The Anonymous Widower

Wind And Solar Boom Will Bring Energy Surplus

The title of this post, is the same as that of this article on The Times.

Under the picture, is this sub-title.

The government has set a target of 50 gigawatts of offshore wind farms by 2030, up from about 10 gigawatts at present.

According to this Wikipedia list of offshore wind farms, the UK currently has 2180 offshore turbines with a capacity of 8113 MW.

These wind farms appear to be planned.

Hornsea

The Hornsea wind farm is currently supplying 1.2 GW to the grid, but it is planned to be expanded to 6 GW, which is another 4.8 GW.

East Anglia Array

The East Anglia Array is currently supplying 0.7 GW to the grid, but it is planned to be expanded to 7.2 GW, which is another 6.5 GW.

Sofia

The Sofia wind farm will supply 1.4 GW from 2026.

Moray East

The Moray East wind farm will supply 0.95 GW from 2022.

Neart Na Gaoithe

The Neart Na Gaoithe wind farm will supply 0.45 GW from 2023.

Triton Knoll

The Triton Knoll wind farm will supply 0.86 GW from 2022.

Seagreen

The Seagreen wind farm will supply 1.1 GW from 2023.

Dogger Bank

The Dogger Bank wind farm will supply 3.6 GW from 2025.

Moray West

The Moray West wind farm will supply 1.2 GW from 2025.

Rampion 2

The Rampion 2 wind farm will supply 1.2 GW before 2030.

Norfolk Boreas

The Norfolk Boreas wind farm will supply 1.8 GW before 2030

Norfolk Vanguard

The Norfolk Vanguard wind farm will supply 1.8 GW before 2030

These wind farms total up to 31.1 GW

Morgan And Mona

The Morgan and Mona wind farms will supply 3 GW from 2028.

ScotWind

This map shows the wind farms in the latest round of leasing in Scotland.

These wind farms should be providing 24.8 GW by 2030.

Celtic Sea

In Two More Floating Wind Projects In The Celtic Sea, I give details of six wind farms to be developed in the Celtic Sea, that will produce a total of 1.2 GW.

All should be delivered by 2030.

Northern Horizons

In Is This The World’s Most Ambitious Green Energy Solution?, I talk about Northern Horizons, which will produce 10 GW of wind energy from 2030.

An Armada Of Wind Farms

As many of these wind farms will be floating and wind-powered, the collective noun must surely be an armada.

These are some figures.

  • The size is certainly spectacular at 70.1 GW.
  • As the UK electricity consumption in 2020-2021 was 265.4 TWh, the average hourly production throughout the year is 30.3 GW.
  • As I write this post, the UK is generating 30.1 GW.

As the best offshore wind farms have a capacity factor of around fifty percent, we should be able to power the UK with wind power alone.

So when The Times says this in the first two paragraphs of the article.

Britain will have excess electricity supplies for more than half of the year by 2030 as a huge expansion of wind and solar power transforms the energy system, a new analysis suggests.

Energy storage technologies, including batteries and electrolysers to make hydrogen, will need to be deployed at massive scale to prevent this surplus electricity going to waste, according to LCP, a consultancy.

The article would appear to correct.

The Need For Energy Storage

If we look at energy production at the current time, energy production is as follows.

  • Biomass – 0.5 GW
  • Gas – 17 GW
  • Nuclear – 5 GW
  • Onshore Wind – 12 GW with 20 % capacity factor – 2.4 GW
  • Offshore Wind – 8.1 GW with 30 % capacity factor – 2.4 GW
  • Interconnects – 0.4 GW
  • Others – 0.5 GW

This totals up to 28.2 GW.

In 2030, energy production could be as follows.

  • Biomass – 0.5 GW
  • Nuclear – 5 GW
  • Onshore Wind – 12 GW with 20 % capacity factor – 2.4 GW
  • Offshore Wind – 30 GW with 30 % capacity factor – 9 GW
  • Floating Offshore Wind – 40 GW with 50 % capacity factor – 20 GW
  • Others – 0.5 GW

This totals up to 37.4 GW.

So if you take a typical day, where on average throughout the day we are producing around 7 GW more of electricity than we need, we will actually produce around 7 * 24 GWh = 168 GWh of excess electricity

Whichever was you look at it, we have got to do something concrete with a large amount of electricity.

  • Store it in batteries of various types from lithium ion, through new types of batteries like those being developed by Highview Power and Gravitricity to pumped hydro storage.
  • Store the energy in the batteries of electric cars, vans, buses, trucks, trains and ships.
  • Store the energy in Norwegian pumped hydro storage.
  • Convert it to hydrogen using an electrolyser and blend the hydrogen with the natural gas supply.
  • Convert it to hydrogen using an electrolyser and use the hydrogen to make zero-carbon steel, concrete and chemicals.
  • Convert it to hydrogen using an electrolyser and develop new zero-carbon industries.
  • Convert it to hydrogen using an electrolyser and store the hydrogen in a depleted gas field.
  • Sell it to Europe, either as electricity or hydrogen.

Note.

  1. We are going to have to build a lot of batteries and I suspect they will be distributed all round the country.
  2. We are going to have to build a lot of hydrogen electrolysers.
  3. We have world class battery and electrolyser companies.

We should also fund the following.

  • Developments of technology, that makes better batteries, electrolysers, boilers and heat pumps.
  • I would also do a lot of work to increase the capacity factor of wind farms.

I also believe that if we have masses of electricity and hydrogen, we might find as a country, it’s very beneficial in terms of jobs, exports and a healthier economy to invest in certain industries.

Conclusion

The future is rosy.

 

May 7, 2022 - Posted by | Energy, Energy Storage, Hydrogen | , , , , ,

4 Comments »

  1. Wind load factor was below 50% during April and you can fill the whole of the North Sea up with windmills but when you get a high depression over the North Sea none of them will produce any leccy. Im fine with that but but we mustn’t remove anymore fossil fuel plant from the system as we will need on days like today. Note we have 14GW of offshore wind according to NG.

    Comment by Nicholas Lewis | May 7, 2022 | Reply

    • Wait a minute, it’s not finished.

      Comment by AnonW | May 7, 2022 | Reply

  2. Firstly im all for decarbonising electricity production but the costs we are incurring are already unsustainable although conveniently Ukraine invasions has come along to ramp up prices to a level that at least makes renewables look more viable. I can’t see us getting to 50GW of wind by 2030 nor the level of storage needed to back off fossil fuels so its imperative that the CCGT power stations are incentivised to stay on the system as we can’t get away with the variability that renewables bring. Just take today where wind has averaged around 5GW across last 24hrs but gas has been 15GW so we would need 360GWh of storage to cover that deficit. Currently batteries can give us about 4GWh with pumped storage about 15GWh so its going to need a huge build out to cover a day like today. Worst case situation is mid winter with a blocking high depression across N. Sea which could easily sit there 3-4 days. That would be 30GWx4 days or c 3TWh. I say again CCGTs must be retained on the system it will cost us but short of national power cuts we have no choice given where we are today. Sure if some new super battery appears then fine we can re-evaluate. Also we can’t overlook the drive to electrify transport and heating will only add to demand as well which needs to be factored in.

    Comment by Nicholas Lewis | May 8, 2022 | Reply

  3. […] Wind And Solar Boom Will Bring Energy Surplus. […]

    Pingback by Could Fortescue Future Industries’ Green Hydrogen Help Europe Ditch Russian Energy? « The Anonymous Widower | May 9, 2022 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: