The Anonymous Widower

Testing Begins On Midland Main Line Electrification

The title of this post, is the same as that of this article on Rail Magazine.

  • From the article, it looks like the first part of mechanical testing has been completed as planned and unpowered pantograph runs have been performed at up to 110 mph.
  • It does seem to me, that this thirty  miles of electrification has avoided the troubles that have plagued similar projects in recent years.

Perhaps the good progress on this electrification, is making the government think again about early electrification of all of the  Midland Main Line

In Hopes Rekindled Of Full Midland Main Line Electrification. I showed how battery electric Class 810 trains would be able to work the route.

This was my conclusion of that earlier post.

It appears that both the Nottingham and Sheffield services can be run using battery electric Class 810 trains.

  • All four diesel engines in the Class 810 trains would need to be replaced with batteries.
  • The route between Clay Cross North Junction and Sheffield station, which will be shared with High Speed Two, will need to be electrified.
  • Charging facilities for the battery electric trains will need to be provided at Nottingham.

On the other hand using battery electric trains mean the two tricky sections of the Derwent Valley Mills and Leicester station and possibly others, won’t need to be electrified to enable electric trains to run on the East Midlands Railway network.

Will it be the first main line service in the world, run by battery electric trains?

There was one thing, that wasn’t available, a month ago, when I wrote that post – A charging system for battery electric trains, that could be installed at Nottingham.

In Vivarail’s Plans For Zero-Emission Trains, I report on Adrian Shooter’s plans for Vivarail, which are outlined in a video by Modern Railways.

Ar one point he says this   see about Vivarail’s Fast Charge system.

The system has now been given preliminary approval to be installed as the UK’s standard charging system for any make of train.

I may have got the word’s slightly wrong, but I believe the overall message is correct.

So could we see a Hitachi Class 810 train using Vivarail’s patented Fast Charge system at Nottingham?

In Interview: Hitachi’s Nick Hughes On Driving Innovation In Rail Propulsion, Nick Hughes of Hitachi is quoted as saying.

Rail is going to become increasingly digitised and integrated into other sectors involved in smart cities, mobility-as-a-service and flexible green grid. Therefore, Hitachi Rail won’t be able to stay at the forefront of innovation by its self. This is why we are focused on building partnerships with other like-minded, innovative, clean tech companies like Hyperdrive Innovation, Perpetuum and Hitachi group companies such as Hitachi ABB.

Does Vivarail fit that philosophy? In my view, it does!

This Hitachi infographic gives the specification of their Regional Battery Train.

Note.

  1. The range on battery power is 90 km or 56 miles at up to 100 mph.
  2. Class 810 trains could be converted to battery electric trains by replacing the diesel engines with batteries.
  3. As the electrification has reached Kettering. there is only 55 miles between London St Pancras and Nottingham without electrification.

I could see Class 810 trains running between St. Pancras and Nottingham on delivery, provided the following projects have been completed.

  • Hitachi have been able to give the Class 810 trains a range of say 60 miles on batteries.
  • Hitachi have modified their trains, so they can be recharged by a Vivarail Fast Charge system in fifteen minutes.
  • Vivarail have installed a Fast Charge facility at Nottingham station.

Network Rail are planning to extend the electrification from Kettering to Market Harborough, which would reduce the distance without electrification to under 50 miles. This would make running battery electric trains between London St. Pancras and Nottingham even easier.

Expanding The Network

If I am putting two and two together correctly and Hitachi have turned to Vivarail to provide a charging system or a licence for the use of the technology, I am sure, it would be possible to create a comprehensive network of battery electric trains.

Consider.

  • Hitachi should be able to squeeze a sixty mile range at 90-100 mph from a battery-equipped Class 810 trains.
  • Market Harborough and Derby are about 47 miles apart.
  • Derby and Sheffield are about 36 miles apart
  • Sheffield and Leeds are about 48 miles apart
  • Corby and Leicester are about 41 miles apart.

Vivarail Fast Charge systems at Derby, Leicester and Sheffield would enable the following routes to be run using battery electric trains.

  • London St. Pancras and Sheffield via Derby – Fast Charging at Derby and Sheffield
  • London St. Pancras and Leeds via Derby and Sheffield – Fast Charging at Derby and Sheffield
  • London St. Pancras and Sheffield via the Erewash Valley Line – Fast Charging at Ilkeston (?) and Sheffield
  • London St. Pancras and Leicester via Corby – Fast Charging at Leicester

Note.

  1. The only extra electrification needed for the initial network would be between Kettering and Market Harborough.
  2. The Class 810 trains would all be identical.
  3. The Class 810 trains might even be built and delivered as battery electric trains
  4. Trains would also charge the batteries between London St. Pancras and Market Harborough, between London St. Pancras and Corby. and between Leeds and Wakefield Westgate.

The network can be extended by adding more electrification and Fast Charge systems.

Conclusion

The technologies of Hitachi and Vivarail seem complimentary and could result in a fully electric main line train network for East Midlands Railway.

 

 

October 19, 2020 Posted by | Transport | , , , , , , , , | 1 Comment

Vivarail’s Plans For Zero-Emission Trains

The title of this post is the same as that of this article on the Modern Railways web site.

This is the introductory subtitle.

Vivarail Chairman Adrian Shooter talks to Modern Railways about the company’s Class 230s and its plans for battery trains.

The article is mainly a video of Mr. Shooter talking in front of various examples of Vivarail trains.

It’s probably easier to watch the video and listen on what is said.

But I have some thoughts on what he said.

Battery Range

Consider.

  • Early on in the video he talks about a battery range of forty miles with four battery packs on the train.
  • He also talks about switching battery supplier to Hoppecke.
  • Later he says that a train with six battery packs in the train, has a hundred mile range.

That is impressive.

The number of battery packs has increased by 50 % and the range has gone up by two-and-a-half times.

If those figures are right and I’ve no reason to disbelieve them, then Hoppecke have done a good job with the batteries.

A very rough calculation indicates their size.

  • The current 4 x 100 kWh takes the train 40 miles, which is 10 kWh per mile.
  • So to travel a hundred miles will need 1000 kWh.
  • Divide by six batteries and you get 167 kWh per battery or a 67 % increase in individual battery capacity.

If these are a new generation of batteries, what would they do for Hitachi’s Regional Battery train, which is proposed to have a range of 56 miles? They could give it a range of around 93 miles.

These ranges of distances would be very useful to manufacturers of battery trains.

Charging Battery Trains Using Vivarail’s Fast Charge System

The video did give a few more details of Vivarail’s Fast Charge system.

I was also able to take this screen capture from the video, which shows the extra rails used to pass charge to the train and the batteries.

Note.

  • The rails are well-shielded. Not that they’re live unless a train is over the top and connected.
  • The driver  just has to stop the train in the correct place and automation does the rest.
  • This image is four minutes and thirty-five seconds into the video.

My only problem with the design is that those thick copper cables used to bring electricity to the train, way be a tempting target for metal thieves.

Vivarail Now Has Permission To Charge Any Train

Mr. Shooter said this about Vivarail’s Fast Charge system.

The system has now been given preliminary approval to be installed as the UK’s standard charging system for any make of train.

I may have got the word’s slightly wrong, but I believe the overall message is correct.

In the November 2020 Edition of Modern Railways, there is a transcript of what Mr. Shooter said.

‘Network Rail has granted interim approval for the fast charge system and wants it to be the UK’s standard battery charging system’ says Mr. Shooter. ‘We believe it could have worldwide implications.’

I hope Mr. Shooter knows some affordable lawyers, as in my experience, those working in IPR are not cheap.

A Prototype Class 230 Train That Can Use 25 KVAC Is Under Construction

Mr. Shooter also announced that a version of the train with a third can in the middle, with a pantograph on the roof and a 35 KVAC transformer is under construction.

This will enable batteries to be charged from existing electrification.

I can already think of a few routes, where this train could be used.

  • Bedford and Bletchley – It would replace a diesel-electric Class 230 train.
  • Poulton-le-Fylde and Fleetwood
  • Oxenholme and Windermere
  • Glasgow Central and East Kilbride
  • Glasgow Queen Street and Anniesland
  • Chester and Crewe – It would replace a battery Class 230 train
  • West Ealing and Greenford
  • Slough and Windsor Central
  • Henley and Twyford
  • Maidenhead and Marlow

This could be the standard train in many places.

The November 2020 Edition of Modern Railways, also has more details on this project.

  • The centre vehicle is under construction at their factory at Seaham in County Durham.
  • Mr. Shooter is quoted as saying. ‘We’ve identified 60 lines on partially electrified tracks’

Vivarail plans to demonstrate the concept on the Northumberland Line to Blyth and Ashington next spring.

West Highland Opportunity

This is a section of the print article, that is not mentioned in the video.

This is the introductory paragraph.

While Mr. Shooter highlights several opportunities south of the border to deploy the 25kV/battery Class 230, he is particularly interested in deployment of Vivarail trains in Scotland.

And this is the last paragraph, describing a possible deployment on the West Highland Line.

Top of the list is the West Highland Line.

Here a 25kV/battery Class 230 would operate under electric power from Glasgow Queen Street to Craigendoran Junction, switching there to battery power. The batteries could be topped up on the way using Vivarail’s fast charge system, with Mr, Shooter suggesting this could take place at Crianlarich, Oban and Fort William. On the West Highland the 60 mph top speed of the Class 230 is not prohibitive as the top speed on the route does not exceed this.

If this sounds familiar, I made a similar proposal in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires, in a section, which is entitled Electric Trains On The West Highland Line Between Glasgow And Mallaig/Oban. I start with this sentence.

This might be considered as difficult as putting a London bus on the Moon.

But that was done by the Daily Sport newspaper, so perhaps my reasoning is the same as Vivarail’s.

My conclusion of the section was as follows.

What would battery-electric trains to Oban and Mallaig do for tourism in the area?

Hitachi would have one of the most scenic and iconic test tracks in the world!

These statements would surely, apply to a Vivarail train or a battery electric Class 385 train.

Pop-Up Metro

Mr. Shooter shows a battery train, which is going to the United States to trial a concept called a Pop-up Metro.

  • In the US, there are hundreds of lightly used freight lines serving towns and cities
  • Temporal separation would mean that freight and passenger trains used the lines at different times of the day.
  • Battery powered Vivarail trains could provide a Metro service.

He also talked about his US partner and 50 % shareholder in Vivarail, leasing trains for a year, to see if the concept was viable in a given area. He indicated, the cost could be less than a consultant’s report.

Could the Pop-up Metro concept work in the UK?

In these possible Beeching Reversal projects, there could be scope for using the concept.

Note.

  1. Some of these are on heritage railway infrastructure. Does a Class 230 train count a heritage unit?
  2. The Aston Rowant Extension is Chiltern territory, so Mr. Shooter could know it well!
  3. In the Wikipedia entry for the Class 230 train, there is a useful Cost Comparison.

I should say, that I like the concept of a Pop-up Metro.

  • The trains have proved they are up to the job.
  • A package of one or two trains and a containerised charging system could surely be created.
  • Installation of the battery charger in many platforms would not be a major engineering project costing millions.
  • On a heritage railway, the enthusiasts could probably do it from their own resources.

But the best point to me, is that a system could probably be leased for a year on a Try-Before-You-Buy basis for less than the cost of a consultant’s report.

Go for it!

Conversion Of Diesel Multiple Units To Battery Electric Multiple Units

This was the bombshell in the tail of the video.

There a lot of diesel multiple units in the UK and Mr. Shooter and Vivarail have developed a plan to convert some of them to battery electric operation.

The trains he is proposing to convert are diesel multiple units, that use a Voith transmission, which I list in How Many Diesel Multiple Units In The UK Have Voith Hydraulic Transmissions?.

Consider.

  • There are 815 trains on my list.
  • All have a Voith hydraulic transmission, with most having similar type numbers starting with T211.
  • Some are 75 mph trundlers and others are full-on 100 mph expresses.
  • All have one engine and transmission per car.

They fit into distinct groups.

Sprinters

Sprinters are a group of trains that were produced by British Rail.

The earliest were built in 1984 and all were built in the last century.

  • There are 314 trains in total.
  • All have a Cummins engine of 213 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 75 mph.

The trains may be elderly, but like some well-known actresses, they scrub up well with a little TLC.

The pictures show an immaculate refurbished Class 150 train, that I travelled on in Devon.

With a battery electric transmission, they would make a superb rural route and branch line train.

Express Sprinters

Express Sprinters are a group of trains that were produced by British Rail.

  • The earliest were built in 1990 and all were built in the last century.
  • There are 202 trains in total.
  • All have a Cummins engine of between 260 and 300 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 90 mph.

These pictures show a Class 159 train on a visit to the Swanage Railway, where it was shuttling in visitors.

With a battery electric transmission, that gave a range of say 80 miles at 90 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

Scotrail have forty Class 158 trains, which run on the following routes.

  • Glasgow Queen Street and Anniesland – 5.5 miles
  • Fife Circle Line – 61 miles round trip
  • Stonehaven and Inverurie – 66 miles round trip.
  • Borders Railway – 70 miles round trip.
  • Edinburgh and Arbroath – 76 miles
  • Inverness and Kyle of Lochalsh – 82.5 miles
  • Inverness and Aberdeen – 108 miles – Inter7City route.
  • Inverness and Wick – 174 miles
  • Inverness and Edinburgh – 175 miles – Inter7City route.

Note.

  1. The routes are shown in order of length.
  2. Anything over a hundred miles would need intermediate charging.
  3. Some routes would need charging at both ends.
  4. Glasgow Queen Street and Anniesland would probably not need a Class 158, but is very suitable for a battery electric train.
  5. The three longest routes from Inverness are probably too long for battery electric power, but two are run by Inter7City trains.
  6. A battery electric train on the Inverness and Kyle of Lochalsh route, would surely be a tourist asset.

With an eighty mile range, ScotRail could find a battery-equipped Class 158 train very useful.

Networkers

Networkers are a group of trains that were produced by British Rail.

  • The earliest were built in 1990 and all were built in the last century.
  • There are 96 trains in total.
  • All have a Perkins engine of 261 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 75 or 90 mph.

These pictures show ac selection of Class 165 and Class 166 trains.

As with the Express Sprinters, with a battery electric transmission, that gave a range of say 80 miles at 90 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

The Networkers are used by Great Western Railway and Chiltern Railways.

  • Great Western Railway do run a few long routes with their Networkers, but these routes would probably be too long for battery operation.
  • Local routes around Bristol, Exeter and Plymouth and some short branch lines could be possibilities for battery operation.
  • Great Western Railway have also leased tri-mode Class 769 trains for the Reading and Gatwick route.
  • Chiltern Railways don’t run their Networkers on the longer routes to Birmingham.
  • But they do run them on the shorter routes to Aylesbury (39 miles), Aylesbury Vale Parkway (41 miles), Banbury (69 miles), Gerrards Cross (19 miles), High Wycombe (28 miles), Oxford (66 miles) and Stratford-upon-Avon (104 miles).
  • Some of these Chiltern routes must surely be possibilities for battery operation. Especially, as all the stations in the list, don’t appear to be the most difficult to add a Fast Charge facility.

With an eighty mile range, battery-equipped Networkers could be very useful.

Turbostars

Turbostars are a group of trains that were produced at Derby.

  • The earliest were built in the last few years of the the last century.
  • There are 177 trains in total.
  • All have an MTU engine of 315 kW, with one engine per car.
  • They have a Voith T211 transmission, which drives two axles per car.
  • They have an operating speed of 100 mph.

These pictures show a selection of Turbostar trains.

As with the Express Sprinters and the Networkers, with a battery electric transmission, that gave a range of say 80 miles at 100 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

The post; DfT and Arriva CrossCountry Sign Agreement is partly based on this article on Railway News, which has the same name.

This is a paragraph from the original article.

One element of this new contract is a focus on reducing the environmental impact of the operator’s diesel fleet. For instance, Arriva CrossCountry will do a trial of using electrical shore supplies on its Bombardier Turbostar fleet when these trains are in depots for cleaning. Trains are cleaned both in the winter and at night, which means that the interior lighting and heating systems have to be powered. By using electricity to power these systems instead of the trains’ diesel engines, there will be a reduction in both emissions and noise pollution, which is doubly important when the depots are near built-up areas.

If Turbostars were to have their power unit and transmission updated to battery electric, there would be less need to provide shore supplies to where the trains were to be cleaned.

How Would Sprinters, Express Sprinters, Networkers And Turbostars Be Converted To Battery Electric Power?

The layout of the transmission in all these trains is very similar.

That is not surprising, as they are effectively different interpretations of the same theme over four decades.

  • A diesel engine provides the power.
  • On the back of the diesel engine, a hydraulic transmission is mounted.
  • The transmission performs a similar function to an automatic gearbox in a car. Trains like cars perform better in the right gear.
  • The transmission is connected to the final drive in one or more of the bogies using a cardan shaft. The propeller shaft in many rear-wheel-drive vehicles, is a cardan shaft.

In the video at about 5 mins 50 seconds, Mr. Shooter outlines how the train will be converted to battery electric drive.

  • The diesel engine, hydraulic transmission, radiator, fuel tank and all the other diesel-related gubbins will be removed.
  • A 280 kW electric traction motor will be installed, which will be connected to the cardan shaft.
  • Batteries will be installed. Possibly, they will fit, where the diesel engine was originally located.

I wouldn’t be surprised if the weight of the battery was similar to that of all the equipment that has been removed, as this would mean the train’s handling wouldn’t change.

  • Acceleration will be faster, as it is in electrically-powered road vehicles.
  • The traction motor can work in reverse to slow the train and the energy regenerated by braking can be stored in the batteries.
  • Mr. Shooter doesn’t say if his battery electric trains use regenerative braking in the video, but it is possible and a common procedure, as it saves energy.

An intelligent control system will control everything  according to the driver’s needs and wishes.

This extract from the print edition, gives Mr. Shooter’s advantages of this diesel to battery electric conversion.

‘Unlike cars, trains have a planned duty cycle so you can easily plan for when the batteries should be charged’ says. Mr. Shooter. ‘Our analysis shows the fuel cost would be halved and the maintenance cost would be halved compared to a DMU. And to allay concerns about battery life we would offer to lease batteries on a cost per mile. You get the financial payback within five years, with the greenness free of charge!’ Mr. Shooter reports early work by Vivarail suggests a converted battery train on the Far North line might need fast charge stations at four locations.

 

Where In The World Is This?

The print edition of the interview poses an interesting question.

Mr. Shooter says the opportunities are significant, and reports Vivarail is in discussions with an overseas customer about a bid for battery trains for a new 500 mile line which would incorporate 12 fast charge points at stations. He also said customers are suggesting the use of solar parks or even tidal power to feed the static batteries at the fast charge stations, rather than power coming from the local supply.

Imagine two large cities about 500 miles apart, with a string of small towns between them.

  • The small towns might be on a scenic river or coastline.
  • Commuters drive to both cities.
  • People from the two cities visit the area to relax.
  • There might even be a lightly used freight line or a dismantled railway alignment running between the cities.
  • Perhaps, the road network is overloaded and a green alternative is needed.

Given, Vivarail is part-owned, by an American entrepreneur, I would expect, the proposed line is somewhere in North America. But I also think there would be possibilities in Australia, around the coast of the Baltic Sea and India and South East Asia.

Cpnclusion

This is the conclusion of the print article in Modern Railways.

While electrification will be the key component in decarbonising traction emissions, battery technology will have a role to play, and Vivarail is at the forefront of this development.

I wholeheartedly agree.

 

October 18, 2020 Posted by | Energy Storage, Transport | , , , , , , , | 2 Comments

Hydrogen On The Line

This article on The Engineer is entitled On Track: Advances In UK Hydrogen Rail.

This sub-heading introduces the article.

An expert panel from Vivarail, Birmingham University and Alstom discuss UK developments in hydrogen powered rail transport.

The article is a very readable article, that explains, the whys, wherefores and hows of hydrogen powered rail transport in the UK.

October 15, 2020 Posted by | Hydrogen, Transport | , , , , , , | 1 Comment

Cleethorpes Station – 16th September 2020

On Wednesday, I took a trip on the South Humberside Main Line from Doncaster to Cleethorpes and back.

Cleethorpes station is a terminal station on the beach, with cafes not far away.

This Google Map shows the station and its position on the sea-front and the beach.

The station organisation was a bit shambolic at present, probably more to do with COVID-19 than anything else, but the station and the train services could be developed into something much better, when the good times return, as they surely will.

Improving The Station Facilities

The original station building is Grade II Listed and although it is only only a three-platform station, there used to be more platforms.

Five platforms or even six would be possible, if there were to be a need.

But as the station has wide platforms, is fully step-free and has most facilities passengers need, most of the improvements would involve restoring the original station building for a productive use.

The Current Train Service

The main train service is an hourly TransPennine Express service between Cleethorpes and Manchester Airport stations via Grimsby Town, Scunthorpe, Doncaster, Sheffield and Manchester Piccadilly.

The trains are Class 185 trains, which are modern diesel multiple units, which entered service in 2006.

There is also a two-hourly service along the Barton Line to Barton-upon-Humber station.

It should be noted that all services to and from Cleethorpes, call at Grimsby Town station.

Could The TransPennine Service Be Run By Battery Electric Trains?

The route between Cleethorpes and Manchester Airport can be split into the following legs.

  • Cleethorpes and Grimsby Town – Not Electrified – 3,25 miles – 8 minutes
  • Grimsby Town and Habrough – Not Electrified – 8 miles – 12 minutes
  • Habrough and Doncaster – Not Electrified – 41 miles – 56 minutes
  • Doncaster and Sheffield – Not Electrified – 19 miles – 29 minutes
  • Sheffield and Stockport – Not Electrified – 37 miles – 41 minutes
  • Stockport and Manchester Piccadilly – Electrified – 6 miles – 10 minutes
  • Manchester Piccadilly and Manchester Airport – Electrified – 11 miles – 12 minutes

Note.

  1. At the Manchester end of the route, trains are connected to the electrification for at least 44 minutes.
  2. The longest non-electrified leg is the 52 miles between Cleethorpes and Doncaster stations.
  3. Doncaster is a fully-electrified station.

This infographic shows the specification of a Hitachi Regional Battery Train.

TransPennine Express has a fleet of nineteen Class 802 trains, which can have their diesel engines replaced with battery packs to have a train with the following performance.

  • 125 mph operating speed, where electrification exists.
  • 56 mile range at up to 100 mph on battery power.
  • 15 minute battery charge time.
  • Regenerative braking to Battery.
  • They are a true zero-carbon train.

What infrastructure would be needed, so they could travel between Cleethorpes and Manchester Airport stations?

  • If between Cleethorpes and Habrough stations were to be electrified, this would give at least 20 minutes of charging time, plus the time taken to turn the train at Cleethorpes. This would surely mean that a train would leave for Manchester, with a full load of electricity on board and sufficient range to get to Doncaster and full electrification.
  • If between Doncaster and Sheffield were to be electrified, this would give at least 25 minutes of charging time, which would be enough time to fully-charge the batteries, so that Grimsby Town in the East or Stockport in the West could be reached.

I suspect that Doncaster and Sheffield could be an early candidate for electrification for other reasons, like the extension of the Sheffield tram-train from Rotherham to Doncaster.

Could The Cleethorpes And Barton-on-Humber Service Be Run By Battery Electric Trains?

Cleethorpes And Barton-on-Humber stations are just 23 miles apart.

This is probably a short enough route to be handled on and out and back basis, with charging at one end by a battery electric train. Vivarail are claiming a sixty mile range for their battery electric Class 230 trains on this page of their web site.

If between Cleethorpes and Grimsby Town stations were to be electrified, this would mean that a range of only forty miles would be needed and the batteries would be charged by the electrification.

A full hourly service, which is surely needed, would need just two trains for the service and probably a spare.

Cleethorpes And London King’s Cross Via Grimsby Town, Market Rasen, Lincoln Central And Newark North Gate

The Wikipedia entry for Cleethorpes station has references to this service.

This is the historical perspective.

In the 1970s Cleethorpes had a twice daily return service to London King’s Cross, typically hauled by a Class 55 Deltic.

That must have been an impressive sight.

And this was National Express East Coast’s plan.

In August 2007, after National Express East Coast was awarded the InterCity East Coast franchise, it proposed to start services between Lincoln and London King’s Cross from December 2010 with one morning service and one evening service extending from Lincoln to Cleethorpes giving Cleethorpes a link to London and calling at Grimsby Town and Market Rasen. These services were to be operated using the Class 180s but was never introduced. These services were scrapped when East Coast took over the franchise.

It came to nothing, but LNER have been running up to five trains per day (tpd) between London King’s Cross and Lincoln.

I will split the route into legs.

  • London King’s Cross and Newark North Gate- Electrified – 120 miles
  • Newark North Gate and Lincoln Central – Not Electrified – 16,5 miles
  • Lincoln Central and Market Rasen – Not Electrified – 15 miles
  • Market Rasen and Habrough – Not Electrified – 21 miles
  • Habrough and Grimsby Town – Not Electrified – 8 miles
  • Grimsby Town and Cleethorpes – Not Electrified – 3.25 miles

Note that a  round trip between Newark North Gate and Lincoln Central is thirty-three miles.

This means it would be possible for one of LNER’s Class 800 trains, that had been fitted with a battery pack and converted into one of Hitachi’s Regional Battery trains, would be able to run a London King’s Cross and Lincoln Central service without using a drop of diesel or needing a charge at Lincoln Central station.

Would it be possible to extend this service to Grimsby Town on battery power?

I suggested earlier that between Cleethorpes and Habrough should be electrified.

As Newark North Gate and Habrough stations are 52.5 miles apart, it would be rather tight for a battery electric train to cover the whole route without an extra charge somewhere.

Possible solutions could be.

  • Fit a bigger battery in the trains.
  • Extend the electrification at Newark North Gate station.
  • Extend the electrification at Habrough station.

I;m sure that there is a solution, that is easy to install.

Conclusion

If between Habrough and Cleethorpes station were to be electrified, these services could be run by battery electric trains.

  • Cleethorpes and Manchester Piccadilly
  • Cleethorpes and Barton-on-Humber
  • Cleethorpes and London King’s Cross

Note.

  1. The Manchester and London services would be run by Hitachi Regional Battery Trains converted from Class 800 and Class 802 trains.
  2. The Barton service could be run by a Vivarail Class 230 train or similar.

The first two services would be hourly, with the London service perhaps 1 or 2 tpd.

Cleethorpes would be well and truly on the rail network.

September 18, 2020 Posted by | Health, Transport | , , , , , , , , , , , | Leave a comment

Could Hitachi’s Class 800 Trains Work The Cornish Main Line On Battery Power?

The distance between Plymouth and Penzance stations along the Cornish Main Line is just seventy-nine miles and thirty-eight chains. I’ll call it 79.5 miles.

Hitachi’s proposed train is described in this infographic.

The range on battery power of 90 km or 56 miles, will not be quite enough to get all the way between Plymouth and Penzance!

But note the phrase – Allows Discontinuous Electrification; at the top of the infographic.

Will Electrification Be Needed?

Obviously or the train could perhaps wait at Truro for ten minutes to charge the batteries.

But how customer-unfriendly and disruptive to good operating practice is that?

Could Bigger Batteries Be Fitted?

This obviously is a possibility, but surely an operator would prefer all of their trains to have the same battery range and updating them all for a longer distance might not be an economic proposition.

Could Intelligent Discontinuous Third-Rail Electrification Be Used?

Third-rail electrification, is hated by the Health & Safety Taliban, as it occasionally kills people trespassing or falling on the railway. But in the UK, we have around 1,500 miles of third-rail electrified line, that generally operates to a high level of safety.

Can my modern successors make third-rail electrification absolutely safe in new installations?

Third-Rail And Discontinuous Electrification Installations!

To connect to overhead electrification, the driver or an automatic system on the train, must raise the pantograph. It doesn’t often go wrong, but when it does, it can bring down the wires. This section on panotograph weaknesses from Wikipedia give more details.

With third-rail, the connection and disconnection is automatic, with far less to go wrong.

These pictures show a gap in the third-rail electrification at the Blackfriars station, which was rebuilt in 2012, so it must meet all modern regulations.

Note the gap in the third-rail, which carries the current.

  • The third-rail shoes on the train disconnect and connect automatically, as the train passes through.
  • The only rails with voltage are between the tracks for safety.
  • The high-tech shields appear to be real tree wood painted yellow.

As an Electrical Engineer, I actually suspect, that this gap in the conductor rail, is to isolate the North and South London electricity supplies from each other,, so that a catastrophic failure on one side doesn’t affect both halves of Thameslink.

Third-Rail Electrification In Stations

Most rail passengers in the UK, understand third-rail electrification, if they’ve ever used trains in the South of London or Merseyside.

Electrifying stations using third-rail equipment could enable battery trains to go further.

  • Stopping trains could top-up their batteries.
  • Passing trains, that were low on power could make a pit-stop.
  • All trains would connect automatically to the third-rail, when in the station.

The safety level would be raised by making sure that the third-rail was electrically-dead unless a train was over the top.

I am by training a Control Engineer and one of my first jobs in a dangerous factory as a fifteen-year-old,  was designing and building safety systems, that cut power to guillotines, when the operator put their hands somewhere they shouldn’t! I remember endlessly testing the system with an old broom, which survived unscathed.

I believe that only switching on the electrification, when a train completes the circuit, is a fairly simple operation for modern control switchgear. I can imagine an intelligent switch constantly monitoring the resistance  and only switching on power, when the resistance in the circuit looks like a train.

Third-Rail Electrification In Discrete Locations

Overhead electrification can receive complaints in scenic locations, but third-rail electrification can be invisible in tunnels and over bridges and viaducts.

The Cornish Main Line has four tunnels, two bridges, which include the Royal Albert Bridge, and no less than thirty-two viaducts.

How many of these could be used to hide electrification?

  • Any electrified sections could be intelligently controlled to increase safety.
  • Power for the electrification could come from local renewable sources, using techniques like Riding Sunbeams.

I can see engineers developing several techniques for discrete electrification.

Third-Rail And Charging Battery Trains

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Hitachi And Third Rail

The picture shows a Hitachi Class 395 train at Gillingham station.

 

The silver-coloured  third-rail equipment is clearly visible, under the javelin logo.

These trains are cousins of all the new Hitachi trains in the UK, so I suspect fitting third-rail equipment to Class 80x trains, is just a matter of finding the appropriate documents on the computer and raiding the parts bin.

I suspect, as Hitachi will probably be building some more trains for Southeastern to start the Highspeed service between London St. Pancras and Hastings, that Hitachi are already working on the design of a third-rail high-speed train with batteries.

I doubt that Hitachi have any fears about fitting third-rail gear to their trains, as an optional extra.

Electrifying Between Plymouth And Penzance

Obviously, Plymouth and Penzance stations would have charging facilities, but now many would the trains handle the 79.5 miles in between?

There are three possibilities.

Limited-Third Rail Electrification

As I indicated earlier short lengths of intelligent third-rail electrification could be added at various places on the route.

A full battery would take the train fifty-six miles and as the Cornish Main Line is nearly eighty miles long, I suspect that the train would need almost a full charge halfway along the route.

  • Hitachi claim in the infographic, that a full-charge takes 10-15 minutes, when the train is static, so I will assume the largest figure of this range, as charging on the move might not be as efficient, with everything happening at 90 mph.
  • So I will assume a fifteen minute charge time.
  • Typically, a Class 80x takes two hours between Penzance and Plymouth, which is an average speed of just 40 mph.
  • In fifteen minutes, the train will go ten miles. So a rough estimate would say ten miles should be electrified.

As electrification in stations would allow trains to have a bigger sup, a scientifically-correct simulation would show the best philosophy.

The London Paddington and Penzance services call at the following stations, that are West of Plymouth.

Liskeard, Saltash, St. Germans, Bodmin Parkway, Lostwithiel, Par, St Austell, Truro, Redruth, Camborne, Hayle and St Erth

Note.

  1. Some smaller stations do get skipped.
  2. According to Real Time Trains, stops seem to take 1-2 minutes.
  3. Trains are usually nine- or ten-cars, but I feel that the proposed improvements between Bodmin General and Bodmin Parkway stations, that I wrote about in Increased Service Provision Bodmin General-Bodmin Parkway, may result in a large reorganisation of services between London and Cornwall.

Could it be that electrifying the major stations with third-rail electrification would enable enough power to be taken on board by a train running between London Paddington and Penzance, so that the journey could be completed?

Vivarail Fast Chargers

Vivarail’s Fast Chargers could be fitted at all or selected stations and trains could take a sip as and when they need.

A charger would also be needed at any Cornish terminal station, that would have services from battery electric trains.

A Mixture Of Third-Rail Electrification And Vivarail Fast Chargers

Both technologies are interchangeable and can be used with compatible battery electric trains.

I would expect an accurate mathematical model will indicate the best layout of electrification and Fast Chargers.

 

July 26, 2020 Posted by | Transport | , , , , , , , , , , | Leave a comment

Electrifying Wales

I would not be surprised to learn that Wales wants to decarbonise their railways.

At present, Wales only has the following electrified railways either in operation or under construction.

  • The South Wales Main Line between the Severn Tunnel and Cardiff.
  • The South Wales Metro based on local railways around Cardiff and Newport is being created and will be run by electric trains.

There is no more electrification planned in the future.

Hitachi’s Specification For Battery Electric Trains

Recently, Hitachi have released this infographic for their Regional Battery Train.

This gives all the information about the train and a definitive range of 90 km or 56 miles.

The Welsh Rail Network

If you look at the network of services that are run by Transport for Wales Rail Services, they connect a series of hub stations.

Major hubs include the following stations.

  • Cardiff Central – Electrified
  • Chester
  • Hereford
  • Shrewsbury
  • Swansea

Smaller hubs and termini include the following stations.

  • Aberystwyth
  • Birmingham International – Electrified
  • Birmingham New Street – Electrified
  • Blaenau Ffestiniog
  • Carmarthen
  • Crewe – Electrified
  • Fishguard Harbour
  • Hereford
  • Holyhead
  • Llandudno Junction
  • Manchester Airport – Electrified
  • Manchester Piccadilly – Electrified
  • Machynlleth
  • Milford Haven
  • Newport – Electrified
  • Pembroke Dock

Running Welsh Routes With Electric Trains

These routes make up the Welsh rail network.

Chester And Crewe

Consider.

  • The route between Chester and Crewe is without electrification.
  • Crewe and Chester are 21 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Crewe with full batteries, that it will be possible to run between Chester and Crewe stations.

Chester And Holyhead via Llandudno Junction

Consider.

  • All services between Llandudno Junction and England call at Chester.
  • All services running to and from Holyhead call at Llandudno Junction.
  • The route between Chester and Holyhead is without electrification.
  • Chester and Llandudno Junction are 54 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

I believe that if a battery-electric train with a range of 56 miles can leave Chester, Llandudno Junction and Holyhead with full batteries, that it will be possible to run between Chester and Holyhead stations.

Chester And Liverpool Lime Street

Consider.

  • The route between Runcorn and Liverpool Lime Street is electrified.
  • The route between Chester and Runcorn is without electrification.
  • Chester and Runcorn are 14 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Runcorn with full batteries, that it will be possible to run between Chester and Liverpool Lime Street stations.

Chester And Manchester Airport

Consider.

  • The route between Warrington Bank Quay and Manchester Airport is electrified.
  • The route between Chester and Warrington Bank Quay is without electrification.
  • Chester and Warrington Bank Quay are 18 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Warrington Bank Quay with full batteries, that it will be possible to run between Chester and Manchester Airport stations.

Chester And Shrewsbury

Consider.

  • The route between Chester and Shrewsbury is without electrification.
  • Chester and Shrewsbury are 42 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Shrewsbury and Chester with full batteries, that it will be possible to run between Chester and Shrewsbury stations.

Llandudno And Blaenau Ffestiniog

Consider.

  • The route between Llandudno and Blaenau Ffestiniog is without electrification.
  • Llandudno and Blaenau Ffestiniog are 31 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Llandudno and Blaenau Ffestiniog with full batteries, that it will be possible to run between Llandudno and Blaenau Ffestiniog stations.

Machynlleth And Aberystwyth

Consider.

  • The route between Machynlleth and Aberystwyth is without electrification.
  • Machynlleth and Aberystwyth are 21 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Machynlleth and Aberystwyth with full batteries, that it will be possible to run between Machynlleth and Aberystwyth stations.

Machynlleth And Pwllheli

Consider.

  • The route between Machynlleth and Pwllheli is without electrification.
  • Machynlleth and Pwllheli are 58 miles apart.

I believe that if a battery-electric train with a range of upwards of 58 miles, can leave Machynlleth and Pwllheli with full batteries, that it will be possible to run between Machynlleth and Pwllheli stations.

Machynlleth And Shrewsbury

Consider.

  • The route between Machynlleth and Shrewsbury is without electrification.
  • Machynlleth and Shrewsbury are 61 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Machynlleth and Shrewsbury with full batteries, that it will be possible to run between Machynlleth and Shrewsbury stations.

Shrewsbury and Birmingham International

Consider.

  • The route between Birmingham International and Wolverhampton is electrified.
  • The route between Shrewsbury and Wolverhampton is without electrification.
  • Shrewsbury and Wolverhampton are 30 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury and Wolverhampton with full batteries, that it will be possible to run between Shrewsbury and Birmingham International stations.

 Shrewsbury And Cardiff Central via Hereford

Consider.

  • All services between Cardiff Central and Shrewsbury call at Hereford.
  • The route between Cardiff Central and Newport is electrified.
  • The route between Newport and Shrewsbury is without electrification.
  • Shrewsbury and Hereford are 51 miles apart.
  • Hereford and Newport are 44 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Hereford and Newport with full batteries, that it will be possible to run between Shrewsbury and Cardiff Central stations.

Shrewsbury And Crewe

  • The route between Shrewsbury and Crewe is without electrification.
  • Shrewsbury and Crewe are 33 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Shrewsbury and Crewe with full batteries, that it will be possible to run between Shrewsbury and Crewe stations.

Shrewsbury and Swansea

Consider.

  • The Heart of Wales Line between Shrewsbury and Swansea is without electrification.
  • Shrewsbury and Swansea are 122 miles apart.
  • Trains cross at Llandrindod and wait for up to eleven minutes, so there could be time for a charge.
  • Shrewsbury and Llandrindod are 52 miles apart.
  • Swansea and Llandrindod are 70 miles apart.

It appears that another charging station between Swansea and Llandrindod is needed

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Swansea and the other charging station, with full batteries, that it will be possible to run between Shrewsbury and Swansea stations.

Swansea And Cardiff Central

Consider.

  • The route between Swansea and Cardiff Central is without electrification.
  • Swansea and Cardiff Central are 46 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Cardiff Central with full batteries, that it will be possible to run between Swansea and Cardiff Central stations.

Swansea And Carmarthen

Consider.

  • The route between Swansea and Carmarthen is without electrification.
  • Swansea and Carmarthen are 31 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Carmarthen with full batteries, that it will be possible to run between Swansea and Carmarthen stations.

Swansea And Fishguard Harbour

Consider.

  • The route between Swansea and Fishguard Harbour is without electrification.
  • Swansea and Fishguard Harbour are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Fishguard Harbour are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Fishguard Harbour with full batteries, that it will be possible to run between Swansea and Fishguard Harbour stations.

Swansea And Milford Haven

Consider.

  • The route between Swansea and Milford Haven is without electrification.
  • Swansea and Milford Haven are 72 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Milford Haven are 41 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Milford Haven with full batteries, that it will be possible to run between Swansea and Milford Haven stations.

Swansea And Pembroke Dock

Consider.

  • The route between Swansea and Pembroke Dock is without electrification.
  • Swansea and Pembroke Dock are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Pembroke Dock are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Pembroke Dock with full batteries, that it will be possible to run between Swansea and Pembroke Dock stations.

Other Routes

I have not covered these routes.

  • Borderlands Line
  • Cardiff Valley Lines, that will be part of the South Wales Metro
  • Routes on the electrified South Wales Main Line, that are to the East of Cardiff.

The first will run between Chester and the electrified Merseyrail system and the others will be electrified, except for short stretches.

Stations Where Trains Would Be Charged

These stations will need charging facilities.

Aberystwyth

Aberystwyth station only has a single terminal platform.

I’ve not been to the station, but looking at pictures on the Internet, I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems.

Birmingham International

Birmingham International station is fully-electrified and ready for battery-electric trains.

Blaenau Fflestiniog

Blaenau Ffestiniog station has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Cardiff

Cardiff station is fully-electrified and ready for battery-electric trains.

Chester

Chester station has two through platforms and one bay platform, that are used by Trains for Wales.

  • The through platforms are bi-directional.
  • The bay platform is used by services from Liverpool Lime Street and Manchester Airport and Piccadilly.
  • The station is a terminus for Merseyrail’s electric trains, which use 750 VDC third-rail electrification.
  • Some through services stop for up to seven minutes in the station.

This Google Map shows the station.

There is plenty of space.

The simplest way to charge trains at Chester would be to electrify the two through platforms 3 and 4 and the bay platform 1.

I would use 750 VDC third-rail, rather than 25 KVAC overhead electrification.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

I have a vague recollection, that there is an avoiding line at Chester station, so trains can go straight through. Perhaps that should be electrified too.

Carmarthen

Carmarthen station is a two platform station, with a rather unusual layout, that I wrote about in Changing Trains At Carmarthen Station.

I took these pictures when I passed through in 2016.

Note the unusual step-free crossing of the tracks.

This Google Map shows the layout at the station.

I believe it is another station, where third-rail electrification could be the solution.

  • Most trains seem to reverse at the station, which gives time for a full charge.
  • Others terminate here.

but would they still allow passengers to cross the line as they do now, whilst trains are being charged?

Crewe

Crewe station is fully-electrified.

  • Trains for Wales seem to use Platform 6 for through trains and the bay Platform 9 for terminating trains.
  • Both platforms appear to be electrified.
  • Terminating trains appear to wait at least 9-11 minutes before leaving.

It does appear that Crewe station is ready for battery-electric trains.

Fishguard Harbour

Fishguard Harbour station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Hereford

Hereford station has four through platforms.

This Google Map shows the station.

There is plenty of space.

As with Chester, I would electrify this station with 750 VDC third-rail equipment.

But the electrification wouldn’t be just for train services in Wales.

  • West Midlands Trains, run an hourly service to Birmingham New Street and there is only a forty-one mile gap in the electrification between Hereford and Bromsgrove.
  • Great Western Railway’s service to London, has a massive ninety-six mile run to the electrification at Didcot Junction, which could be bridged by installing charging facilities at Worcestershire Parkway and/or Honeybourne stations.

Both services have generous turnround times at Hereford, so would be able to leave fully-charged.

Distances from Hereford station are as follows.

  • Abergavenny – 24 miles
  • Bromsgrove – 41 miles
  • Great Malvern – 21 miles
  • Honeybourne – 48 miles
  • Ludlow – 13 miles
  • Newport – 44 miles
  • Shrewsbury – 51 miles
  • Worcester Parkway – 33 miles

Hereford station could be a serious battery-electric train hub.

Holyhead

Holyhead station has three terminals platforms.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Liverpool Lime Street

Liverpool Lime Street station is fully-electrified and ready for battery-electric trains.

Llandrindod

Llandrindod station has two through platforms.

I took these pictures at the station as I passed through in 2016.

The Heart of Wales Line is certainly a route, that would benefit from larger trains. Zero-carbon battery-electric trains would surely fit well in the area.

This Google Map shows the station.

It would appear that, it is another station, that could be fitted with third-rail electrification to charge the trains.

Distances from Llandrindod station are as follows.

  • Shrewsbury – 52 miles
  • Llandovery – 27 miles
  • Llanelli – 59 miles
  • Swansea – 70 miles

It would appear that a second station with charging facilities or bigger batteries are needed.

Llandudno Junction

Llandudno Junction station has four platforms.

This Google Map shows the station.

There is plenty of space.

As at Chester, the simple solution would be to electrify the platforms used by trains, that will need charging.

Butb there may also be a wider plan.

Llandudno Junction station is at the Western end of a string of five closely-spaced stations with Prestatyn station in the East.

  • Llandudno Junction and Prestatyn are eight miles apart.
  • Trains take twenty-three minutes to pass through this section.
  • Some trains do a detour to Llandudno station before continuing.
  • For part of the route, the railway lies between the dual-carriageway A55 road and the sea.

So why not electrify this section of railway between Llandudno Junction and Prestatyn stations?

  • Either 750 VDC this-rail or 25 KVAC overhead electrification could be used.
  • Prestatyn and Chester are 46 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

If third-rail electrification were to be used, it might be advantageous to electrify to Llandudno station.

  • It would be less intrusive.
  • It would be quieter in an urban area.
  • It would give the trains to Blaenau Ffestiniog trains a good charge.

But above all third-rail electrification might cost a bit less and cause less disruption to install.

Machynlleth

Machynlleth station is where the Aberystwyth and Pwllheli services split and join.

This Google Map shows the station.

Consider.

  • There is a train depot by the station.
  • Will there be a good power supply at the station to charge the trains?
  • Machnylleth and Pwllhelli are 58 miles apart.
  • Machynlleth and Shrewsbury are 61 miles apart.

I think that Machynlleth might be pushing things too far, without extra stations with charging facilities.

One solution might be to develop the Riding Sunbeams concept and electrify the route between Newtown and Dovey Junction via Machynlleth, using third-rail technology powered-by solar or wind power.

Another solution would be batteries with a larger capacity.

Manchester Airport

Manchester Airport station is fully-electrified and ready for battery-electric trains.

Manchester Piccadilly

Manchester Piccadilly station is fully-electrified and ready for battery-electric trains.

Milford Haven

Milford Haven station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pembroke Dock

Pembroke Dock station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pwllheli

Pwhelli station is a only has a single terminal platform.

This Google Map shows the location of the station.

The stsation is at the North West corner of the bay.

My first reaction, when I saw this was that I have to go.

So I took a closer look at the station instead.

I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems. Although, there might be a problem getting a good enough connection to the National Grid.

Shewsbury

Shrewsbury station is a five-platform station.

This Google Map shows the station’s unusual location over the River Severn.

It must be one of few stations in the world, where trains enter the station from three different directions.

  • From Crewe and Chester to the North.
  • From Hereford and Wales to the South.
  • From Birmingham and Wolverhampton in the East.

Adding electrification to all or selected platforms should allow trains to recharge and be on their way.

  • Under current timetables, dwell times in Shrewsbury are up to eight minutes.
  • I would suspect the train times could be adjusted, so that trains left the station with full batteries.

With battery-electric services to Aberystwyth, Birmingham International, Birmingham New Street, Cardiff Central, Chester, Crewe, Hereford, Holyhead, London Euston, Manchester, Pwllheli and Swansea, it will be a very important station.

Swansea

Swansea station has four terminal platforms.

A charging facility could be added to an appropriate number of platforms.

Or perhaps, the last few miles of track into the station should be electrified, so trains could charge on the way in, charge in the station and charge on the way out.

Third Rail Electrification

I have suggested in this post, that 750 VDC third-rail electrification could be used in several places.

I will repeat what I said earlier, when discussing Chester station.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

Third-rail electrification should be seriously considered.

A Standardised Terminal Solution

In this post, I mentioned that the following stations could be powered by a scandalised solution, as they are all one platform, terminal stations.

  • Aberystwyth
  • Blaenau Ffestiniog
  • Fishguard Harbour
  • Holyhead
  • Milford Haven
  • Pembroke Dock
  • Pwllheli

The system might also be applicable at Carmarthen and Swansea.

My view is that Vivarail’s Fast Track charging based on third-rail technology would be ideal. I discussed this technology in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Conclusion

With a bit of ingenuity, all train services run by Transport for Wales, can be run with battery-electric trains.

 

July 9, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Vivarail And Hitachi Seem To Be Following Similar Philosophies

This press release on the Vivarail web site, is entitled Battery Trains And Decarbonisation Of The National Network.

This is the two paragraphs.

Vivarail welcomes the recent announcements regarding new technologies for rail, and the growing understanding that battery trains will be a key part of the decarbonisation agenda.

Battery trains have been much misunderstood until now – the assumption has been that they can’t run very far and take ages to recharge.  Neither of these are true! Vivarail’s trains:

To disprove the assumptions, they then make these points.

  • Have a range of up to 100 miles between charges
  • Recharge in only 10 minutes

They also make this mission statement.

Vivarail’s battery train, Fast Charge and power storage system is a complete package that can drop into place with minimal cost and effort to deliver a totally emission-free independently powered train, ideally designed for metro shuttles, branch lines and discrete routes across the country.

They add these points.

  • Batteries can be charged from 750 VDC third-rail or 25 KVAC overhead electrification or hydrogen fuel cells.
  • A daily range of 650 miles can be achieved on hydrogen.
  • Vivarail seem very positive about hydrogen.
  • The company uses modern high-performance lithium Ion pouch batteries from Intilion.
  • It also appears that Vivarail are happy to install their traction package on other trains.

The press release finishes with this paragraph.

The rail industry needs to move now to hit its own decarbonisation targets and assist with the national effort.  Battery trains are the quick win to achieve that.

Following on from Hitachi’s announcement on Monday, that I wrote about in Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains, it does appear that battery trains will be arriving soon in a station near you!

July 8, 2020 Posted by | Transport | , , , , , | 20 Comments

A Pair Of Class 230 Trains In The Sun

The picture is from Vivarail and shows a pair of their Class 230 trains in the sun.

Compare it with this picture I took in 2014 and showed with others in Raw Material For A New Train.

The trains certainly scrub-up well.

The improvement is more than cosmetic, if you read this Press Release from Vivarail, which is entitled First Time Together – 230006 And 230007.

Features of this pair of trains for Transport for Wales include.

  • They are the UK’s first battery hybrid trains.
  • The trains are geo-fenced, so that the gensets are not used in sensitive areas or stations.
  • The batteries allow fast acceleration comparable with other electric trains.
  • The gensets charge the batteries.
  • They have high-specification interiors.

These trains must be an ultimate example of recycling, when you consider that the London Underground D78 Stock, on which the trains are based, were built around forty years ago.

Conclusion

I’m certainly looking forward to riding in these trains.

June 9, 2020 Posted by | Transport | , , | 2 Comments

Reinstatement Of Branch Lines On The Isle Of Wight

This is one of the successful bids in the First Round of the Restoring Your Railway Fund.

This article on isleofwhiteradio is entitled Funding From Government To Develop Isle Of Wight Railway Reopening Proposals.

The article lists two proposed schemes for expansion of the Island Line.

• Extension of the existing Island Line service (Ryde-Shanklin) south of Shanklin to reach Ventnor, calling at Wroxall.
• Integration with, and extension of, the existing Isle of Wight Steam Railway route to provide passenger services through Smallbrook from Ryde to Newport.

The article has an informative map.

Nearly, three years ago, I wrote Diesel And Battery Trains Could Be The Solution For Island Line, based on an article on the Island Echo, with the same title.

Since then, things have moved on and these developments have started.

  • Vivarail are building a fleet of five new zero-carbon Class 484 electric trains.
  • Network Rail have promised £5 million to upgrade Ryde Pier to secure the future of the line.
  • The track and signalling system will be upgraded this winter.
  • The passing loop at Brading will be reinstated.

This will allow a thirty minute service interval from May 2021.

Wikipedia states that a twenty-minute service could be possible in the future.

The Trains

These pictures show the Class 230 trains on the Marston Vale Line.

Note.

  1. These are a diesel-electric version of the Class 484, which will use the existing third-rail electrification and possibly batteries on the Island Line.
  2. The operator can choose an interior appropriate to their needs.
  3. Three-car versions of the train have been ordered by Transport for Wales.

Battery versions of the train are available with a forty-mile range, See Retired London Underground Train Travels Forty Miles Solely On Battery Power.

The Extension To Ventnor

Looking at the map and measuring distance using methods that would have been known to Drake and Grenville, I estimate that the distance between Shanklin and Ventnor via Wroxhall is less than fifteen miles.

  • As the battery range of Vivarail’s trains can be in the region of forty miles, this must open up the possibility of using battery power between Shanklin and Ventnor.
  • Building the extension without electrification would lower the cost.
  • Trains running from Shanklin to Ventnor would be charged on the electrified section of the route.
  • One of Vivarail’s charging systems could be installed at Ventnor if required. See Charging A Battery-Powered Class 230 Train.

Would Vivarail just add a third car with batteries to the Class 484 trains and update the software to enable trains to run on the extension to Ventnor?

The Extension To Newport

The Island Line connects to the Isle of Wight Steam Railway at Smallbrook Junction station.

Note.

  1. The Island line running North-South on the Eastern side of the map.
  2. The Isle of Wight Steam Railway curving away to the South-West.
  3. The two railways connecting at Smallbrook Junction station.
  4. Ryde is to the North.
  5. Shanklin is to the South.
  6. Newport is to the West.

I doubt, that allowing trains to run between Ryde and Newport, would be one of the most challenging projects in railway engineering.

The map on the isleofwightradio web site, shows a chord, that would allow trains to run between Shanklin and Newport.

I would estimate that the distance between Smallbrook Junction and Newport is around ten miles.

  • The terminus would appear to be in the Barton area of Newport.
  • Much of the route would appear to be across open countryside.
  • The only place for a station could be the Isle of Wight Crematorium. Why not?

As with the extension to Ventnor, I believe that battery-electric Class 484 trains could run services to Newport.

Will The Isle Of Wight Steam Railway Object?

I very much feel, that if the scheme is well-designed, that they could be a beneficiary because of increased numbers of visitors.

The scheme might also be able to give the steam railway paths to run steam trains as far as Ryde St. John’s Road station.

Conclusion

This proposal is an elegant one, that uses proven technology and builds smoothly on work, that is already underway.

It is also a zero-carbon solution, if the electricity is from renewable sources.

I also suspect, if Network Rail put one of their brighter teams on the current upgrade to the track and signalling of the Island Line, that the extra work needed to connect to Ventnor and Newport, could be planned and costed in a very short time.

 

 

May 27, 2020 Posted by | Transport | , , , , , , , | 6 Comments

A Train With A Geo-Fence

This article on Rail Advent is entitled New Train For Wrexham to Bidston Line Begins Testing.

The testing of Vivarail‘s Class 230 train for Transport for Wales, is taking place along the Cotswold Line, prior to entering service.

This is the most significant paragraph in the article.

The train is also geo-fenced so that the gensets are never used in stations or sensitive areas, although, the batteries are extremely quiet anyway.

From personal experience of battery trains, including Vivarail’s prototype in Scotland, battery trains are very quiet.

May 26, 2020 Posted by | Transport | , , , , | 2 Comments