The Anonymous Widower

Reinstatement Of The Bury-Heywood-Rochdale Lines

This is one of the successful bids in the First Round of the Restoring Your Railway Fund.

This article on Rochdale OnLine is entitled Successful First Step To Restore Rochdale-Heywood-Bury Railway Line.

The work can now begin to fill out what is possible, with the award of funding from the Government to go towards a full study.

The funding was welcomed by Tony Lloyd, the MP for Rochdale, who is quoted as saying this.

Metrolink services and the rail service from Rochdale to Manchester provide transport to the city centre, but it does not provide the kind of connections we need to get around the city region, in particular, from Rochdale and Heywood to Bury.

“The current public transport offering between Heywood and Manchester city centre is provided by bus services but during the busiest times of the day this journey can take more than one hour, limiting the borough’s residents’ access to the many jobs located there.

What will the new rail link look like?

In Rossendale Reopening Prospect, I gave my views, based on an article in the February 2019 Edition of Modern Railways, which had the same title.

Summarising the other article, I can say the following.

The Track

I described the track like this.

The plan envisages reinstating the route between Rawtenstall and Castleton Junction on the Calder Valley Line.

The section between Rawtenstall and Heywood stations, via Bury Bolton Street station is the heritage line of the East Lancashire Railway (ELR). It is best described as predominately single-track with passing loops.

The route is about twelve miles long.

The Services

These are given as follows.

  1. Manchester Victoria and Bury Bolton Street
  2. Bury Bolton Street and Rochdale
  3. Bury Bolton Street and Rawtenstall – Peak Hour shuttle.

It is suggested that the third route would be run by the ELR.

The Stations

The following stations will be on the route.

Most will need updating, but Heywood would probably be a new station.

The Trains

The original article suggests Class230 trains, but several others are possible. The proposed battery-electric Class 331 train is surely a possibility.

Conclusion

This could be a very sensible scheme.

May 26, 2020 Posted by | Transport | , , , , , , , | 1 Comment

A Train With A Geo-Fence

This article on Rail Advent is entitled New Train For Wrexham to Bidston Line Begins Testing.

The testing of Vivarail‘s Class 230 train for Transport for Wales, is taking place along the Cotswold Line, prior to entering service.

This is the most significant paragraph in the article.

The train is also geo-fenced so that the gensets are never used in stations or sensitive areas, although, the batteries are extremely quiet anyway.

From personal experience of battery trains, including Vivarail’s prototype in Scotland, battery trains are very quiet.

May 26, 2020 Posted by | Transport | , , , , | 1 Comment

‘World First’: SGN Launches Bid For 300 Green Hydrogen Homes Project In Fife

This title of this post, is the same as that of this article on Business Green.

This is the introductory paragraph.

Around 300 homes in Scotland could soon have their heating and cooking powered by green hydrogen produced from renewable electricity under proposals for “the world’s first green hydrogen-to-homes network” unveiled today by SGN.

A few points from the article.

  • Construction could start in the winter of 2020/21.
  • The project will take two or three years.
  • The modified houses appear to be in Levenmouth.
  • The project has been dubbed H100 Fife.
  • The hydrogen will be produced by electrolysis using electricity generated by offshore wind.

The article also gives a round-up of the state of hydrogen in the UK.

Could This Have Other Implications For Levenmouth?

In Scottish Government Approve £75m Levenmouth Rail Link, I discussed the rebuilding of the Levenmouth Rail Link.

I suggested that the route could be run by Hitachi Class 385 trains with batteries, which Hitachi have stated are being developed. I covered the trains in more detail in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

If there were to be a source of hydrogen at Levenmouth, could hydrogen-powered trains be used on the route?

The Levenmouth Rail link could be a prototype for other short rail links in Scotland.

 

In

 

 

May 21, 2020 Posted by | Transport, World | , , , , , , , , | Leave a comment

First Passenger Train In 80 Years Runs On Camp Hill Line

The title of this post is the same as that of this article on Rail Technology Magazine.

These two paragraphs described the route, that the train took on the Camp Hill Line.

On Monday morning a train carrying the Mayor, West Midlands Railway’s customer experience director Jonny Wiseman and other representatives from across the rail industry, travelled along the line.

The train followed the route of what would be the re-opened line, stopping at the Moseley, Kings Heath and Hazelwell sites before arriving into Kings Norton, and later returning to Birmingham New Street.

The article has a picture showing the VIPs showing boards indicating the stations at Moseley, Kings Heath and Hazelwell, that will be reopened.

Wikipedia says this under Future for all three stations.

In 2019, the project to re-open the stations at Moseley, Kings Heath and Hazelwell received £15 million in Government funding, with construction due to start in 2020 and aimed for completion in time for the 2022 Commonwealth Games.

£15million seems good value to reopen three stations.

Let’s hope the world has solved the COVID-19 crisis before the 2022 Commonwealth Games.

Trains For The Service

The picture in the article, shows the test service was run by a two-car Class 170 train. This is an ideal train to do the testing, but as the Camp Hill Line is not electrified, self-powered trains will be needed for the passenger service.

West Midlands Trains will have a good selection of self-powered trains with which to run the service.

  • They already have a selection of Class 170 and Class 172 Turbostar diesel multiple units in very good condition, which total thirty-seven two-cars and twenty-one three-cars.
  • I’m sure Vivarail will pitch diesel-electric or battery-electric versions of their Class 230 trains.
  • Alstom will probably pitch the Breeze hydrogen-powered train.
  • Porterbrook will probably pitch their proposed Battery/FLEX conversion of Class 350 trains.

I don’t think there will be a problem finding a suitable fleet for this route.

I suspect some form of battery-electric train will be used, as there is lots of 25 KVAC overhead electrification in the Birmingham area, that can be used to charge the batteries.

Battery-electric trains with a range of perhaps forty miles would also open up the possibilities for other electric services for West Midlands Trains.

A Thought On Construction

Because of COVID-19, there will probably be numbers of unemployed in this part of Birmingham, who have skills that could be useful to do the building work.

So should the non-railway related parts of the reopening be accelerated to put money in the pockets of the local unemployed.

March 19, 2020 Posted by | Health, Sport, Transport | , , , , , , , , , , , | Leave a comment

Lightweight Trains And No Taboos In French Secondary Line Rescue Package

The title of this post is the same as that of this article on Railway Gazette International.

This is the introductory paragraph.

Development of lightweight rolling stock is one of several proposals put forward by the government to try and ensure the survival of much of the remaining network of secondary lines, many of which carry very limited traffic.

This problem of secondary lines exists in other countries, like Germany, Italy and to a certain extent the UK.

I will argue that Vivarail, with their Class 230 train are following a similar plan to that proposed for France.

  • Lightweight well-proven design.
  • Battery-powered.
  • Modern interior.
  • Designed for short branch lines and secondary routes.

Will Vivarail be talking to the French? Probably not, as using old London Underground stock in rural France would see a large clash of national egos.

But the philosophy could be transplanted across the Channel.

Perhaps some smaller British designs like an Aventra could also be used on French rural routes, that are electrified?

 

March 5, 2020 Posted by | Transport | , , , , | 2 Comments

Are Hitachi Designing the Ultimate Battery Train?

In Sparking A Revolution, a post based on an article of the same name in Issue 898 of Rail Magazine, I repeated this about the specification of Hitachi UK Battery Train Specification.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

Does this mean that the train can do 55-65 miles cruising at 90-100 mph?

How Much Energy Is Needed To Accelerate A Five-Car Class 800 Train To Operating Speed?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

Because the kinetic energy of a train is only proportional to the weight of the train, but proportional to the square of the speed, note how the energy of the train increases markedly after 100 mph.

Are these kinetic energy figures a reason, why Hitachi have stated their battery train will have an operating speed of between 90 and 100 mph?

A 100 mph cruise would also be very convenient for a lot of main lines, that don’t have electrification in the UK.

What Battery Size Would Be Needed?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.

For comparison, an InterCity 125 train, had a figure of 2.83 kWh per vehicle-mile.

Hitachi are redesigning the nose of the train for the new Class 804 train and I suspect that these trains can achieve somewhere between 1.5 and 3 kWh per vehicle-mile, if they are cruising at 100 mph.

Doing the calculation for various consumption levels gives the following battery capacity for a five-car train to cruise 65 miles at 100 mph

  • 1.5 kWh per vehicle-mile – 487 kWh
  • 2 kWh per vehicle-mile – 650 kWh
  • 2.5 kWh per vehicle-mile – 812.5 kWh
  • 3 kWh per vehicle-mile – 975 kWh

These figures don’t include any energy for acceleration to line speed from the previous stop or station, but they would cope with a deceleration and subsequent acceleration, after say a delay caused by a slow train or other operational delay, by using regenerative braking to the battery.

The energy needed to accelerate to operating speed, will be as I calculated earlier.

  • 90 mph – 61 kWh
  • 100 mph – 75 kWh

As the battery must have space to store the regenerative braking energy and it would probably be prudent to have a ten percent range reserve, I can see a battery size for a train with an energy consumption of 2 kWh per vehicle-mile, that needed to cruise at 100 mph being calculated as follows.

  • Energy for the cruise – 650 kWh
  • 10% reserve for cruise – 65 kWh
  • Braking energy from 100 mph – 75 kWh

This gives a total battery size of 790 kWh, which could mean that 800 kWh would be convenient.

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, each weigh around two tonnes.

In Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density, I came to these conclusions.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

Suppose two of the MTU 12V 1600 diesel engines were each to be replaced by a two tonne battery, using Tesla’s current energy density, this would mean the following.

  • Each battery would have a capacity of 500 kWh.
  • The train would have one MWh of installed battery power.
  • This is more than my rough estimate of power required for a 65 mile trip.
  • The train would have little or no weight increase.
  • I also wouldn’t be surprised to find that the exchange of a diesel engine for a battery was Plug-and-Play.

Hitachi would have an electric/battery/diesel tri-mode train capable of the following.

  • Range – 55-65 miles
  • Out and Back Range – about 20-30 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Emergency diesel engine.

I feel it would be a very useful train.

Trains That Could Be Fitted With Batteries

The original article in Rail Magazine says this.

For the battery project, positive discussions are taking place with a number of interested parties for a trial, with both Class 385s and Class 800s being candidates for conversion.

So this means that the following operators will be able to use Hitachi’s battery technology o their trains.

  • Avanti West Coast – Class 80x trains
  • First East Coast Trains – Class 80x trains
  • East Midlands Railway – Class 80x trains
  • GWR – Class 80x trains
  • Hull Trains – Class 80x trains
  • LNER – Class 80x trains
  • ScotRail – Class 385 trains
  • TransPennine Express – Class 80x trains

Although, I based my calculations on Class 80x trains, I suspect that the methods can be applied to the smaller Class 385 trains.

Possible Out-And-Back Journeys

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle.

  • Edinburgh and Tweedbank – 30 miles from Newcraighall
  • London Paddington and Bedwyn – 30 miles from Reading
  • London Euston and Blackburn – 12 miles from Preston
  • London Kings Cross and Bradford – < 27 miles from Leeds
  • London Euston and Chester – 21 miles from Crewe
  • London Kings Cross and Harrogate – <18 miles from Leeds
  • London Kings Cross and Huddersfield – 17 miles from Leeds
  • London St. Pancras and Leicester – 16 miles from Market Harborough
  • London Kings Cross and Lincoln – 17 miles from Newark
  • London St. Pancras and Melton Mowbray – 26 miles from Corby
  • London Kings Cross and Middlesbrough – 20 miles from Northallerton
  • London Kings Cross and Nottingham – 20 miles from Newark
  • London Paddington and Oxford – 10 miles from Didcot
  • London Kings Cross and Redcar – 29 miles from Northallerton
  • London Kings Cross and Rotherham- 14 miles from Doncaster
  • London Kings Cross and Sheffield – 20 miles from Doncaster
  • London and Weston-super-Mare – 19 miles from Bristol

Note.

  1. Provided that the Out-And-Back journey is less than about sixty miles, I would hope that these stations are comfortably in range.
  2. Leicester is the interesting destination, which would be reachable in an Out-And-Back journey. But trains from the North stopping at Leicester would probably need to charge at Leicester.
  3. I have included Blackburn as it could be a destination for Avanti West Coast.
  4. I have included Melton Mowbray as it could be a destination for East Midlands Railway.
  5. I have included Nottingham, Rotherham and Sheffield as they could be destinations for LNER. These services could prove useful if the Midland Main Line needed to be closed for construction works.
  6. I’m also fairly certain, that no new electrification would be needed, although every extra mile would help.
  7. No charging stations would be needed.

I suspect, I’ve missed a few possible routes.

Possible Journeys Between Two Electrified Lines

These are possible journeys between two electrified lines, that  I believe Hitachi’s proposed battery-electric trains could handle.

  • London St. Pancras and Eastbourne via Hastings – 25 miles between Ashford and Ore.
  • Leeds and York via Garforth – 20 miles between Neville Hall and Colton Junction
  • London Kings Cross and Norwich via Cambridge – 54 miles between Ely and Norwich.
  • Manchester Victoria and Leeds via Huddersfield – 43 miles between Manchester Victoria and Leeds.
  • Preston and Leeds via Hebden Bridge – 62 miles between Preston and Leeds.
  • Newcastle and Edinburgh – Would battery-electric trains get round the well-publicised power supply problems on this route?

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. Leeds and York via Garforth has been scheduled for electrification for years.
  4. Preston and Leeds via Hebden Bridge would probably need some diesel assistance.
  5. London Kings Cross and Norwich via Cambridge is a cheeky one, that Greater Anglia wouldn’t like, unless they ran it.
  6. As before no new electrification or a charging station would be needed.

I suspect, I’ve missed a few possible routes.

Possible Out-And-Back Journeys With A Charge At The Destination

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle, if the batteries were fully charged at the destination.

  • Doncaster and Cleethorpes – 52 miles from Doncaster.
  • London Paddington and Cheltenham – 42 miles from Swindon
  • London Kings Cross and Cleethorpes via Lincoln – 64 miles from Newark
  • London Euston and Gobowen – 46 miles from Crewe
  • London Euston and Wrexham – 33 miles from Crewe
  • London Kings Cross and Hull – 45 miles from Selby
  • London Kings Cross and Shrewsbury – 30 miles from Wolverhampton
  • London Kings Cross and Sunderland 41 miles from Northallerton
  • London Paddington and Swansea – 46 miles from Cardiff
  • London Paddington and Worcester – 67 miles from Didcot Parkway
  • London St. Pancras and Derby – 46 miles from Market Harborough
  • London St. Pancras and Nottingham – 43 miles from Market Harborough

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. I am assuming some form of charging is provided at the destination station.
  4. As before no new electrification would be needed.

I suspect, I’ve missed a few possible routes.

Midland Main Line

The Midland Main Line could possibly be run between London St. Pancras and Derby, Nottingham and Sheffield without the use of diesel.

Consider.

  • The route will be electrified between London St. Pancras and Market Harborough.
  • In connection with High Speed Two, the Midland Main Line and High Seed Two will share an electrified route between Sheffield and Clay Cross North Junction.
  • London St. Pancras and Derby can be run with a charging station at Derby, as Market Harborough and Derby is only 46 miles.
  • London St. Pancras and Nottingham can be run with a charging station at Nottingham, as Market Harborough and Nottingham is only 43 miles.
  • The distance between Clay Cross North Junction and Market Harborough is 67 miles.
  • The distance between Sheffield and Leeds is 38 miles.

It looks to me that the range of East Midlands Railway’s new Class 804 trains, will be a few miles short to bridge the gap on batteries, between Clay Cross North Junction and Market Harborough station, but Leeds and Sheffield appears possible, once Sheffield has been electrified.

There are several possible solutions to the Clay Cross North and Market Harborough electrification gap.

  1. Fit higher capacity batteries to the trains.
  2. Extend the electrification for a few miles North of Market Harborough station.
  3. Extend the electrification for a few miles South of Clay Cross North Junction.
  4. Stop at Derby for a few minutes to charge the batteries.

The route between Market Harborough and Leicester appears to have been gauge-cleared for electrification, but will be difficult to electrify close to Leicester station. However, it looks like a few miles can be taken off the electrification gap.

Between Chesterfield and Alfriston, the route appears difficult to electrify with tunnels and passig through a World Heritage Site.

So perhaps options 1 and 2 together will give the trains sufficient range to bridge the electrification gap.

Conclusion On The Midland Main Line

I think that Hitachi, who know their trains well, must have a solution for diesel-free operation of all Midland Main Line services.

It also looks like little extra electrification is needed, other than that currently planned for the Midland Main Line and High Speed Two.

North Wales Coast Line

If you look at distance along the North Wales Coast Line, from the electrification at Crewe, you get these values.

  • Chester – 21 miles
  • Rhyl – 51 miles
  • Colwyn Bay – 61 miles
  • Llandudno Junction – 65 miles
  • Bangor – 80 miles
  • Holyhead – 106 miles

It would appear that Avanti West Coast’s new AT-300 trains, if fitted with batteries could reach Llandudno Junction station, without using diesel.

Electrification Between Crewe And Chester

It seems to me that the sensible thing to do for a start is to electrify the twenty-one miles between Crewe and Chester, which has been given a high priority for this work.

With this electrification, distances from Chester are as follows.

  • Rhyl – 30 miles
  • Colwyn Bay – 40 miles
  • Llandudno Junction – 44 miles
  • Bangor – 59 miles
  • Holyhead – 85 miles

Electrification between Crewe and Chester may also open up possibilities for more electric and battery-electric train services.

But some way will be needed to charge the trains to the West of Chester.

Chagring The Batteries At Llandudno Junction Station

This Google Map shows Llandudno Junction station.

Note.

  1. It is a large station site.
  2. The Conwy Valley Line, which will be run by battery Class 230 trains in the future connects at this station.
  3. The Class 230 train will probably use some of Vivarail’s Fast Charging systems, which use third-rail technology, either at the ends of the branch or in Llandudno Junction station.

The simplest way to charge the London Euston and Holyhead train, would be to build a charging station at Llandudno Junction, which could be based on Vivarail’s Fast Charging technology or a short length of 25 KVAC overhead wire.

But this would add ten minutes to the timetable.

Could 25 KVAC overhead electrification be erected for a certain distance through the station, so that the train has ten minutes in contact with the wires?

Looking at the timetable of a train between London Euston and Holyhead, it arrives at Colwyn Bay station at 1152 and leaves Llandudno Junction station at 1200.

So would it be possible to electrify between the two stations and perhaps a bit further?

This Google Map shows Colwyn Bay Station,

Note how the double-track railway is squeezed between the dual-carriageway of the A55 North Wales Expressway and the sea.

The two routes follow each other close to the sea, as far as Abegele & Pensarn station, where the Expressway moves further from the sea.

Further on, after passing through more caravans than I’ve ever seen, there is Rhyl station.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes.
  • The distance between the two stations is fourteen miles.
  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

It would appear that if the North Wales Coast Line between Rhyl and Llandudno Junction is electrified, that Hitachi’s proposed battery trains can reach Holyhead.

The trains could even changeover between electrification and battery power in Rhyl and Llandudno Junction stations.

I am sure that electrifying this section would not be the most difficult in the world, although the severe weather sometimes encountered, may need some very resilient or innovative engineering.

It may be heretical to say so, but would it be better if this section were to be electrified using proven third-rail technology.

West of Llandudno Junction station, the electrification would be very difficult, as this Google Map of the crossing of the River Conwy shows.

I don’t think anybody would want to see electrification around the famous castle.

Electrification Across Anglesey

Llanfairpwll station marks the divide between the single-track section of the North Wales Coast Line over the Britannia Bridge and the double-track section across Anglesey.

From my virtual helicopter, the route looks as if, it could be fairly easy to electrify, but would it be necessary?

  • Llandudno Junction and Holyhead is forty-one miles, which is well within battery range.
  • There is surely space at Holyhead station to install some form of fast-charging system.

One problem is that trains seem to turn round in only a few minutes, which may not be enough to charge the trains.

So perhaps some of the twenty-one miles between Llanfairpwll and Holyhead should be electrified.

London Euston And Holyhead Journey Times

Currently, trains take three hours and forty-three minutes to go between London Euston and Holyhead, with these sectional timings.

  • London Euston and Crewe – One hour and thirty-nine minutes.
  • Crewe and Holyhead – Two hours and four minutes.

The big change would come, if the London Euston and Crewe leg, were to be run on High Speed Two, which will take just fifty-five m,inutes.

This should reduce the London Euston and Holyhead time to just under three hours.

Freight On The North Wales Coast Line

Will more freight be seen on the North Wales Coast Line in the future?

The new tri-mode freight locomotives like the Class 93 locomotive, will be able to take advantage of any electrification to charge their batteries, but they would probably be on diesel for much of the route.

Conclusion On The North Wales Coast Line

Short lengths of electrification, will enable Avanti West Coast’s AT-300 trains, after retrofitting with batteries, to run between Crewe and Holyhead, without using any diesel.

I would electrify.

  • Crewe and Chester – 21 miles
  • Rhyl and Llandudno Junction – 14 miles
  • Llanfairpwll and Holyhead – 21 miles

But to run battery-electric trains between London Euston and Holyhead, only Rhyl and Llandudno Junction needs to be electrified.

All gaps in the electrification will be handled on battery power.

A Selection Of Possible Battery-Electric Services

In this section, I’ll look at routes, where battery-electric services would be very appropriate and could easily be run by Hitachi’s proposed battery-electric trains.

London Paddington And Swansea

Many were disappointed when Chris Grayling cancelled the electrification between Cardiff and Swansea.

I went along with what was done, as by the time of the cancellation, I’d already ridden in a battery train and believed in their potential.

The distance between Cardiff and Swansea is 46 miles without electrification.

Swansea has these services to the West.

  • Carmarthen – 32 miles
  • Fishguard – 73 miles
  • Milford Haven  71 miles
  • Pembroke Dock – 73 miles

It looks like, three services could be too long for perhaps a three car battery-electric version of a Hitachi Class 385 train, assuming it has a maximum range of 65 miles.

But these three services all reverse in Carmarthen station.

So perhaps, whilst the driver walks between the cabs, the train can connect automatically to a fast charging system and give the batteries perhaps a four minute top-up.

Vivarail’s Fast Charging system based on third-rail technology would be ideal, as it connects automatically and it can charge a train in only a few minutes.

I would also electrify the branch between Swansea and the South Wales Main Line.

This would form part of a fast-charging system for battery-trains at Swansea, where turnround times can be quite short.

I can see a network of battery-electric services developing around Swansea, that would boost tourism to the area.

Edinburgh And Tweedbank

The Borders Railway is electrified as far as Newcraighall station and the section between there and Tweedbank is thirty miles long.

I think that a four-car battery-electric Class 385 train could work this route.

It may or may not need a top up at Tweedbank.

The Fife Circle

The Fife Circle service from Edinburgh will always be difficult to electrify, as it goes over the Forth Rail Bridge.

  • The Fife Circle is about sixty miles long.
  • Plans exist for a short branch to Leven.
  • The line between Edinburgh and the Forth Rail Bridge is partly electrified.

I believe that battery-electric Class 385 train could work this route.

London Kings Cross and Grimsby/Cleethorpes via Lincoln

The Cleethorpes/Grimsby area is becoming something of a  renewable energy powerhouse and I feel that battery trains to the area, might be a significant and ultimately profitable statement.

LNER recently opened a six trains per day service to Lincoln.

Distances from Newark are as follows.

  • Lincoln – 17 miles
  • Grimsby – 61 miles
  • Cleethorpes – 64 miles

A round trip to Lincoln can probably be achieved on battery alone with a degree of ease, but Cleethorpes and Grimsby would need a recharge at the coast.

Note that to get to the Cleethorpes/Grimsby area, travellers usually need to change at Doncaster.

But LNER are ambitious and I wouldn’t be surprised to see them dip a toe in the Cleethorpes/Grimsby market.

The LNER service would also be complimented by a TransPennine Express service from Manchester Airport via Sheffield and Doncaster, which could in the future be another service run by a Hitachi battery train.

There is also a local service to Barton-on-Humber, which could be up for improvement.

London Waterloo And Exeter

This service needs to go electric, if South Western Railway is going to fully decarbonise.

But third-rail electrification is only installed between Waterloo and Basingstoke.

Could battery-electric trains be used on this nearly two hundred mile route to avoid the need for electrification.

A possible strategy could be.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging technology.
  3. The charging around Yrovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.

I estimate that there could be time savings of up to fifteen minutes on the route.

 

To Be Continued…

 

 

 

 

 

 

 

 

 

 

 

February 18, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , | 5 Comments

Ready To Charge

The title of this post is the same as that of this article in Issue 898 of Rail Magazine.

This is the sub-title of the article.

Vivarail could be about to revolutionise rail traction with its latest innovation

The article details their plans to bring zero-carbon trains to the UK.

These are a few important more general points.

  • The diesel gensets in the trains can be eco-fenced to avoid unning on diesel in built-up areas.
  • The Transport for Wales trains could be the last Vivarail diesel trains.
  • A 100 kWh battery pack is the same size as a diesel generator. I would assume they are almost interchangeable.
  • Various routes are proposed.
  • In future battery trains will be Vivarail’s focus.
  • At the end of 2020, a battery demonstration train will be dispatched to the United States.
  • Two-car trains will have a forty-mile range with three-cars managing sixty.
  • Trains could be delivered in nine to twelve months.

The company also sees Brexit as an opportunity and New Zealand as a possible market.

Modifying Other Trains

The article also states that Vivarail are looking at off-lease electric multiple units for conversion to battery operation.

Vivarail do not say, which trains are involved.

Vivarail’s Unique Selling Point

This is the last two paragraphs of the article.

“Our unique selling point is our Fast Charge system. It’s a really compelling offer.” Alice Gillman of Vivarail says.

Vivarail has come a long way in the past five years and with this innobvative system it is poised to bring about a revolution in rail traction in the 2020s.

Conclusion

Could the train, that Vivarail refused to name be the Class 379 trains?

  • There are thirty trainsets of four-cars.
  • They are 100 mph trains.
  • They are under ten years old.
  • They meet all the Persons of Reduced Mobility regulations.
  • They currently work Stansted Airport and Cambridge services for Greater Anglia.
  • They are owned by Macquarie European Rail.

I rode in one yesterday and they are comfortable with everything passengers could want.

The train shown was used for the BEMU Trial conducted by Bombardier, Network Rail and Greater Anglia.

The only things missing, for these trains to run a large number of suitable routes under battery power are.

  • A suitable fast charging system.
  • Third rail equipment that would allow the train to run on lines with third-rail electrification.
  • Third rail equipment would also connect to Vivarail’s Fast Charge system

As I have looked in detail at Vivarail’s engineering and talked to their engineers, I feel that with the right advice and assistance, they should be able to play a large part in the conversion of the Class 379 fleet to battery operation.

These trains would be ideal for the Uckfield Branch and the Marshlink Line.

If not the Class 379 trains, perhaps some Class 377 trains, that are already leased to Southern, could be converted.

I could see a nice little earner developing for Vivarail, where train operating companies and their respective leasing companies employ them to create battery sub-fleets to improve and extend their networks.

February 16, 2020 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

Retired London Underground Train Travels Forty Miles Solely On Battery Power

This article on Railnews is a summary of today’s news and has a subtitle of Battery Train Sets British Record.

This is the first sentence.

A battery train from Vivarail has achieved a British first by travelling 64km on battery power alone, and the feat has been repeated many times during tests.

The train was a Vivarail  Class 230 train, that is based on retired London Underground D78 Stock.

The picture shows the prototype battery train, when I rode it in 2018 at the Bo’ness And Kinneil Railway.

The article also says this.

Vivarail CEO Adrian Shooter  is predicting that production versions of the battery trains will be able to run for almost 100km between charges, which will take just 10 minutes.

Battery trains appear to be going places.

January 15, 2020 Posted by | Transport | , , | 6 Comments

Plans To Reopen The Brentford To Southall Railway

The title of this post, is the same as that of this article on Ian Visits.

I have posted on the Brentford Branch Line several times previously and Ian says this about Hounslow Council’s thinking.

The council has been working on a scheme for some years to resurrect the line, with a new station built in Brentford and passenger services restored to Southall. A key factor for the plans is that Southall will then be on the Elizabeth line, which they hope will drive a lot more traffic on the spur down to Brentford.

In order to part-fund the 4-mile railway, Hounslow Council has now agreed to undertake a full business case to look at introducing a Workplace Parking Levy (WPL) within the Great West Corridor (GWC).

In my trips to document the updating of Syon Lane station with a new step-free footbridge, I have talked to several people, who would find a rail link to Southall useful.

Ian also says this about the latest situation.

As part of the proposal, the council has also commissioned Network Rail to begin a detailed study (known as ‘GRIP 4’) on building the new train link from Brentford to Southall, following encouraging early studies into the feasibility of such a link.

At least, this will give the Hounslow a list of all the problems and a cost estimate.

A few of my thoughts.

What Should Be The Frequency Of The Service?

The current truncated Brentford Branch Line is mainly single track, but from my helicopter, it appears that there would be space to add an additional track for as much of the route as required.

Preferably, there should be a service on the branch of at least two trains per hour (tph). Although, ideally four tph is much better, as it attracts passengers in large numbers.

It should be noted that from December 2019, there will be four tph on Crossrail calling at at Southall station all day. Connections should surely be well-arranged.

Four tph would be possible between two single platforms at Southall and Brentford, but would require selective doubling or passing loops to accommodate the service and the freight trains going to Brentford.

This Google Map shows the various sites clustered around the branch.

The branch runs from the North-West to the South-East across the map.

  • The Great West Road is a couple of hundred metres to the South.
  • To the East of the branch, there are a collection of waste and scrap metal transfer sites, aggregate and concrete sites and others that hide away in big cities.
  • To the West is the massive Sky Studios complex.

I do wonder, if Sky would like a station? If they did, this would surely mean that a four tph service would be required.

What Is The Future Of The Industrial Site?

Because of London’s thirst for land for housing and office developments, sites like this inevitably get developed.

With its position between the River Brent and parkland, and the Brentford Branch Line, I believe that if new sites can be found for the various tenants, that this site could be a high quality housing development.

An intermediate station would surely be required.

Could An Intermediate Station Serve Both The Brentford Branch Line And The Piccadilly Line?

This Google Map shows where the two lines cross.

 

Note.

  1. The Northern tip of the industrial site is just visible.
  2. The Brentford Branch Line has three tracks under the Piccadilly Line,
  3. There is no pedestrian bridge over the River Brent.

I think it would be possible, if the industrial site were to be developed for housing or perhaps a hotel, for a simple interchange station to be built here.

  • There would be an island platform on the Brentford Branch Line.
  • There would be two side platforms on the Piccadilly Line,
  • There would be lifts and stairs between the three platforms.
  • There could be a second entrance on the Eastern bank of the River Brent.

I feel that a decent architect could make this a very nice place to live. After all, it’s only six intermediate stops between Boston Manor and Heathrow.

What Should Be The Terminus Of The Branch?

I believe that the branch should terminate as close to the River as is possible.

  • There is a lot of new housing being constructed in Brentford.
  • I believe that Thames Clippers will eventually extend their river-boat services to Brentford and Kew.

But the problem would be that this would need an expensive bridge over the Great West Road.

These pictures show the Great West Road, where the current Brentford Branch Line finishes.

The tracks finish about a hundred metres North of the road, as shown on this Google Map.

The rusty footbridge over the busy road can be clearly seen.

Initially, I believe that the passenger service should terminate at the Great West Road.

If I was designing the station, I would build it much like the Deptford Bridge DLR station.

  • It would be on a bridge above the Great West Road.
  • It would be suspended from step-free towers on either side of the road.
  • Would it only need to be a single platform station?
  • The pavements on either side of the Great West Road would be improved to create a better walking environment.
  • If possible a walking and cycling route to Brentford and the River would be provided.
  • The design would leave provision to extend the railway South.

I also think, that it could be designed to enhance the collection of Art Deco and modern buildings in the area.

Could The Service Go Further Than The Great West Road?

This Google Map shows the former route of Brentford Branch Line, from just North of the Great West Road to the centre of Brentford.

Note.

  1. The former route is very green on the map.
  2. The Hounslow Loop Line crossing parallel and a few hundred metres South of the Great West Road.
  3. The only building on the route is some retail sheds between the Great West Road and the Hounslow Loop Line.
  4. To the \east of the Brentford Branch Line is a large and semi-derilict bus garage.

I’m sure that the railway could be extended through this area, as it is developed with housing and offices or parkland.

Could The Service Go Further Than Southall?

There is a section in the Wikipedia entry for the Brentford Branch Line, which is entitled Proposed Reopening, where this is said.

In April 2017, it was proposed that the line could reopen to allow a new link between Southall to Hounslow and possibly down to the planned Old Oak Common station with a new station in Brentford called Brentford Golden Mile.  The proposals suggest the service could be operated by Great Western Railway and could be open by 2020 with a new service from Southall to Hounslow and possible later to Old Oak Common

It sounds a good idea, but it would mean trains would surely have to reverse direction and cross over to the North side.

It must be better to provide full step-free access at Southall station, which should be finished fairly soon.

Crossrail will also be providing at least four tph to and from Old Oak Common.

How Many Trains Would Be Needed?

I am pretty sure, that several train types could do a Southall and Brentford round trip in under thirty minutes.

This would mean the following.

  • For a two tph service, one train would be needed.
  • For a four tph service, two trains would be needed.

I suspect too, that a spare train would be added to the fleet.

Would The Branch Be Electrified?

I doubt it!

  • The branch is only four miles long.
  • A 100 kWh battery would probably provide enough power for a four-car train.
  • It is unlikely electric haulage will be needed for the freight trains o the branch.
  • There is 25 KVAC electrification at the Southall end of the branch to charge trains with batteries.
  • The branch is probably short enough to not need a charging point at Brentford.

In my mind, it is a classic route to run using battery power.

What Trains Could Be Used?

I feel the trains need to have the following specification.

  • Abiility to use 25 KVAC overhead electrification.
  • A out and back battery range of at least eight miles.
  • Three or four cars.
  • 60 mph operating speed.

There are several proposed trains that meet this specification.

Class 710 Train

The Class 710 train would be an obvious choice, if London Overground were to run the service.

But it would need the 25 KVAC electrification be added to Platform 5 at Southall station.

Class 230 Train

The Class 230 train could be a lower cost option and would only require one of Vivarail’s clever charging systems at Southall.

Class 387 Train

A modified Class 387 train would surely be a choice, If Great Western Railway were to run the service.

But as with the Class 710 train, it would need Platform 5 at Southall station to be electrified.

Class 399 Tram-Train

A Class 399 tram-train to the South Wales Metro specification is also a possibility.

But as with the Class 710 train, it would need Platform 5 at Southall station to be electrified.

However, the lighter weight vehicle with a tight turning circle might allow the route to be extended further South.

Conclusion

I am led to these conclusions.

  • Battery power is capable of working the Brentford Branch Line.
  • At least two tph is needed between Southall and Brentford.
  • The operator will choose the trains.

IBut as they are a lower-cost and simpler option, this route could be run by Class 230 trains.

 

 

September 22, 2019 Posted by | Transport | , , , , , , | 7 Comments

Isle of Wight Line’s Future Secured With £26m Investment

The title of this post, is the same as that of this article on the Railway Gazette.

This is the first paragraph.

Investment of £26m to secure the future of the 13·7 km line between Ryde and Shanklin on the Isle of Wight was announced on September 16. This includes infrastructure modernisation and replacement of the life-expired fleet of small profile ex-London Underground trains which date back to 1938.

A few more details.

Infrastructure

Improvements will include.

  • The track will be renewed and the electrical systems will be modernised to improve reliability and ride.
  • A passing loop will be installed at Brading.
  • South Western Railway will improve the important stations.

The track improvements will allow a half-hourly service to link up with the ferries to the mainland.

Rolling Stock

These Class 483 trains will be replaced.

They will be replayed by trains similar to these.

The pictures show Class 230 trains, which are diesel-electric versions of the electric Class 484 trains that will be used on the Island Line.

  • Both trains are two car sets, which will work in pairs.
  • The new trains will have a capacity of 172 seats, as opposed to the 84 seats of the current stock.
  • The speed of the new trains is 60 mph, as opposed to the 45 mph of the current stock.
  • It would appear that the new fleet includes a spare train, which should improve reliability.

The extra speed and the passing loop at Brading will enable the half-hourly timetable.

In Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway, I describe a ride in a battery/electric version of the Class 230 train.

The noise levels were very low and I suspect the Class 484 train will be a quiet ride.

Conclusion

There may be better and much more expensive solutions, but this is a practical one, that is affordable, with little risk.

I also think that £26million to secure the island Line for upwards of a dozen years, is not a bad investment.

September 16, 2019 Posted by | Transport | , , | 4 Comments