The Anonymous Widower

UK Govt Awards Almost GBP 33m To Innovative Energy Storage Projects

The title of this post is the same as that of this article on Renewables Now.

This is the first paragraph.

The UK government has awarded GBP 32.9 million (USD 39.7m/EUR 38.3m) in funding to five innovative energy storage projects under the second phase of its Longer Duration Energy Storage competition.

These are the projects.

StorTera

StorTera has secured GBP 5.02 million to create a prototype demonstrator of its single liquid flow battery (SLIQ) technology.

The company’s main product is the SLIQ Flow Battery, for which it gives the headline of Reliable, Economical Energy For 20 Years.

This is a description of the technology.

The revolutionary StorTera SLIQ single liquid flow battery offers a low cost, high performance energy storage system made with durable components and supported by our flexible and adaptable inverter and control system. The StorTera SLIQ battery brings the following benefits/advantages:

  • Low levelised cost of storage and capital cost
  • Long lifetime of up to 20 years (min. 7,500 cycles)
  • Long duration energy with the energy and power capacity easily and independently scalable
  • Safe with no cooling requirements and high flash point materials
  • Fully recyclable at the end of lifetime

This is said about costs – Using low cost materials and manufacturing techniques, we predict capital costs of approximately £120/kW and £75/kWh by 2022.

I feel there could be something about this technology, but we’ll only know, when the demonstrator is fully working.

Sunamp

Sunamp will get GBP 9.25 million to test its thermal storage system in 100 homes across the UK.

On their home page, Sunamp has a banner of World Leading Thermal Technologies, with this description underneath.

Sunamp designs and manufactures space-saving thermal storage that makes UK homes, buildings and vehicles more energy-efficient and sustainable, while reducing carbon emissions and optimising renewables.

They do appear to have sold something, which is always a useful thing to do.

This page on their web site,  describes their Thermino Thermal Storage For Domestic Hot Water, where this is said.

Thousands of Sunamp thermal batteries are already in homes across the UK storing heat from low-carbon energy sources and releasing it for mains-pressure hot water when needed.

Our Thermino batteries replace traditional hot water cylinders – direct (for grid electricity and solar PV) or indirect (for boilers and heat pumps).

They are up to four times smaller than the equivalent hot water tank because they are filled with our energy-dense phase change material, Plentigrade. This means that heat pump systems can be installed where otherwise they wouldn’t fit, for example.

The key seems to be this substance called Plentigrade!

This page on their web site describes Plentigrade.

Under a heading of Storing Energy As Heat And Releasing It When, And Where, It’s Needed, this is said.

Sunamp thermal batteries are energy-saving thermal stores containing Plentigrade: our high-performance phase change materials (PCMs) that deliver heating or cooling reliably, safely and efficiently.

Plentigrade, with its perpetual phase changing ability, is at the core of our products.

Our breakthrough technology was created in collaboration with the University of Edinburgh, ranked among the top 20 universities in the world, and the UK’s national synchrotron particle accelerator, Diamond Light Source. To find out more about the chemistry behind Plentigrade, read our blog.

Note.

  1. This product almost looks to be too good to be true.
  2. But I’ve checked and it doesn’t seem to have appeared on Watchdog.
  3. It’s yet another breakthrough, that has used the Diamond Light Source.
  4. How many other developments would happen with a Diamond 2 in the North, as I wrote about in Blackpool Needs A Diamond?

I have a feeling, that my house needs one of Sunamp’s thermal batteries.

University of Sheffield

The article says this about a grant to the University of Sheffield.

The University of Sheffield has been awarded GBP 2.6 million to develop a prototype modular thermal energy storage system designed to provide optimised, flexible storage of heat within homes.

There are several thermal batteries around for houses.

RheEnergise

The article says this about a grant to RheEnergise.

With a GBP-8.24-million grant, RheEnergise Ltd will build a demonstrator of its High-Density Hydro pumped energy storage system near Plymouth. The technology uses a fluid denser than water to generate electricity from gentle slopes.

I wrote about this in Plan For £8.25m Plymouth Energy Plant To Generate Power From Cream-Like Fluid.

EDF UK R&D

The article says this about a grant to EDF UK R&D.

The government is also backing with GBP 7.73 million an initiative of EDF UK R&D and its partners, the University of Bristol, Urenco and the UK Atomic Energy Authority (UKAEA), to develop a hydrogen storage demonstrator using depleted uranium at UKAEA’s Culham Science Centre in Abingdon, Oxfordshire.

I wrote about this in Innovative Hydrogen Energy Storage Project Secures Over £7 million In Funding.

Conclusion

They are a mixed bunch of ideas from around the UK, that I think will produce at least two good winners.

 

December 2, 2022 Posted by | Energy Storage, Hydrogen | , , , , , , , , , , , | 6 Comments

Plan For £8.25m Plymouth Energy Plant To Generate Power From Cream-Like Fluid

The title of this post, is the same as that of this article on PlymouthLive.

These two paragraphs outline the project.

Plymouth’s Hemerdon tungsten mine has been chosen as the site of a pioneering £8.25m hydro energy plant which would see a cream-like fluid used to generate electricity. London-based renewable energy company RheEnergise wants to start construction of the High-Density Hydro storage system at the Plympton site as early as summer 2023.

The company has already spoken to the parish council and is to submit plans to Devon County Council soon. It hopes permission will be given and the site will be in operation by the end of 2023 and then trialled for two years before the technology is rolled out nationally and worldwide.

Note.

  1. RheEnergise has a web page, which describes how their High-Density Hydro storage system works.
  2. The system is sized at 250kW/1MWh and is described in the article as a demonstrator plant.
  3. In the future, rojects will range from 5MW to 100MW of power and can work with vertical elevations as low as 100m or less.

This sentence from the article lays out the potential of the system.

RheEnergise’s analysis of potential project opportunities has indicated there are about 6,500 possible sites in the UK, about 115,000 in Europe, about 345,000 in North America and about 500,000 in Africa and the Middle East.

This method of storing energy could be very useful.

Where Is Hemerdon Tungsten Mine?

This is a Google Map of the Plymouth area.

The red arrow indicates the Hemerdon Tungsten Mine, which has a Wikipedia entry as Drakelands Mine, where this is said about the last three years.

Tungsten West plc, which floated on the London Stock Exchange’s Alternative Investment Market on 21 October 2021,[49] have taken over the mine. They have conducted a review starting from the basics, of what is required to fix the problems that caused Wolf Minerals to fail. A better understanding of the mineralogy, with associated changes to the processing stream, and aggregate sales should lead to the mine re-opening at scale in 2022.

Tungsten West’s share price has had an up-and-down day. But are they adding energy storage to their income streams?

From the map, it does seem to be a possibility.

 

November 29, 2022 Posted by | Energy Storage, Energy | , , , | 1 Comment

Consortium Plan To Build & Operate Scotland’s First Low Carbon, Energy Efficient, Soil-Free Vertical Farms In The Central Belt

The title of this post, is the same as that of this press release from RheEnergise.

These four paragraphs introduce the project.

A consortium of four British companies have earmarked a series of sites between Dumbarton and Dundee for the locations of Scotland’s next generation of hectare+ scale vertical farms, powered by 100% Scottish renewables. These farms would provide locally produced fresh foods (salads and fruits) to over 60% of the Scottish population.

The vertical farms will help meet the Scottish Government’s ambitions to produce more homegrown fruit and vegetables. Each vertical farm would be powered by locally produced renewable energy.

Next generation vertical farms use advanced soil-free growing techniques and stack crops in specially designed beds and trays. They minimise water, fertiliser and pesticide use which is highly beneficial to the environment and make use of artificial lighting and climate control to get the desired results.

The V-FAST consortium comprises UK Urban AgriTech (UKUAT), Vertegrow Ltd, Light Science Technologies Ltd and RheEnergise Limited, the UK energy storage company.

The press release is certainly worth a detailed read.

April 24, 2022 Posted by | Energy, Energy Storage, Food | , , , | Leave a comment

An Interview With Stephen Crosher, CEO Of RheEnergise

The title of this post, is the same as that of this article on UK Investor.

As the title says, Stephen Crosher is the CEO of RheEnergise, who are an innovative energy storage company.

The article is very much a must-read and an interesting insight into RheEnergise.

April 24, 2022 Posted by | Energy, Energy Storage, Finance | | Leave a comment

Up To 24GW Of Long Duration Storage Needed For 2035 Net Zero Electricity System – Aurora

The title of this post, is the same as that of this article on Current News.

This the first three paragraphs.

Deploying large quantities of long duration electricity storage (LDES) could reduce system costs and reliance on gas, but greater policy support is needed to enable this, Aurora Energy Research has found.

In a new report, Aurora detailed how up to 24GW of LDES – defined as that with a duration of four hours or above – could be needed to effectively manage the intermittency of renewable generation in line with goals of operating a net zero electricity system by 2035. This is equivalent to eight times the current installed capacity.

Additionally, introducing large quantities of LDES in the UK could reduce system costs by £1.13 billion a year in 2035, cutting household bills by £26 – a hot topic with energy bills on the rise as a result of high wholesale power prices.

The report also says that long duration storage could cut carbon emissions by ten million tonnes of carbon dioxide per year.

I feel strongly, that this is a target we will achieve, given that there are at least four schemes under development or proposed in Scotland.

It certainly looks like the Scots will be OK, especially as there are other sites that could be developed according to SSE and Strathclyde University.

We probably need more interconnectors as I wrote about in New Electricity ‘Superhighways’ Needed To Cope With Surge In Wind Power.

There are also smaller long duration storage systems under development, that will help the situation in the generally flatter lands of England.

One of them; ReEnergise, even managed to sneak their advert into the article.

Their high density hydro could be a good way to store 100 MWh or so in the hills of England. As they could be designed to fit into and under the landscape, I doubt their schemes would cause the controversy of other schemes.

Conclusion

I think we’ll meet the energy storage target by a wide margin.

February 18, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , | 1 Comment

Energy Storage Could Emerge As The Hottest Market Of 2022

The title of this post, is the same as that as this article on Nasdaq.

This is the introductory paragraph.

A few years ago, battery energy storage began drawing attention as what one industry executive at the time called the Holy Grail of renewable energy. In the years since, EVs have stolen the spotlight but now battery storage is back, larger than life and, quite likely, twice as expensive.

I would wholeheartedly agree.

Although, I do think, that some of the major players over the next few years will not be based on lithium-ion batteries.

I have invested in Gravitricity and Rheenergise and would have invested in Highview Power, if I had had the chance.

My stockbroker has also invested some of my pension in energy storage and battery funds.

January 20, 2022 Posted by | Energy, Energy Storage, Finance | , , , | Leave a comment

SSE Goes Global To Reap The Wind

The title of this article on This Is Money is Renewable Energy Giant SSE Launches Plan To Become Britain’s First Global Windfarm Business As it Invests Up To £15bn Over Next Decade.

The title is a good summary of their plans to build wind farms in Continental Europe, Denmark, Japan and the US, in addition to the UK and Ireland.

I can also see the company developing more integrated energy clusters using the following technologies.

  • Wind farms that generate hydrogen rather than electricity using integrated electrolysers and wind turbines, developed by companies like ITM Power and Ørsted.
  • Reusing of worked out gasfields and redundant gas pipelines.
  • Zero-carbon CCGT power stations running on Hydrogen.
  • Lots of Energy storage.

I talked about this type of integration in Batteries Could Save £195m Annually By Providing Reserve Finds National Grid ESO Trial.

In the related post, I talked about the Keadby cluster of gas-fired power stations, which are in large part owned by SSE.

Conclusion

I think that SSE could be going the way of Equinor and Ørsted and becoming a global energy company.

It is also interesting the BP and Shell are investing in renewable energy to match the two Scandinavian companies.

Big Oil seems to be transforming itself into Big Wind.

All these companies seem to lack grid-scale energy storage, although hydrogen can be generated and stored in worked-out gas fields.

So I would expect that some of the up-and-coming energy storage companies like Gravitricity, Highview Power and RheEnergise could soon have connections with some of these Big Wind companies.

 

 

February 14, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , | Leave a comment

Crown Estate’s Auction Of Seabed For Wind Farms Attracts Sky-High Bids

The title of this post, is the same as that of this article on The Times.

This is the opening paragraph.

An auction of seabed rights to build offshore wind farms around England and Wales has attracted frenzied bidding that could be worth hundreds of millions of pounds a year to the Treasury and the Queen.

I don’t find this surprising.

Bigger Seems Better Offshore

Wind turbine technology is getting better and much larger. It also seems that the new larger floating turbines are much more efficient and generate power for a greater proportion of the day.

My project management software helped to harvest North Sea Oil and I have been told by many in the industry, that North Sea Oil really took off when platforms and the equipment like cranes used to build them got truly enormous.

I feel, we could be seeing the same size effect happening as we harvest the wind!

Hydrogen And Wind Power

The latest development is not to generate electricity, but to use it in the turbine to generate hydrogen, which is then piped to the shore.

  • The UK Government is funding this technology in part with a grant to ITM Power.
  • I wrote about the technology in ITM Power and Ørsted: Wind Turbine Electrolyser Integration.
  • Existing gas networks can be reconfigured to bring the hydrogen to the shore.
  • Piping hydrogen costs less than cabling electricity.
  • Hydrogen networks are being built at several places in the UK, to fuel homes, power stations and industry like steel-making and petrochemicals.

Could all this explain Big Oil’s involvement?

Do they want to exchange fossil fuels for green hydrogen?

They certainly know how to distribute it.

Energy Storage

For my own investments, I’m looking at energy storage, where the UK has at least three promising new ideas, all of whom have had Government grants.

  • Gravitricity
  • Highview Power
  • ReEnergise

The Government has also indirectly-backed Cornish Lithium

 

February 6, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , | 5 Comments

Spot The Battery

RheEnergise have just released this picture, of one of how one of their pumped storage systems might look.

They describe it as a typical small site after landscaping.

This is their description of the image.

This is an image of a small water works in Fife Scotland, you can just see 2 small water tanks at the base of the hill. This is an example of what a small High-Density Hydro project could look like after landscaping.

How many times have you seen a scene like this in the UK, Europe and all over the world.

They didn’t disclose the storage capacity of this system.

February 2, 2021 Posted by | Energy, Energy Storage | , | Leave a comment

Holy Grail Of Energy Storage Receives Two Grants

The title of this post, is the same as that of this article on Off Grid Energy Independence.

This is the introductory paragraph.

RheEnergise is one of only a select handful of businesses to have been awarded grants under both the Sustainable Innovation Fund & the Small Business Research Initiative.

So what have RheEnergise developed?

The home page of their web site, is surprisingly detailed, unlike those of some other companies with new ideas, and not just energy storage companies!

This is the first paragraph on their home page.

RheEnergise is bringing innovation to pumped hydro storage. We call our new solution High-Density Hydro ™.

I think that is a good start, as although pumped hydro storage is well proven and the UK has the 1,728 MW Dinorwig Power Station, which has a storage capacity of 9.1 GWh, building new large pumped storage systems is fraught with difficulties and the technology has seen only modest innovation in the last few decades.

The next paragraph on their home page describes their innovation.

HD Hydro ™ uses our proprietary HD Fluid R-19 ™, which has 2.5x the density of water. R-19 gives RheEnergise projects 2.5x the power and 2.5x the energy when compared to water.

This means that for the same size of pumped hydro storage power station, you get 2.5 times the amount of energy storage.

Alongside a diagram of the system, the advantages of their systems is stated.

Projects can be installed on hills 2.5x lower than a project using water and still achieve the same power – for example, there are so many more hills at 150m than at 375m.

2.5x smaller, by volume, meaning dramatically lower construction costs, faster build times, easier reinstatement and easier landscaping – projects can be entirely hidden.

A very simple innovation has greatly increased the possibilities of pumped hydro storage.

The home page also gives a typical capacity.

RheEnergise projects provide 10MW to 50MW power and 2 to 10 hours of storage capacity.

These systems are in the same range as those of Highview Power, who are building a 50 MW system, with a five hour capacity at Carrington near Manchester, that I wrote about in Highview Power Breaks Ground on 250MWh CRYOBattery Long Duration Energy Storage Facility.

Both have the advantage, that they are easily scalable.

With RheEnergise’s HD Hydro ™, the size of the upper reservoir would need to be increased and with Highview Power’s CRYOBattery, more tanks for the liquid air would need to be added.

The Technology

I certainly agree with the principle behind ReEnergise, both mathematically and practically.

My interest scientifically, is what is the fluid they use?

  • Pure water has a specific gravity of one and everything else is measured with respect to this.
  • So aluminium, which has a specific gravity of 2.7, is 2.7 times as heavy as water.
  • Many of us will be familiar with mercury, which is a metal, that is liquid at room temperature.
  • Mercury has a specific gravity of 13.56.

It puzzles me, how someone has created a liquid, almost as heavy as aluminium, that can be pumped and handled like water, as it would need to be, to make a pumped storage system work.

 

 

November 12, 2020 Posted by | Energy, Energy Storage | , , , | Leave a comment