power stations had a capacity of 3394 MW and they would be larger than the big nuclear station.

In terms of power output, it is an interesting alternative to a larger nuclear power station.

What About The Carbon?

If you’re burning natural gas, you will produce some carbon dioxide.

Power generation from natural gas creates 0.2 Kg of CO2 per kWh according to this web page.

So a 3000 MW station that produces 3000 MW, will produce 3000 MWh or 3000000 kWh in an hour.

This will create 600,000 Kg or 600 tonnes of carbon dioxide in an hour.

As there are roughly 9000 hours in a year, that is roughly 5.4 million tonnes of carbon dioxide.

This newsletter on the sseThermal web site, gives some information about sseThermal are going to do with the carbon dioxide.

As a low-carbon CCGT, Keadby 3 comprises one high efficiency gas turbine and associated steam turbine and either the infrastructure required to allow the CCGT to fire primarily on hydrogen gas, r inclusion of a post combustion Carbon Capture Plant (CCP) in a scenario where natural gas is used as the fuel. In the latter scenario, this is required in order that CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

A diagram of these components, and optional components, is shown below.

Note.

  1. Click on the image to get a larger view.
  2. The CCGT Power Plant is on the left.
  3. Most of the power is generated by the gas-turbine.
  4. Heat is recovered to create steam, which drives a turbine to create more electricity
  5. The Carbon Capture Plant is on the right.
  6. Carbon dioxide is extracted from the exhaust.

There are two outputs from the plant; electricity and carbon dioxide.

As the carbon dioxide is in a pipe from the drying and compression unit, it is easy to handle.

The newsletter says this about what will happen to the carbon dioxide.

CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

As there are several worked out gas fields in the area, there are places to store the carbon dioxide.

Storing The Carbon Dioxide

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Using The Carbon Dioxide

But I would prefer , that the carbon dioxide were to be put to use. Under Carbon Capture and Utilisation on Wikipedia, a variety of uses are shown.

Surprisingly, they don’t talk about using the carbon dioxide to promote the growing of crops in green houses.

I do think, though, that some clever chemists will find ways to convert the carbon into some form of advanced engineering plastics to replace steel.

Hydrogen-Fuelled Power Stations

Note how on the map the hydrogen pipeline goes through the Keadby cluster of power stations.

  • Hydrogen is a zero-carbon fuel.
  • It will be produced offshore by wind turbines connected to electrolysers.
  • The hydrogen will be brought ashore using the existing gas pipeline network.
  • Excess hydrogen could be stored in the worked out gas fields.

I suspect there will be a massive increase in the number of wind turbines in the North Sea to the East of Hull.

Hydrogen Steelmaking

In ten years time, this will surely be the way steel will be made. British Steel at Scunthorpe would surely be an ideal site.

It would also be an ideal site for the HIsarna steelmaking process, which generates much less carbon dioxide and because it is a continuous process, what carbon dioxide is generated is easily captured.

Conclusion

Installations like this will mean that large nuclear power stations built with Chinese money are not needed.

 

October 20, 2020 Posted by | Energy, Hydrogen | , , , , , , , | 4 Comments