The Anonymous Widower

Uniper To Make Wilhelmshaven German Hub For Green Hydrogen; Green Ammonia Import Terminal

The title of this post, is the same as that of this article on Green Car Congress.

This is the first two paragraphs.

Under the name “Green Wilhelmshaven,” Germany-based international energy company Uniper plans to establish a German national hub for hydrogen in Wilhelmshaven and is working on a corresponding feasibility study.

Plans include an import terminal for green ammonia. The terminal will be equipped with an ammonia cracker for producing green hydrogen and will also be connected to the planned hydrogen network. A 410-megawatt electrolysis plant is also planned, which—in combination with the import terminal—would be capable of supplying around 295,000 metric tons or 10% of the demand expected for the whole of Germany in 2030.

I can’t help feeling that there is some bad thinking here.

The Wikipedia entry for ammonia, says this about green ammonia.

Even though ammonia production currently creates 1.8% of global CO2 emissions, a 2020 Royal Society report claims that “green” ammonia can be produced by using low-carbon hydrogen (blue hydrogen and green hydrogen). Total decarbonization of ammonia production and the accomplishment of net-zero targets are possible by 2050.

So why is green ammonia imported rather than green hydrogen, which may have been used to manufacture the ammonia?

Green ammonia would appear to have two main uses in its own right.

  • As a feedstock to make fertiliser and other chemicals.
  • As a possible fuel for large ships, which could also be powered by hydrogen.

The only thing, I can think of, is that as liquid hydrogen boils at -253 ° C and liquid ammonia at -33 ° C, ammonia may be easier to transport by ship.

It may make a better fuel for large ships for the same reason.

This policy briefing from The Royal Society is entitled Ammonia: Zero-Carbon Fertiliser, Fuel And Energy Store.

This is the introductory paragraph.

This policy briefing considers the opportunities and challenges associated with the manufacture and future use of zero-carbon or green ammonia.

It is an excellent explanation of green ammonia and a must read.

Hydrogen for Wilhelmshaven

On the other hand, Wilhelmshaven, which is situated on Germany’s North West Coast would be in a good position to be a terminal for a hydrogen pipeline or electrical interconnector from the Dogger Bank, where both the Netherlands and the UK have plans for some of the largest windfarms in the world.

The UK’s Dogger Bank Wind Farm, which is being developed by SSE, looks to have an initial capacity of 4.8 MW, whereas the North Sea Wind Power Hub, being developed by the Danes, Dutch and Germans on their side of the Dogger Bank could be rated at up to 110 GW.

Wikipedia says this about how the two huge projects could be connected.

The power hub would interconnect the three national power grids with each other and with the Dogger Bank Wind Farm.

We could be seeing a 200 GW power station in an area of the sea, generally only known to those who listen to the shipping forecasts and fans like Marti Caine.

Under a section in the Wikipedia entry for the North Sea Wind Power Hub, which is entitled the North Sea Wind Power Hub Consortium, these points are made.

  • It is hoped that Norway, the United Kingdom, and Belgium will join the consortium.
  • Dutch gas-grid operator Gasunie has joined the consortium, suggesting converting wind power to gas and using near offshore gas infrastructure for storage and transport.
  • The Port of Rotterdam became the fifth member of the consortium.

This looks like a party, where some of our North Sea gas fields and infrastructure, lying in the triangle of the Humber, Teesside and the Dogger Bank could add a lot of value.

We could even sea hydrogen generated in the European Eastern part of the Dogger Bank, stored in a worked-out gas field in the UK sector of the North Sea and then when needed, it could be pumped to Germany.

A 410 Megawatt Electrolyser

Ryse Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would produce just 5.6 percent of the hydrogen of the Wilhelmshaven electrolyser

In H2 Green Steel Plans 800 MW Hydrogen Plant In Sweden, I wrote about a 800 MW electrolyser, that would produce 380 tonnes of hydrogen per day.

It looks like the Wilhelmshaven  electrolyser is very much a middle-sized one and would produce around 65,000 tonnes per year.

Conclusion

It looks like the Germans will be importing lots of green ammonia and green hydrogen from the North Sea.

 

April 18, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , | 1 Comment

Plans Announced For ‘Low Carbon’ Power Stations In Lincolnshire

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Hundreds of jobs could be created after plans were announced to build two “low carbon” power stations in North Lincolnshire.

Last year, I only had one night away from home and that was in Doncaster, from where I explored North East Lincolnshire and wrote Energy In North-East Lincolnshire, where I made a few predictions.

These are my thoughts on my predictions and other points made in the BBC article.

Keadby 1

Keadby 1 is a 734 MW gas-fired power station, that was commissioned in 1996.

Keadby 2

  • Keadby 2 will be a 840 MW gas-fired power station.
  • It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  • Keadby 2 will be able to run on hydrogen.

Keadby 2 is under construction.

Keadby 3 And Keadby 4

I predicted that two new power stations would be added to the Keadby cluster.

  • When I wrote the other post, SSE were still designing Keadby 3, but had said it would be a 910 MW station.
  • This would mean that Keadby 1, Keadby 2 and Keadby 3 would have a combined capacity of 2484 MW of electricity.
  • Adding a fourth station, which I called Keadby 4, which I proposed to be the same size as Keadby 3 would give a combined capacity of 3394 MW.

This will be more than the planned capacity of the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.

The BBC article says this about the plans for Keadby.

One plant would burn natural gas and use carbon capture technology to remove the CO2 from its emissions. The CO2 would then be transported along pipelines before being securely stored in rocks under the North Sea.

The hydrogen power station would produce “zero emissions at the point of combustion”, its developers claimed.

It looks like Keadby will have the power of a Hinckley Point nuclear station, but running on gas.

Carbon Capture And Storage

From what I read on the sseThermal web site and published in Energy In North-East Lincolnshire, it looks like Keadby 2 and Keadby 3 will use carbon capture and storage and Keadby 4 will use hydrogen.

There are plenty of depleted gas fields connected to the Easington terminal that can be used for carbon-dioxide storage.

The Zero Carbon Humber Network

The Zero Carbon Humber is going to be a gas network along the Humber, that will distribute hydrogen to large industrial users and return carbon dioxide for storage under the North Sea.

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Enter The Vikings

This article on The Times is entitled SSE and Equinor’s ‘Blue Hydrogen’ Power Plant Set To Be World First.

This is the introductory paragraph.

The world’s first large-scale power station to burn pure hydrogen could be built in Britain this decade by SSE and Equinor to generate enough low-carbon energy to supply more than a million homes.

This second paragraph explains the working of the production of the blue hydrogen.

The proposed power station near Scunthorpe would burn “blue hydrogen”, produced by processing natural gas and capturing and disposing of waste CO2 in a process that has low but not zero emissions. Equinor is already working on plans for a blue hydrogen production facility at Saltend in the Humber.

This may seem to some to be a wasteful process in that you use energy to produce blue hydrogen from natural gas and then use the hydrogen to generate power, but I suspect there are good reasons for the indirect route.

I believe that green hydrogen will become available from the North Sea from combined wind-turbine electrolysers being developed by Orsted and ITM Power, before the end of the decade.

Green hydrogen because it is produced by electrolysis will have less impurities than blue hydrogen.

Both will be zero-carbon fuels.

According to this document on the TNO web site, green hydrogen will be used for fuel cell applications and blue hydrogen for industrial processes.

Blue hydrogen would be able to power Keadby 2, 3 and 4.

I can see a scenario where Equinor’s blue hydrogen will reduce the price of hydrogen steelmaking and other industrial processes. It will also allow the purer and more costly green hydrogen to be reserved for transport and other fuel cell applications.

Using The Carbon Instead Of Storing

The document on the TNO web site has this surprising paragraph.

Hydrogen produced from natural gas using the so-called molten metal pyrolysis technology is called ‘turquoise hydrogen’ or ‘low carbon hydrogen’. Natural gas is passed through a molten metal that releases hydrogen gas as well as solid carbon. The latter can find a useful application in, for example, car tyres. This technology is still in the laboratory phase and it will take at least ten years for the first pilot plant to be realised.

This technical paper is entitled Methane Pyrolysis In A Molten Gallium Bubble Column Reactor For Sustainable Hydrogen Production: Proof Of Concept & Techno-Economic Assessment.

This may be a few years away, but just imagine using the carbon dioxide from power stations and industrial processes to create a synthetic rubber.

But I believe there is a better use for the carbon dioxide in the interim to cut down the amount that goes into long-term storage, which in some ways is the energy equivalent of landfill except that it isn’t in the least way toxic, as carbon-dioxide is one of the most benign substances on the planet.

Lincolnshire used to be famous for flowers. On a BBC Countryfile program a couple of weeks ago, there was a feature on the automated growing and harvesting of tulips in greenhouses.

There are references on the Internet to  of carbon dioxide being fed to flowers in greenhouses to make them better flowers.

So will be see extensive building of greenhouses on the flat lands of Lincolnshire growing not just flowers, but soft fruits and salad vegetables.

Conclusion

The plans of SSE and Equinor as laid out in The Times and the BBC could create a massive power station cluster.

  • It would be powered by natural gas and hydrogen.
  • Blue hydrogen will be produced by an efficient chemical process.
  • Green hydrogen will be produced offshore in massive farms of wind-turbine/electrolysers.
  • It would generate as much electricity as a big nuclear power station.
  • All carbon-dioxide produced would be either stored or used to create useful industrial products and food or flowers in greenhouses.

Do power stations like this hasten the end of big nuclear power stations?

Probably, until someone finds a way to turn nuclear waste into something useful.

 

April 9, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , | Leave a comment

SSE Goes Global To Reap The Wind

The title of this article on This Is Money is Renewable Energy Giant SSE Launches Plan To Become Britain’s First Global Windfarm Business As it Invests Up To £15bn Over Next Decade.

The title is a good summary of their plans to build wind farms in Continental Europe, Denmark, Japan and the US, in addition to the UK and Ireland.

I can also see the company developing more integrated energy clusters using the following technologies.

  • Wind farms that generate hydrogen rather than electricity using integrated electrolysers and wind turbines, developed by companies like ITM Power and Ørsted.
  • Reusing of worked out gasfields and redundant gas pipelines.
  • Zero-carbon CCGT power stations running on Hydrogen.
  • Lots of Energy storage.

I talked about this type of integration in Batteries Could Save £195m Annually By Providing Reserve Finds National Grid ESO Trial.

In the related post, I talked about the Keadby cluster of gas-fired power stations, which are in large part owned by SSE.

Conclusion

I think that SSE could be going the way of Equinor and Ørsted and becoming a global energy company.

It is also interesting the BP and Shell are investing in renewable energy to match the two Scandinavian companies.

Big Oil seems to be transforming itself into Big Wind.

All these companies seem to lack grid-scale energy storage, although hydrogen can be generated and stored in worked-out gas fields.

So I would expect that some of the up-and-coming energy storage companies like Gravitricity, Highview Power and RheEnergise could soon have connections with some of these Big Wind companies.

 

 

February 14, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , | Leave a comment

Equinor and SSE Renewables’ Dogger Bank Wind Farm Reaches Financial Close

The title of this post, is the same as that of this article on Energy Global.

It is a very matter of fact article to record the fact that SSE and Equinor have raised three billion pounds for the first two sections of their 3.6 GW wind farm on the Dogger Bank, in the middle of the North Sea.

Wikipedia indicates, they will be operational around 2023-2025.

All very boring! But we’ll see a lot more deals like this.

November 27, 2020 Posted by | Energy, Finance | , , , | 1 Comment