Up To 24GW Of Long Duration Storage Needed For 2035 Net Zero Electricity System – Aurora
The title of this post, is the same as that of this article on Current News.
This the first three paragraphs.
Deploying large quantities of long duration electricity storage (LDES) could reduce system costs and reliance on gas, but greater policy support is needed to enable this, Aurora Energy Research has found.
In a new report, Aurora detailed how up to 24GW of LDES – defined as that with a duration of four hours or above – could be needed to effectively manage the intermittency of renewable generation in line with goals of operating a net zero electricity system by 2035. This is equivalent to eight times the current installed capacity.
Additionally, introducing large quantities of LDES in the UK could reduce system costs by £1.13 billion a year in 2035, cutting household bills by £26 – a hot topic with energy bills on the rise as a result of high wholesale power prices.
The report also says that long duration storage could cut carbon emissions by ten million tonnes of carbon dioxide per year.
I feel strongly, that this is a target we will achieve, given that there are at least four schemes under development or proposed in Scotland.
- Balliemeanoch – 45 GWh
- Coire Glas – 30 GWh
- Corrievarkie – 14.5 GWh
- Loch Sloy – 14 GWh
- Red John – 2.8 GWh
It certainly looks like the Scots will be OK, especially as there are other sites that could be developed according to SSE and Strathclyde University.
We probably need more interconnectors as I wrote about in New Electricity ‘Superhighways’ Needed To Cope With Surge In Wind Power.
There are also smaller long duration storage systems under development, that will help the situation in the generally flatter lands of England.
One of them; ReEnergise, even managed to sneak their advert into the article.
Their high density hydro could be a good way to store 100 MWh or so in the hills of England. As they could be designed to fit into and under the landscape, I doubt their schemes would cause the controversy of other schemes.
Conclusion
I think we’ll meet the energy storage target by a wide margin.
A Brief History Of Scottish Hydropower
The title of this post, is the same as that of this page on the Drax Group web site.
This is the introductory paragraph.
Over the last century, Scottish hydro power has played a major part in the country’s energy make up. While today it might trail behind wind, solar and biomass as a source of renewable electricity in Great Britain, it played a vital role in connecting vast swathes of rural Scotland to the power grid – some of which had no electricity as late as the 1960s. And all by making use of two plentiful Scottish resources: water and mountains.
These are some points from the page.
- The first scheme was built in the last years of the nineteenth century and provided power for aluminium smelting.
- The first modern scheme was the Lanark Hydro Electric Scheme, which was built in the 1920s and is still running today, under the ownership of Drax Group.
- In 1935, the Galloway scheme, set the tone for later projects with architecture including stylised dams and modernist turbine halls.
- The North of Scotland Hydroelectric Board was founded in 1943.
- Sloy, the largest conventional hydro-electric station opened in 1950 and has a capacity of 152.5 MW.
- Building the dams and power stations appears to have been hard but well-paid work.
- By the mid Sixties, the North of Scotland Hydroelectric Board had built 54 main power stations and 78 dams. Northern Scotland was now 90% connected to the national grid.
- In 1965, the world’s then largest reversible pumped storage power station opened at Cruachan.
- In 2009, the last major scheme at Glendoe opened.
The schemes are a working catalogue of everything you can do with water to generate and store electricity.
Future development now seems to be moving in two directions.
The Drax page says this about new hydro-electric schemes.
In recent years, however, the real growth has been in smaller hydro-electric schemes that may power just one or a handful of properties – with more than 100 MW of such generation capacity installed in the Highlands since 2006.
On the other hand, several large pumped storage schemes are under development.
- Balliemeanoch – 1.5 GW/45 GWh
- Coire Glas – 1.5 GW/30 GWh
- Corrievarkie – 600 MW/14.5 GWh
- Red John – 450 MW/2.8 GWh
Note.
These schemes add up to an output of just over 4 GW and a colossal 92.3 GWh of storage.
The existing Foyers scheme and the under-development Coire Glas and Red John schemes. all use Loch Ness as the lower reservoir.
Two of these under-development schemes will be larger than the current largest pumped storage system in the world; Bath County Pumped Storage Station in Virginia in the United States, which is a 3 GW/24 GWh system.
Conclusion
Adding large numbers of wind turbines and tens of GWs to Scotland’s existing pumped storage could transform not just Scotland’s but most of Western Europe’s green energy production.
