The Anonymous Widower

Vivarail’s Plans For Zero-Emission Trains

The title of this post is the same as that of this article on the Modern Railways web site.

This is the introductory subtitle.

Vivarail Chairman Adrian Shooter talks to Modern Railways about the company’s Class 230s and its plans for battery trains.

The article is mainly a video of Mr. Shooter talking in front of various examples of Vivarail trains.

It’s probably easier to watch the video and listen on what is said.

But I have some thoughts on what he said.

Battery Range

Consider.

  • Early on in the video he talks about a battery range of forty miles with four battery packs on the train.
  • He also talks about switching battery supplier to Hoppecke.
  • Later he says that a train with six battery packs in the train, has a hundred mile range.

That is impressive.

The number of battery packs has increased by 50 % and the range has gone up by two-and-a-half times.

If those figures are right and I’ve no reason to disbelieve them, then Hoppecke have done a good job with the batteries.

A very rough calculation indicates their size.

  • The current 4 x 100 kWh takes the train 40 miles, which is 10 kWh per mile.
  • So to travel a hundred miles will need 1000 kWh.
  • Divide by six batteries and you get 167 kWh per battery or a 67 % increase in individual battery capacity.

If these are a new generation of batteries, what would they do for Hitachi’s Regional Battery train, which is proposed to have a range of 56 miles? They could give it a range of around 93 miles.

These ranges of distances would be very useful to manufacturers of battery trains.

Charging Battery Trains Using Vivarail’s Fast Charge System

The video did give a few more details of Vivarail’s Fast Charge system.

I was also able to take this screen capture from the video, which shows the extra rails used to pass charge to the train and the batteries.

Note.

  • The rails are well-shielded. Not that they’re live unless a train is over the top and connected.
  • The driver  just has to stop the train in the correct place and automation does the rest.
  • This image is four minutes and thirty-five seconds into the video.

My only problem with the design is that those thick copper cables used to bring electricity to the train, way be a tempting target for metal thieves.

Vivarail Now Has Permission To Charge Any Train

Mr. Shooter said this about Vivarail’s Fast Charge system.

The system has now been given preliminary approval to be installed as the UK’s standard charging system for any make of train.

I may have got the word’s slightly wrong, but I believe the overall message is correct.

A Prototype Class 230 Train That Can Use 25 KVAC Is Under Construction

Mr. Shooter also announced that a version of the train with a third can in the middle, with a pantograph on the roof and a 35 KVAC transformer is under construction.

This will enable batteries to be charged from existing electrification.

I can already think of a few routes, where this train could be used.

  • Bedford and Bletchley – It would replace a diesel-electric Class 230 train.
  • Poulton-le-Fylde and Fleetwood
  • Oxenholme and Windermere
  • Glasgow Central and East Kilbride
  • Glasgow Queen Street and Anniesland
  • Chester and Crewe – It would replace a battery Class 230 train
  • West Ealing and Greenford
  • Slough and Windsor Central
  • Henley and Twyford
  • Maidenhead and Marlow

This could be the standard train in many places.

Pop-Up Metro

Mr. Shooter shows a battery train, which is going to the United States to trial a concept called a Pop-up Metro.

  • In the US, there are hundreds of lightly used freight lines serving towns and cities
  • Temporal separation would mean that freight and passenger trains used the lines at different times of the day.
  • Battery powered Vivarail trains could provide a Metro service.

He also talked about his US partner and 50 % shareholder in Vivarail, leasing trains for a year, to see if the concept was viable in a given area. He indicated, the cost could be less than a consultant’s report.

Could the Pop-up Metro concept work in the UK?

In these possible Beeching Reversal projects, there could be scope for using the concept.

Note.

  1. Some of these are on heritage railway infrastructure. Does a Class 230 train count a heritage unit?
  2. The Aston Rowant Extension is Chiltern territory, so Mr. Shooter could know it well!
  3. In the Wikipedia entry for the Class 230 train, there is a useful Cost Comparison.

I should say, that I like the concept of a Pop-up Metro.

  • The trains have proved they are up to the job.
  • A package of one or two trains and a containerised charging system could surely be created.
  • Installation of the battery charger in many platforms would not be a major engineering project costing millions.
  • On a heritage railway, the enthusiasts could probably do it from their own resources.

But the best point to me, is that a system could probably be leased for a year on a Try-Before-You-Buy basis for less than the cost of a consultant’s report.

Go for it!

Conversion Of Diesel Multiple Units To Battery Electric Multiple Units

This was the bombshell in the tail of the video.

There a lot of diesel multiple units in the UK and Mr. Shooter and Vivarail have developed a plan to convert some of them to battery electric operation.

The trains he is proposing to convert are diesel multiple units, that use a Voith transmission, which I list in How Many Diesel Multiple Units In The UK Have Voith Hydraulic Transmissions?.

Consider.

  • There are 815 trains on my list.
  • All have a Voith hydraulic transmission, with most having similar type numbers starting with T211.
  • Some are 75 mph trundlers and others are full-on 100 mph expresses.
  • All have one engine and transmission per car.

They fit into distinct groups.

Sprinters

Sprinters are a group of trains that were produced by British Rail.

The earliest were built in 1984 and all were built in the last century.

  • There are 314 trains in total.
  • All have a Cummins engine of 213 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 75 mph.

The trains may be elderly, but like some well-known actresses, they scrub up well with a little TLC.

The pictures show an immaculate refurbished Class 150 train, that I travelled on in Devon.

With a battery electric transmission, they would make a superb rural route and branch line train.

Express Sprinters

Express Sprinters are a group of trains that were produced by British Rail.

  • The earliest were built in 1990 and all were built in the last century.
  • There are 202 trains in total.
  • All have a Cummins engine of between 260 and 300 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 90 mph.

These pictures show a Class 159 train on a visit to the Swanage Railway, where it was shuttling in visitors.

With a battery electric transmission, that gave a range of say 80 miles at 90 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

Scotrail have forty Class 158 trains, which run on the following routes.

  • Glasgow Queen Street and Anniesland – 5.5 miles
  • Fife Circle Line – 61 miles round trip
  • Stonehaven and Inverurie – 66 miles round trip.
  • Borders Railway – 70 miles round trip.
  • Edinburgh and Arbroath – 76 miles
  • Inverness and Kyle of Lochalsh – 82.5 miles
  • Inverness and Aberdeen – 108 miles – Inter7City route.
  • Inverness and Wick – 174 miles
  • Inverness and Edinburgh – 175 miles – Inter7City route.

 

Note.

  1. The routes are shown in order of length.
  2. Anything over a hundred miles would need intermediate charging.
  3. Some routes would need charging at both ends.
  4. Glasgow Queen Street and Anniesland would probably not need a Class 158, but is very suitable for a battery electric train.
  5. The three longest routes from Inverness are probably too long for battery electric power, but two are run by Inter7City trains.
  6. A battery electric train on the Inverness and Kyle of Lochalsh route, would surely be a tourist asset.

With an eighty mile range, ScotRail could find a battery-equipped Class 158 train very useful.

Networkers

Networkers are a group of trains that were produced by British Rail.

  • The earliest were built in 1990 and all were built in the last century.
  • There are 96 trains in total.
  • All have a Perkins engine of 261 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 75 or 90 mph.

These pictures show ac selection of Class 165 and Class 166 trains.

As with the Express Sprinters, with a battery electric transmission, that gave a range of say 80 miles at 90 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

The Networkers are used by Great Western Railway and Chiltern Railways.

  • Great Western Railway do run a few long routes with their Networkers, but these routes would probably be too long for battery operation.
  • Local routes around Bristol, Exeter and Plymouth and some short branch lines could be possibilities for battery operation.
  • Great Western Railway have also leased tri-mode Class 769 trains for the Reading and Gatwick route.
  • Chiltern Railways don’t run their Networkers on the longer routes to Birmingham.
  • But they do run them on the shorter routes to Aylesbury (39 miles), Aylesbury Vale Parkway (41 miles), Banbury (69 miles), Gerrards Cross (19 miles), High Wycombe (28 miles), Oxford (66 miles) and Stratford-upon-Avon (104 miles).
  • Some of these Chiltern routes must surely be possibilities for battery operation. Especially, as all the stations in the list, don’t appear to be the most difficult to add a Fast Charge facility.

With an eighty mile range, battery-equipped Networkers could be very useful.

Turbostars

Turbostars are a group of trains that were produced at Derby.

  • The earliest were built in the last few years of the the last century.
  • There are 177 trains in total.
  • All have an MTU engine of 315 kW, with one engine per car.
  • They have a Voith T211 transmission, which drives two axles per car.
  • They have an operating speed of 100 mph.

These pictures show a selection of Turbostar trains.

As with the Express Sprinters and the Networkers, with a battery electric transmission, that gave a range of say 80 miles at 100 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

The post; DfT and Arriva CrossCountry Sign Agreement is partly based on this article on Railway News, which has the same name.

This is a paragraph from the original article.

One element of this new contract is a focus on reducing the environmental impact of the operator’s diesel fleet. For instance, Arriva CrossCountry will do a trial of using electrical shore supplies on its Bombardier Turbostar fleet when these trains are in depots for cleaning. Trains are cleaned both in the winter and at night, which means that the interior lighting and heating systems have to be powered. By using electricity to power these systems instead of the trains’ diesel engines, there will be a reduction in both emissions and noise pollution, which is doubly important when the depots are near built-up areas.

If Turbostars were to have their power unit and transmission updated to battery electric, there would be less need to prove shore supplies to where the trains were to be cleaned.

How Would Sprinters, Express Sprinters, Networkers And Turbostars Be Converted To Battery Electric Power?

The layout of the transmission in all these trains is very similar.

That is not surprising, as they are effectively different interpretations of the same theme over four decades.

  • A diesel engine provides the power.
  • On the back of the diesel engine, a hydraulic transmission is mounted.
  • The transmission performs a similar function to an automatic gearbox in a car. Trains like cars perform better in the right gear.
  • The transmission is connected to the final drive in one or more of the bogies using a cardan shaft. The propeller shaft in many rear-wheel-drive vehicles, is a cardan shaft.

In the video at about 5 mins 50 seconds, Mr. Shooter outlines how the train will be converted to battery electric drive.

  • The diesel engine, hydraulic transmission, radiator, fuel tank and all the other diesel-related gubbins will be removed.
  • A 280 kW electric traction motor will be installed, which will be connected to the cardan shaft.
  • Batteries will be installed. Possibly, they will fit, where the diesel engine was originally located.

I wouldn’t be surprised if the weight of the battery was similar to that of all the equipment that has been removed, as this would mean the train’s handling wouldn’t change.

  • Acceleration will be faster, as it is in electrically-powered road vehicles.
  • The traction motor can work in reverse to slow the train and the energy regenerated by braking can be stored in the batteries.
  • Mr. Shooter doesn’t say if his battery electric trains use regenerative braking in the video, but it is possible and a common procedure, as it saves energy.

An intelligent control system will control everything  according to the driver’s needs and wishes.

 

 

October 18, 2020 - Posted by | Energy Storage, Transport | , , , , ,

1 Comment »

  1. […] Vivarail’s Plans For Zero-Emission Trains, I report on Adrian Shooter’s plans for Vivarail, which are outlined in a video by Modern […]

    Pingback by Testing Begins On Midland Main Line Electrification « The Anonymous Widower | October 19, 2020 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.