The Anonymous Widower

UK Cleantech Consortium Awarded Funding For Energy Storage Technology Integrated With Floating Wind

The title of this post, is the same as that of this page on the UK Government’s Catapult Offshore Renewable Energy Web Site.

This is the introductory paragraph.

STORE, a UK-based cleantech consortium led by RCAM Technologies Limited, has been awarded £150,000 of funding to develop an advanced subsea energy storage technology manufactured using 3D printed concrete that could help offshore wind farms produce a steady and predictable energy output to the electricity grid.

This paragraph talks of the concept of Marine Pumped Hydro.

STORE is assessing the feasibility of integrating Marine Pumped Hydro (MPH) technology, which stores energy using hollow concrete spheres fitted with a hydraulic turbine and pump, with floating offshore wind plants in UK waters. In addition, the project advances the design of MPH systems and plans a prototype demonstration in the UK.

Note.

  1. The hollow concrete spheres are 3D-printed in concrete using the technology of RCAM Technologies.
  2. Spheres are structurally very strong.
  3. 3D printing of concrete is now mainstream technology and has been extensively used on the Elizabeth Line as I wrote about in The Story Behind The Concrete Panels On The Elizabeth Line.
  4. There is a visualisation on the Catapult web page, which shows several floating turbines, a floating sub station and several concrete hemispheres sitting on the seabed.
  5. The energy storage medium is sea water and air, which must be environmentally-friendly.

The technology is described in detail on this page of the STORE consortium web site.

  • The spheres are fifteen metres across.
  • The spheres can be installed at depths between 150 and 2000 metres.
  • The system has a round-trip efficiency is up to 70%, which is similar to pumped storage hydro.
  • The design life is 50 to 80 years.

I think that this system has possibilities.

This last paragraph in the Catapult web page gives a look into the future.

As well as improving the reliability and predictability of energy to the electricity grid, the project will support the cross sector transfer of UK offshore expertise and port infrastructure for use in renewable energy and create high-value UK jobs in engineering, construction, and operations and maintenance. This energy storage solution is ideally suited to coupling with floating wind plants and for powering offshore oil and gas assets from renewable energy. The 3D printed concrete also facilitates localized manufacturing and enables low cost fabrication of new and complex shapes that were previously not practical.

I also feel that if the concrete sphere energy storage can be made to successfully work, then the technology can surely be fitted to any offshore wind farm, by just adding the right number of spheres and connecting them to the offshore sub station.

The STORE Consortium

The STORE consortium has a web site, which has a heading of Innovative Subsea Energy Storage.

It describes the technology in this paragraph.

STORE is advancing a subsea energy storage technology called Marine Pumped Hydro (MPH). MPH uses large hollow concrete spheres on the seafloor to store mechanical energy in the form of pressure. MPH charges when seawater is pumped out of the spheres and releases energy to the grid when high-pressure water flows back into the spheres through a turbine. MPH features a patent-pending multi-sphere pod to increase the amount of energy stored and uses efficient 3D concrete printing to reduce manufacturing costs.

It sounds like an engineer with children, has been playing with them and their plastic toys in a bath and has had an Archimedes moment.

The project and its funding is described in this paragraph.

STORE was awarded £150,000 from the Department for Business, Energy & Industrial Strategy Longer Duration Energy Storage Demonstration (LODES) competition. Phase 1 will deliver a Feasibility Study focused on the design and analyses for the UK. Phase 2, if awarded, will design, manufacture, and operate a prototype system at TRL 6.

Note that TRL 6 is Technology Readiness Level 6 and is fully defined on this NASA web page, as having a fully functional prototype or representational model.

There is also an interesting link to the ScotWind N3 wind farm. that I wrote about in ScotWind N3 Offshore Wind Farm.

  • This is an unusual floating wind farm with a floating substation.
  • Technip and Loch Kishorn port are involved in both the wind farm and STORE.
  • Loch Kishorn has a history of building immense concrete structures.

I wouldn’t be surprised if this wind farm would be the location of the prototype system.

Conclusion

This is a brilliant concept.

  • It is the ideal energy storage system for offshore wind, as it can turn a wind farm with a variable output into one with a much more constant output.
  • It can be retrofitted to existing offshore wind farms.
  • It will work with both fixed and floating wind farms.
  • The concrete storage spheres can be fully assembled with all their electrical gubbins on shore and towed out, before sinking in the required position.

It also looks like the Department for Business, Energy & Industrial Strategy have got involved and helped with the funding. Someone there seems to know a good idea, when they see it!

 

September 21, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , | Leave a comment

Pumped Storage Development In Scotland

The title of this post, is the same as that of this article on International Water Power & Dam Construction.

It describes and gives the current status of the two large pumped storage hydroelectric schemes under development in Scotland.

The 1.5 GW/30 GWh scheme at Coire Glass, that is promoted by SSE.

The  Cruachan 2 scheme, that is promoted by Drax, that will upgrade Cruachan power station to 1.04 GW/7.2 GWh.

Note.

  1. Construction of both schemes could start in 2024, with completion in 2030.
  2. Both, SSE and Drax talk of a substantial uplift in employment during the construction.
  3. Both companies say that updated government legislation is needed for schemes like these.

The article is very much a must-read.

Conclusion

Welcome as these schemes are, given the dates talked about, it looks like we will need some other energy storage to bridge the gap until Coire Glas and Cruachan 2 are built.

Will Highview Power step forward with a fleet of their 2.5 GW/30 GWh CRYOBatteries, as was proposed by Rupert Pearce in Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It.

  • The site needed for each CRYOBattery could be smaller than a football pitch.
  • In Could A Highview Power CRYOBattery Use A LNG Tank For Liquid Air Storage?, I came to the conclusion that a single LNG tank could hold a lot of liquid air.
  • The storing and recovery of the energy uses standard turbomachinery from MAN.
  • Highview Power should unveil their first commercial system at Carrington near Manchester this year.

I am sure, that when they get their system working, they could build one in around a year.

September 3, 2022 Posted by | Energy, Energy Storage | , , , , , , , | Leave a comment

The Creation Of The Coire Glas Monster

Loch Ness is probably most famous for the mythical monster, but it is about to be joined by a man-made monster of a different kind.

To the South-West of Loch Ness lies Loch Lochy.

This Google Map shows the South-Western part of the Great Glen, which runs diagonally across the Highlands from Fort William in the South-West to Inverness in the North-East.

Note.

  1. Fort Augustus in the North-East corner of the map, is at the South-West end of Loch Ness.
  2. In the South-West corner of the map, Loch Lochy can be seen.
  3. To the North-West of Loch Lochy, there are mountains.

This second Google Map shows Loch Lochy and the mountains.

SSE plan to create a pumped storage hydroelectric power station called Coire Glas.

  • Loch Lochy will be the lower reservoir.
  • The upper reservoir will be in the mountains to the North-West of the loch.
  • Energy will be stored by pumping water from the lower to the higher reservoir.
  • The power station will be able to provide 1.5 GW of electricity.
  • The upper reservoir will be able to store enough water to generate 30 GWh of electricity.

If that isn’t a monster of a power station, I don’t know what is! It has more than three times the storage capacity of both Dinorwig or Cruachan.

This article on Utility Week, which is entitled Inside £1bn Pumped Hydro Plans To ‘More Than Double’ Britain’s Electricity Storage, gives more details.

This is the sort of heroic engineering, that will defeat Vlad the Mad and his bloodstained gas.

 

August 24, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 2 Comments

ILI Group Secures Planning Consent For 50MW Energy Storage Project

The title of this post, is the same as that of this article on Solar Power Portal.

ILI Group or Intelligent Land Investments Group to give them their full name, are a Scottish-based company, that I follow as I like their energy storage developments.

The home page of their web site, lists three main areas of activity.

The home page also has a scrolling mission statement of

  • UK Energy Security
  • 4GW of Energy Storage Projects
  • Aligned with government policy
  • Saving over 200million tonnes of CO2e
  • Over £4 billion of Investment

It is very much worth reading the section of the ILI Group web site, which talks about pumped-storage hydroelectricity.

It starts with a overview of the Pump Storage Sector.

Between 2007 and 2015, the total installed capacity of renewables electricity in Scotland has more than doubled. Due to its intermittent nature, the rise in renewable generation has resulted in increased demand for flexible capacity to help meet energy balancing requirements for the national grid system.

Pumped storage hydro is considered by the Directors to be the most developed and largest capacity form of grid energy storage that currently exists. This can help reduce renewable energy curtailment and therefore promote grid stability.

It then gives an overview of how pumped-storage hydroelectricity works and the benefits of the technology.

The section finishes by noting that the company has secured planning permission for the Red John pumped-storage hydroelectric power station.

The article on the Solar Power Portal, also has this paragraph on ILI Group’s  ambitions for pumped-storage hydroelectricity.

ILI Group is also responsible for the development of a 1.5GW pumped storage hydro project at Loch Awe. The Balliemeanoch project based at Dalmally in Argyll and Bute will be able to supply 1.5GW of power for up to 30 hours. It is the third and largest of ILI’s pumped storage hydro projects, with the other two being Red John at Loch Ness and Corrievarkie at Loch Ericht.

Note these points about the Balliemeanoch project.

  1. It has a storage capacity of 45 GWh, which is around the total amount of electricity, the whole of the UK would use in two hours.
  2. It couldn’t power the UK, as it has an output of only 1.5 GW and the UK needs at least 23 GW.
  3. The largest pumped storage hydroelectric power station in the UK is Dinorwig power station, which has an output of 1.8 GW and a storage capacity of 9.1 GWh.

In terms of storage capacity, the Balliemeanoch project will probably be the largest in the UK.

The section of the ILI Group web site, that talks about battery storage, opens with an overview of battery storage opportunities, where this is said.

Battery storage projects provide an enticing new opportunity for landowners and investors alike. As a market that will see significant growth over the coming years (National Grid predict up to 40GW of storage could be required by 2050) we see exciting new opportunities in a sector that will be critical to meeting our climate change needs.

Whereas our pumped storage hydro projects will provide long-term storage capacity, our batteries will provide short-term services (less than 4 hours) to the electricity system. As the system decarbonises, becoming steadily more reliant on intermittent green renewable generation, storage will play a role of increasing importance in balancing the grid and ensuring security of supply.

Note.

  1. This is a sales pitch to landowners and investors.
  2. National Grid’s prediction of 40GW of storage  by 2050, could be able to store as much as 1200 GWh of electricity.
  3. I agree with their statement that there will be a need for both pumped storage hydro and batteries.

The section finishes with a status summary of 21 battery projects that they are developing.

Conclusion

I feel that ILI Group is a company that means business and knows where it’s going.

The UK probably needs several more companies like the ILI Group.

August 21, 2022 Posted by | Energy, Energy Storage | , , , , | Leave a comment

Can Highview Power’s CRYOBattery Compete With Pumped Storage Hydroelectricity?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest pumped storage hydroelectric power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

Pumped storage hydroelectric power stations are the gold standard of energy storage.

In the UK we have four pumped storage hydroelectric power stations.

With two more under construction.

As energy is agnostic, 30 GWh of pumped storage hydroelectric power at Coire Glas is the equivalent of 30 GWh in Highview Power’s proposed Humberside CRYOBattery.

Advantages Of CRYOBatteries Over Pumped Storage Hydroelectric Power

I can think of these advantages.

  • Cost
  • Could be build on the flat lands of East Anglia or Lincolnshire
  • Factory-built
  • NIMBYs won’t have much to argue about
  • No dams
  • No flooding of valleys
  • No massive construction sites.
  • No mountains required
  • No tunnels
  • Small footprint

I suspect that a large CRYOBattery could be built well within a year of starting construction.

Rupert Pearce’s Dream

The Telegraph article says this and I suspect it’s a quote from Rupert Pearce.

Further projects will be built at a breakneck speed of two to three a year during the 2020s, with a target of 20 sites able to provide almost 6GW of back-up electricity for four days at a time, or whatever time/power mix is optimal.

6 GW for four days is 576 GWh, which if it were spread around twenty sites is 28.8 GWh per site, which is just under the 30 GWh of the proposed Humberside CRYOBattery.

Conclusion

You can just imagine the headlines in The Sun!

Man In Bishop’s Stortford Shed Saves The World!

This story on the BBC, which is entitled Meet The British Inventor Who Came Up With A Green Way Of Generating Electricity From Air – In His Shed, explains my suggested headline.

Now that’s what I call success!

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 4 Comments

How Will Highview Power Affect The Lithium-Ion Grid Battery Market?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest battery is at Ouarzazate Solar Power Station in Morocco and it is 3 GWh.
  • The world’s largest pumped storage power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

The proposed Humberside battery also has a smaller sibling under construction at Carrington in Manchester.

This will have a storage capacity of 250 MWh and a maximum output of 50 MW.

Factors Affecting The Choice

Several factors will affect the choice between lithium-ion batteries and Highview Power’s CRYOBattery.

Reliability

Reliability is paramount and whilst lithium-ion batteries batteries have a high level of reliability, there probably needs to be more development and quality assurance before CRYOBatteries have a similar level of reliability.

Size

The largest lithium-ion battery, that has been proposed in the UK, is the 320 MW/640 MWh battery that will be installed at the Gateway Energy Centre in Essex.

This size of CRYOBattery should be possible, but this size is probably in range of both lithium-ion and CRYOBatteries.

Safety

The Wikipedia entry for Battery Storage Power Station has this to say about Safety.

Some batteries operating at high temperatures (sodium–sulfur battery) or using corrosive components are subject to calendar ageing, or failure even if not used. Other technologies suffer from cycle ageing, or deterioration caused by charge-discharge cycles. This deterioration is generally higher at high charging rates. These two types of ageing cause a loss of performance (capacity or voltage decrease), overheating, and may eventually lead to critical failure (electrolyte leaks, fire, explosion).

An example of the latter was a Tesla Megapack in Geelong which caught fire, fire and subsequent explosion of battery farm in Arizona, fire of Moss Landing battery farm. Concerns about possible fire and explosion of a battery module were also raised during residential protests against Cleve Hill solar farm in United Kingdom. Battery fire in Illinois resulted in “thousands of residents” being evacuated, and there were 23 battery farm fires in South Korea over the period of two years. Battery fires may release a number of dangerous gases, including highly corrosive and toxic hydrogen fluoride.

The long term safety of a CRYOBattery is probably not yet known in detail, but I suspect in some applications, CRYOBatteries could be safer than chemical batteries.

Environmental Factors

I suspect that CRYOBatteries can be built without any hard-to-mine or environmentally-unfriendly materials like lithium.

Cost

The article in The Telegraph, says this about costs.

Mr Pearce said Highview’s levelised cost of energy (LCOE) would start at $140-$150, below lithium, and then slide on a “glide path” to $100 with over time.

It does look that the all important factor of cost could be the clincher in the choice between the two systems.

For larger batteries, the CRYOBattery will probably have a larger advantage.

Conclusion

I can see Highview Power and their CRYOBatteries putting up a good fight against lithium-ion batteries, especially with larger batteries, where they have a larger cost advantage.

In the UK, we will know they have won an advantage, if the two big battery-storage funds; Gore Street and Gresham House, start to install CRYOBatteries.

 

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | Leave a comment

Cost Of Turning Off UK Wind Farms Reached Record High In 2021

The title of this post, is the same as that of this press release from Drax.

This is the first paragraph.

The cost of turning off wind farms in the UK has reached record levels, according to a new report.

The press release makes these points.

  • Investing in more long duration electricity storage, such as expanding Drax’s Cruachan pumped storage hydro plant in Scotland, would mean more excess renewable power could be stored and made available when required, cutting costs and carbon emissions.
  • The cost of turning off UK wind farms to manage the electricity system rose from almost £300m during 2020 to over £500m in 2021, contributing to higher energy bills and carbon emissions, according to a new report.
  • Costs increased substantially because the system relied on expensive gas power to manage periods when wind power was curtailed, as not enough electricity storage was available to prevent the excess renewable power from wind farms going to waste.

Drax give these reasons for the problems.

This happened as a result of constraints in the transmission system and a lack of long-duration storage capacity, which is needed to manage periods when renewable power generation outstrips demand.

The problem is going to get worse as we increase the amount of wind power in the UK.

Penny Small, Drax’s Group Generation Director sums everything up.

This report underlines the need for a new regulatory framework to encourage private investment in long-duration storage technologies.

The UK is a world-leader in offshore wind, but for the country’s green energy ambitions to be realised we need the right energy storage infrastructure to support this vital technology, make the system secure and reduce costs.

Drax’s plan to expand Cruachan will strengthen UK energy security, by enabling more homegrown renewable electricity to power British homes and businesses, reducing system costs and cutting carbon emissions.

A good framework has been created for wind farms and many more are being proposed and developed.

Frameworks are needed for both transmission systems and long-duration energy storage capacity.

June 21, 2022 Posted by | Energy, Energy Storage | , , , , | 1 Comment

Will Coire Glas Start A Pumped Storage Boom In Scotland?

This article on Renewables Now is entitled SSE Gets Tenders For Construction Of 1.5-GW Pumped Hydro Scheme.

This is the first paragraph.

SSE Renewables said on Wednesday it has received tenders for the main construction works for the Coire Glas hydro pumped storage project with a capacity of up to 1.5 GW in the Scottish Highlands.

It then lists, the companies who have tendered for the project.

SE Renewables said the ITT has drawn global interest. The tenderers shortlisted for mechanical and electrical plant scope are a partnership between ANDRITZ HYDRO GmbH and Voith Hydro GmbH & Co KG, and GE Hydro France. The parties shortlisted for the civil engineering scope include three consortia and STRABAG UK Ltd. The consortia are made up of Bechtel Ltd, Acciona Construccion SA and Webuild SpA; BAM Nuttall Ltd, Eiffage Genie Civil SA and Marti Tunnel AG; and Dragados SA and BeMo Tunnelling UK Ltd.

It is an impressive list.

The article says that construction is to start in 2024. Other sources say the pumped storage project will have a storage capacity of 30 GWh, which will make it the largest pumped storage plant in the UK.

This press release from SSE Renewables is entitled Tenders Submitted For The Coire Glas Pumped Storage Scheme.

The press release contains this quote from the Project Director for Coire Glas; Ian Innes.

Receiving the tenders on schedule from the six short-listed tenderers is another significant milestone for the Coire Glas project and we are grateful for their continued interest in the project.

We are encouraged by the content of the tenders which now provides the Coire Glas project team with several options on how construction of the project could be undertaken. It is going to take some time to carefully consider and scrutinise the tenders thoroughly and we look forward to working with the tenderers as we endeavour to make our selection decision.

It appears that not only were the tenders received from quality companies, but that they contained options and ideas that could improve the project.

Coire Glas would appear to me to be a project, that is attracting the best companies and they could be putting their best workers on the project.

These are my thoughts.

The Potential For Pumped Storage Schemes In Scotland

There are at least five schemes under development or proposed in Scotland.

This page on the Strathclyde University web site, gives these figures for the possible amounts of pumped-storage that can be added to existing hydro schemes.

  • Errochty – 16
  • Glasgarnock – 23
  • Luichart – 38
  • Clunie – 40
  • Fannich – 70
  • Rannoch – 41
  • Fasnakyle – 78
  • Tummel – 38
  • Ben Lawers – 12
  • Nant – 48
  • Invermoriston – 22
  • Invergarry – 41
  • Quoich – 27
  • Sloy – 20

That is a total of 514 GWh or 620.3 GWh if you include the new storage, I listed above.

Scotland would appear to be land overflowing with large pumped storage possibilities and could provide the modern equivalent of milk and honey.

The Potential For Offshore Wind Power Schemes In Scotland

This is the first two paragraphs of this press release on the Crown Estate Scotland web site.

Crown Estate Scotland has today announced the outcome of its application process for ScotWind Leasing, the first Scottish offshore wind leasing round in over a decade and the first ever since the management of offshore wind rights were devolved to Scotland.

The results coming just months after Glasgow hosted the global COP26 climate conference show the huge opportunity that Scotland has to transform its energy market and move towards a net zero economy.

Some highlights are then listed.

  • 17 projects have been selected out of a total of 74 applications.
  • A total of just under £700m will be paid by the successful applicants in option fees and passed to the Scottish Government for public spending.
  • The area of seabed covered by the 17 projects is just over 7,000km2.
  • Initial indications suggest a multi-billion pound supply chain investment in Scotland
  • The potential power generated will move Scotland towards net-zero.

This map shows the location of each wind farm.

Note, that the numbers are Scotwind’s lease number in their documents.

Fixed Foundation Wind Farms

These are the six fixed foundation wind farms.

  • 1 – BP Alternative Energy Investments – 859 km² – 2.9 GW
  • 6 – DEME – 187 km² – 1.0 GW
  • 9 – Ocean Winds – 429 km² – 1.0 GW
  • 13 – Offshore Wind Power – 657 km² – 2.0 GW
  • 16 – Northland Power – 161 km² – 0.8 GW
  • 17 – Scottish Power Renewables – 754 km² – 2.0 GW

Adding up these fixed foundation wind farms gives a capacity of 9.7 GW in 3042 km² or about 3.2 MW per km².

Floating Wind Farms

These are the ten floating wind farms.

  • 2- SSE Renewables – 859 km² – 2.6 GW
  • 3 – Falck Renewables Wind – 280 km² – 1.2 GW
  • 4 – Shell – 860 km² – 2.0 GW
  • 5 – Vattenfall – 200 km² – 0.8 GW
  • 7 – DEME Concessions Wind – 200 km² – 1.0 GW
  • 8 – Falck Renewables Wind – 256 km² – 1.0 GW
  • 10 – Falck Renewables Wind – 134 km² – 0.5 GW
  • 11 – Scottish Power Renewables – 684 km² – 3.0 GW
  • 12 – BayWa r.e. UK  – 330 km² – 1.0 GW
  • 14 – Northland Power – 390 km² – 1.5 GW

Adding up the floating wind farms gives a capacity of 14.6 GW in 4193 km² or about 3.5 MW per km².

Mixed Wind Farms

This is the single wind farm, that has mixed foundations.

15 – Magnora – 103 km² – 0.5 GW

This wind farm appears to be using floating wind turbines.

These wind farms total up to 24.8 GW

I would expect that this is only a phase in the development of Scottish wind power, which will grow substantially over the next decade.

As I write this the UK is generating a total of 26.2 GW of electricity.

Backing Up The Wind Power

This wind power, which could grow up to well over 50 GW in Scotland alone.

But what do you do, when there is no wind?

Energy will need to come from batteries, which in Scotland’s case could be over 500 GWh of pumped storage.

Europe’s Powerhouse

It is not an unreasonable prediction, that we will continue to expand our wind farms to supply Europe with thousands of GWh of electricity and/or millions of tonnes of green hydrogen.

Conclusion

It is likely that we’ll see an upward increase of wind power in Scotland closely matched by a similar increase in pumped storage.

It is no wonder that the world’s largest and most experienced contractors were so keen to get the first big contract in Scotland’s new pumped storage boom.

They know a good thing, when they see it and after their experience with the Scotland’s oil boom in the last century, I doubt they are delaying their return.

 

 

June 3, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , | Leave a comment

Drax Submits Application To Expand Iconic ‘Hollow Mountain’ Power Station

The title of this post, is the same as that of this press release from Drax.

The project is called Cruachan 2 and is described on this web site.

This is the introduction to the project.

We have kickstarted the planning process to build a new underground pumped hydro storage power station – more than doubling the electricity generating capacity at Cruachan.

The 600 megawatt (MW) power station will be located inside Ben Cruachan – Argyll’s highest mountain – and increase the site’s total capacity to 1 gigawatt (GW).

The new power station would be built within a new, hollowed-out cavern which would be large enough to fit Big Ben on its side, to the east of Drax’s existing 440MW pumped storage hydro station. More than a million tonnes of rock would be excavated to create the cavern and other parts of the power station. The existing upper reservoir, which can hold 2.4 billion gallons of water, has the capacity to serve both power stations.

Note.

  1. The generation capacity will be increased from 440 MW to 1040 MW, which is an increase of 36 %.
  2. Cruachan has a storage capacity of 7.1 GWh, which will not be increased.
  3. Cruachan opened in October 1965, so the generating equipment is nearly sixty years old.

I will assume that Drax and its various previous owners have kept the turbines, generators, dam and associated pipework in good condition, but as an Electrical Engineer, I do believe that the modern equipment, that will be used in Cruachan 2 will offer advantages.

  • One of these advantages could be the ability to ramp up power faster, than the original equipment.
  • I also suspect, it will have a sophisticated computer control system, that will allow the output of the power station to be precisely controlled.

These two features should mean that when a spike in power demand happens, that the combined Cruachan will step up to the plate.

So all those watching the Celtic and Rangers match on television, will still get their half-time cuppa.

I suspect that the combined Cruachan will be a power regulator of the highest quality.

Will The Storage Capacity Of Drax Be Increased?

Drax don’t appear to have any plans for increasing the size of the upper reservoir and I suspect that geography can’t deliver an affordable solution.

But.

  • Loch Awe is an excellent lower reservoir for a pumped storage system.
  • The building of Cruachan 2 may create substantial employment and economic benefits in the area.
  • Cruachan 2 is not the only pumped storage scheme under development in the area.
  • The UK needs as much pumped energy storage as can be created.

I wouldn’t be surprised to see, further development of Cruachan, if Cruachan 2 is an overwhelming success.

It’ll all be down to the geography and the economics.

 

May 17, 2022 Posted by | Energy, Energy Storage | , , | 1 Comment

Wind And Solar Boom Will Bring Energy Surplus

The title of this post, is the same as that of this article on The Times.

Under the picture, is this sub-title.

The government has set a target of 50 gigawatts of offshore wind farms by 2030, up from about 10 gigawatts at present.

According to this Wikipedia list of offshore wind farms, the UK currently has 2180 offshore turbines with a capacity of 8113 MW.

These wind farms appear to be planned.

Hornsea

The Hornsea wind farm is currently supplying 1.2 GW to the grid, but it is planned to be expanded to 6 GW, which is another 4.8 GW.

East Anglia Array

The East Anglia Array is currently supplying 0.7 GW to the grid, but it is planned to be expanded to 7.2 GW, which is another 6.5 GW.

Sofia

The Sofia wind farm will supply 1.4 GW from 2026.

Moray East

The Moray East wind farm will supply 0.95 GW from 2022.

Neart Na Gaoithe

The Neart Na Gaoithe wind farm will supply 0.45 GW from 2023.

Triton Knoll

The Triton Knoll wind farm will supply 0.86 GW from 2022.

Seagreen

The Seagreen wind farm will supply 1.1 GW from 2023.

Dogger Bank

The Dogger Bank wind farm will supply 3.6 GW from 2025.

Moray West

The Moray West wind farm will supply 1.2 GW from 2025.

Rampion 2

The Rampion 2 wind farm will supply 1.2 GW before 2030.

Norfolk Boreas

The Norfolk Boreas wind farm will supply 1.8 GW before 2030

Norfolk Vanguard

The Norfolk Vanguard wind farm will supply 1.8 GW before 2030

These wind farms total up to 31.1 GW

Morgan And Mona

The Morgan and Mona wind farms will supply 3 GW from 2028.

ScotWind

This map shows the wind farms in the latest round of leasing in Scotland.

These wind farms should be providing 24.8 GW by 2030.

Celtic Sea

In Two More Floating Wind Projects In The Celtic Sea, I give details of six wind farms to be developed in the Celtic Sea, that will produce a total of 1.2 GW.

All should be delivered by 2030.

Northern Horizons

In Is This The World’s Most Ambitious Green Energy Solution?, I talk about Northern Horizons, which will produce 10 GW of wind energy from 2030.

An Armada Of Wind Farms

As many of these wind farms will be floating and wind-powered, the collective noun must surely be an armada.

These are some figures.

  • The size is certainly spectacular at 70.1 GW.
  • As the UK electricity consumption in 2020-2021 was 265.4 TWh, the average hourly production throughout the year is 30.3 GW.
  • As I write this post, the UK is generating 30.1 GW.

As the best offshore wind farms have a capacity factor of around fifty percent, we should be able to power the UK with wind power alone.

So when The Times says this in the first two paragraphs of the article.

Britain will have excess electricity supplies for more than half of the year by 2030 as a huge expansion of wind and solar power transforms the energy system, a new analysis suggests.

Energy storage technologies, including batteries and electrolysers to make hydrogen, will need to be deployed at massive scale to prevent this surplus electricity going to waste, according to LCP, a consultancy.

The article would appear to correct.

The Need For Energy Storage

If we look at energy production at the current time, energy production is as follows.

  • Biomass – 0.5 GW
  • Gas – 17 GW
  • Nuclear – 5 GW
  • Onshore Wind – 12 GW with 20 % capacity factor – 2.4 GW
  • Offshore Wind – 8.1 GW with 30 % capacity factor – 2.4 GW
  • Interconnects – 0.4 GW
  • Others – 0.5 GW

This totals up to 28.2 GW.

In 2030, energy production could be as follows.

  • Biomass – 0.5 GW
  • Nuclear – 5 GW
  • Onshore Wind – 12 GW with 20 % capacity factor – 2.4 GW
  • Offshore Wind – 30 GW with 30 % capacity factor – 9 GW
  • Floating Offshore Wind – 40 GW with 50 % capacity factor – 20 GW
  • Others – 0.5 GW

This totals up to 37.4 GW.

So if you take a typical day, where on average throughout the day we are producing around 7 GW more of electricity than we need, we will actually produce around 7 * 24 GWh = 168 GWh of excess electricity

Whichever was you look at it, we have got to do something concrete with a large amount of electricity.

  • Store it in batteries of various types from lithium ion, through new types of batteries like those being developed by Highview Power and Gravitricity to pumped hydro storage.
  • Store the energy in the batteries of electric cars, vans, buses, trucks, trains and ships.
  • Store the energy in Norwegian pumped hydro storage.
  • Convert it to hydrogen using an electrolyser and blend the hydrogen with the natural gas supply.
  • Convert it to hydrogen using an electrolyser and use the hydrogen to make zero-carbon steel, concrete and chemicals.
  • Convert it to hydrogen using an electrolyser and develop new zero-carbon industries.
  • Convert it to hydrogen using an electrolyser and store the hydrogen in a depleted gas field.
  • Sell it to Europe, either as electricity or hydrogen.

Note.

  1. We are going to have to build a lot of batteries and I suspect they will be distributed all round the country.
  2. We are going to have to build a lot of hydrogen electrolysers.
  3. We have world class battery and electrolyser companies.

We should also fund the following.

  • Developments of technology, that makes better batteries, electrolysers, boilers and heat pumps.
  • I would also do a lot of work to increase the capacity factor of wind farms.

I also believe that if we have masses of electricity and hydrogen, we might find as a country, it’s very beneficial in terms of jobs, exports and a healthier economy to invest in certain industries.

Conclusion

The future is rosy.

 

May 7, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , | 4 Comments