The Anonymous Widower

Is Bombardier’s 125 mph Bi-Mode Aventra With Batteries, A 125 mph Battery-Electric Aventra With Added Diesel Power To Extend The Range?

The LEVC TX taxi is described in Wikipedia as a plug-in hybrid range-extender electric vehicle.

Could Bombardier’s 125 mph Bi-mode Aventra with batteries, be an equivalent rail vehicle?

I will start with the Class 720 train for Greater Anglia, which is probably the nearest train to a 125 mph Aventra in production.

  • It is formed of ten-cars.
  • It is 243 metres long.
  • It can accommodate 1,100 seated and 290 standing passengers.
  • It has a 100 mph operating speed, although this article on the East Anglian Daily Times, says it will be tested at up to 110 mph.

I will use this information to make some assumptions about Bombardier’s proposed 125 mph bi-mode Aventra with batteries.

Weight Of A Ten-Car Class 720 Train

In The Formation Of A Class 710 Train, I give the weight and length of a four-car Class 710 train as the following.

  • Weight – 157.8 tonnes
  • Length – 82.88 metres

Adjusting this weight to the 243 metres length of a ten-car Class 720 train, gives a weight of 462.7 tonnes.

This is the best I can do for the moment.

Kinetic Energy Of A Train At 125 mph

This is my calculation.

  • The empty weight of the train is 462.7 tonnes
  • To that must be added 1390 passengers, who average out at 90 Kg each with baggage, bikes and buggies. This is 125.1 tonnes.
  • This gives a total train weight of 587.8 tonnes.
  • Using Omni’s Kinetic Energy Calculator, gives a kinetic energy of 255 kWh at 125 mph.

For those of you, who feel I am a bit cavalier over the use of mass and weight, I agree with you, but many reading this won’t know the difference.

Handling Regenerative Braking

Imagine a train stopping from 125 mph at a station.

  • Looking at the roof of a Class 345 train, they don’t have any resistor banks, so energy must be stored on the train or returned through the electrification. Are all Aventras the same? See Class 710 Train Rooves At Blackhorse Road Station.
  • The batteries must be able to handle all the energy generated by the traction motors in their braking mode.
  • So they must be able to handle the 255 kWh of a train running at 125 mph.

It would probably mean energy storage over 300 kWh.

Some Aventras Are Two Half Trains

In A Detailed Layout Drawing For A Class 345 Train, I give the formation of a nine-car Class 345 train as.

DMS+PMS+MS1+MS3+TS(W)+MS3+MS2+PMS+DMS

Note.

  1. Eight cars have motors and only one doesn’t.
  2. The train is composed of two identical half-trains, which are separated by the TS(W) car.
  3. There are four wheelchair spaces in the TS(W) car.

In this article in Global Rail News from 2011, which is entitled Bombardier’s AVENTRA – A new era in train performance, gives some details of the Aventra’s electrical systems. This is said.

AVENTRA can run on both 25kV AC and 750V DC power – the high-efficiency transformers being another area where a heavier component was chosen because, in the long term, it’s cheaper to run. Pairs of cars will run off a common power bus with a converter on one car powering both. The other car can be fitted with power storage devices such as super-capacitors or Lithium-ion batteries if required. The intention is that every car will be powered although trailer cars will be available.

Unlike today’s commuter trains, AVENTRA will also shut down fully at night. It will be ‘woken up’ by remote control before the driver arrives for the first shift

This was published over seven years ago, so I suspect Bombardier have refined the concept.

The extract talks about pairs of cars, which share the main electrical components.

So in the Class 345 train and possibly the ten-car Class 720 trains, are the DMS and PMS cars at the ends of the train, these pairs of cars?

I like the half-train concept, as I suspect a clever computer system on the train can reconfigure the train, if say a pantograph or other major component fails.

Distributing The Energy Storage

I feel that the best philosophy would be to distribute the batteries and/or supercapacitors through the train.

Energy storage of somewhere between thirty and sixty kWh in each car would probably be more than sufficient to handle the braking energy by a wide margin.

As typically, hybrid buses like London’s New Routemaster have batteries of about 60 kWh, I’m fairly certain a big enough battery could be placed under each car.

My Electrical and Control Engineering experience also suggests that if most axles are powered on the train, distributing the energy storage could mean shorter and more efficient cabling and electricity flows.

Could the train be a formation of more independent cars each with their own computer systems, connected by the common power bus mentioned in the earlier extract and a high-capacity computer network.

How Much Power Would A Train Need In The 125 mph Cruise?

I investigated this question in How Much Power Is Needed To Run A Train At 125 mph? and came to the conclusion, that 3 kWh per vehicle mile is a sensible figure.

I also feel that as the three kWh per vehicle mile relates mainly to an InterCity 125, that Bombardier could do better with a modern train.

Consider.

  • Derby and Leicester are thirty miles apart.
  • A journey takes twenty minutes.
  • A train is running non-stop between the two stations at 125 mph.

Using the train consumption figure of three kWh per vehicle mile, means that a ten-car train would need 900 kWh.

The required power would need to be supplied at a rate of 2,700 kW.

This means one of the following.

  1. The train has an enormous on-board power-unit.
  2. The train has an enormous battery.
  3. The train has a very high aerodynamic and electrical efficiency.

Or it could be a figment of Bombardier’s imagination.

Only the Option 3 is feasible.

Consider.

  • Bombardier also build aircraft and must have some aerodynamicists, wind tunnels and other facilities of the highest class.
  • Aventras seem to have very clean lines.
  • Aventras are very quiet trains inside and outside.
  • Bombardier claim that the trains have intelligent air-conditioning and lighting.
  • Class 710 trains have an average car weight, which is seven percent lighter than Class 378 trains.

It is also known that Bombardier have had a lot of trouble programming the advanced Train Control and Management System (TCMS). I believe that this could be because it is very sophisticated and getting it right took longer than expected.

I say this because the specification for the first version of Artemis was challenging to program as so much was first-of-its-type software. It was late, but once correct, it became an amazing world-wide success.

Is the Aventra another game-changing project?

There are all sorts of ways, that a sophisticated TCMS, can save electricity on a train.

  • Ultra smooth acceleration and braking.
  • Intelligent power management.
  • Precise control of all train systems, like heating, air-conditioning and lighting, according to ambient conditions and passenger loading.
  • GPS or ERTMS-controlled Driver Assistance Systems.

Couple this with lightweight structures, innovative design and world-class aerodynamics and could the train have an electrical usage as low as one kWh per vehicle mile?

This would mean a train between Derby and Leicester would consume 300 kWh, at a rate of 900 kW for twenty minutes.

Have Bombardier read about the design of the Douglas Skyhawk?

Wikipedia says this about the design and development of the aircraft.

The Skyhawk was designed by Douglas Aircraft’s Ed Heinemann in response to a U.S. Navy call for a jet-powered attack aircraft to replace the older Douglas AD Skyraider (later redesignated A-1 Skyraider). Heinemann opted for a design that would minimize its size, weight, and complexity. The result was an aircraft that weighed only half of the Navy’s weight specification. It had a wing so compact that it did not need to be folded for carrier stowage. The first 500 production examples cost an average of $860,000 each, less than the Navy’s one million dollar maximum.

I remember reading how Heinemann was ruthless on saving weight and complexity to get a more capable aircraft.

Every improvement in efficiency means you need less power to power the train, which in a multi-mode train, means one or more of the following.

  • Physically-smaller diesel engines and fuel tanks.
  • Smaller hydrogen fuel cells and hydrogen tanks.
  • Smaller onboard energy storage.

I wouldn’t be surprised to see some radical weight-saving developments in the traction system. Lightweight diesel engines, energy storage and other large electrical components are all possibilities.

This all may seem pie-in-the-sky thinking, but a similar control revolution happened at Rollls-Royce with the RB 211 engine, when around 1990, full authority digital engine control or FADEC was developed

Is another company, with its designers and researchers in Derby going down the same route? Or do they all drink in the same pub?

Rolls-Royce certainly appear to have been successful, with their large aero engines.

I stated earlier that an energy use of one kWh per vehicle mile, would mean a train between Derby and Leicester would consume 300 kWh, at a rate of 900 kW.

Here’s a complete set of figures for a ten-car train.

  • 4 – 1200 kWh – 3,600 kW
  • 3 – 900 kWh – 2,700 kW
  • 2 – 600 kWh – 1800 kW
  • 1 – 300 kWh – 900 kW
  • 0.5 – 150 kWh – 450 kW

The second figure is the energy needed by the train between Derby and Leicester and the third is the rate, it would need to be supplied for a twenty-minute schedule.

Note how, that as the train gets more efficient and needs less power per vehicle mile, the rate of supplying energy to the train gets dramatically less.

Supplying 3,600 kW from electrification would be easy and trains like the Class 390 train are designed to take 5,000 kW to maintain 125 mph. But supplying that energy from on-board diesels or batteries would durely require enormous, heavy components.

Could 125 mph Be Sustained By Diesel Engines?

Bombardier have said, that their proposed High-Speed Bi-Mode Acentra with batteries will have the following characteristics.

  • Ability to run at 125 mph on both electricity and diesel.
  • A flat floor
  • A class-leading passenger environment.

The last two points are the difficult ones, as it means that engines must be smaller.

  • Smaller engines make a flat floor, which is so good for less-mobile passengers, buggy pushers or case-pullers, much easier to design.
  • Smaller engines make much less noise and vibration.

But surely, small engines wouldn’t provide enough power to drive the train at 125 mph.

CAF’s new Class 195 train has a Rolls-Royce MTU 6H1800R85L engine, which is rated at 390 kW in each car. These engines aren’t that noisy and fit neatly under the train floor. But disappointingly, they drive the train, through a noisy ZF Ecolife mechanical transmission.

Dimensions and weight of this engine are as follows.

  • Length – : 2.6-4 metres
  • Width – 2.1- 2.8 metres
  • Height – 0.8 metres
  • Dry Weight – 2.9-4.0 tonnes
  • Wet Weight – 3.0-4.2 tonnes

If engines like this were packaged properly with an alternator to generate electricity, I believe it would be possible to put enough power under the floor of a ten-car train.

  • The train is 240 metres long.
  • It will probably be two half trains, so it could be easy to fit two engines in each half train.
  • One engine could be under the driving cab and the other in the best place for balance.

I’m sure Rolls-Royce MTU could oblige.

They have a 12V1600R80LP PowerPack, described in this datasheet on the MTU web site.

  • It has a 700 kW output.
  • It is built for diesel-electric operation.
  • It is slightly larger than the engine in the Class 195 train.

Could one of these engines be put under each driving car?

Calculating backwards would mean that the train would need an energy use of 1.55 kWh per vehicle mile.

I believe that by good design, this is a very attainable figure.

As in London’s New Routemaster bus, the engines would top up the batteries on the train, which would then power the traction motors and the other train systems.

The TCMS would control everything.

  • Use an appropriate number of engines in every phase of the trip.
  • Raise and lower the pantograph without driver action.
  • Use battery power if required to boost diesel power.
  • Even out engine use, so that wear was equalised.

I’m led to the conclusion, that with power of about 1,400 kW from two modern underfloor diesel engines, a high-speed bi-mode Aventra with batteries can cruise at 125 mph.

Kinetic Energy Implications

If I modify the kinetic energy calculation to add ten tonnes for the diesel engines, the kinetic energy goes up to 259 kWh.

This may seem surprising, but the kinetic energy calculation is dominated by the square of the speed of the train.

If the engines at ten tonnes each, that only increases the train’s kinetic energy to 264 kWh.

One of the arguments against bi-mode trains, is that they are carrying heavy diesel engines around, that are doing nothing most of the time.

Whe  the train is accelerating to operating speed, some extra kWhs will be expended, but once in the cruise, they enjoy a free ride.

Stopping At A Station

As I said earlier, when the train is running at 125 mph, it has an energy of 255 kWh.

With the two added diesel engines, this could be a bit higher and perhaps up to 264 kWh.

This energy would be used to recharge the onboard storage at a station stop.

The TCMS would probably ensure that, when the train came to a full stop, the onboard storage was as full as possible.

In a five-minute stop, running the two diesel engines could add 116 kWh to the batteries, but I suspect an automatic charging system could be better.

Accelerating From A Station

Diesel power would probably not be enough working alone, but the energy in the onboard storage would also be used to accelerate the train to the 125 mph cruise.

Optimal Station Stops

The Class 720 trains on Greater Anglia will be sharing tracks and platforms on the Great Eastern Main Line with Class 745 and Class 755 trains from Stadler.  It has been stated by Greater Anglia, that the Stadler trains will provide level access between platform and train and will use gap fillers to improve the operation.

I wouldn’t be surprised to see the Class 720 trains providing level access on Greater Anglia, where most of the platforms seem to be fairly straight.

Level access is important, as it speeds up station calls by easing entry to and exit from the train.

Most of the stations on the Midland Main Line appear to be fairly straight. The exception was Market Harborough station, which has now been rebuilt with step-free access and straighter platforms.

I would think it extremely likely, that whatever bi-mode trains run the Midland Main Line in the future, they will save time on the current service, by executing very fast station stops.

I would expect that maximum stop time at the stations will be of the order of two minutes.

This time may not be long enough for a train to connect to a charger and take on more power for the batteries.

Conclusion

The TCMS and the way it manages all the energy on the train, is key to creating a successful 125 mph bi-mode Aventra with batteries.

It would appear that the diesel engines can be used as required to charge the batteries.

So it perhaps might be best to consider the train to be a battery one, with diesel engines.

As a Control Engineer, I’m proud of what Bombardier are doing.

But the aviation industry was doing this thirty years ago, so it has probably been a long time coming.

 

 

 

 

 

 

 

 

 

 

July 9, 2019 Posted by | Transport | , , , , | 1 Comment

Looking At The Mathematics Of A Class 170 Train With An MTU Hybrid PowerPack

From various sources like the Wikipedia entry for the Class 170 train and various datasheets and other Internet sources, I will try to get the feel of Class 170 train, that has been fitted with two MTU Hybrid PowerPacks.

Assumptions And Source Data

For the purpose of this post, I shall make the following assumptions about the Class 170 train.

  • The train has two cars, each with their own engine.
  • The train has a capacity of 150 passengers.
  • The train weighs 90.41 tonnes.
  • The train has an operating speed of 100 mph.

After conversion each car will have MTU Hybrid PowerPack with a 6H 1800 engine.

The data sheet for the MTU Hybrid PowerPack with a 6H 1800 engine, indicates the following.

  • Up to four 30.6 kWh batteries can be added to each module.
  • Each battery weighs 350 Kg.
  • Various sizes of diesel engine can be specified.
  • The smallest is a 315kW unit, which is the same size as in a current Class 170 train.

If I assume that the two diesel engines weigh about the same, then any increase in train weight will be down to the batteries, the mounting, the traction motor and the control systems.

But the hydraulic system will be removed.

Calculation Of The Maximum Kinetic Energy

I will now calculate the maximum kinetic energy of a fully-loaded train, that is travelling at maximum speed.

  1. Assuming the average weight of each passenger is 90 Kg with baggage, bikes and buggies, the weight nof a full train becomes 103.91 tonnes
  2. The train is travelling at 100 mph.
  3. Using the Omni Kinetic Energy Calculator gives a kinetic energy of 28.84 kWh.

So even if only one battery is fitted to each engine, there will be 61.2 kWh of energy storage per train, which will probably be more than enough to handle the regenerative braking.

The hybrid PowerPack will probably add some extra weight to the train.

Even if I up the total train weight to 120 tonnes, the kinetic energy is still only 33.33 kWh.

So half this amount of energy can easily be stored in a 30.6 kWh battery in each car.

I would be very surprised, if this train needed a larger engine than the smallest 315 kW unit and more than one battery module in each car.

Does The MTU Hybrid PowerPack Work As A Series Hybrid?

In a series hybrid, the operation is as follows.

  • The diesel generator charges the battery.
  • The battery drives the train using the traction motor.
  • During braking, the electricity generated by the traction motor is returned to the battery.
  • If the battery is full, the regenerative braking energy is passed through resistors on the train roof to heat the sky.

There will also be a well-programmed computer to manage the train’s energy in the most efficient manner.

For a full explatation and how to increase the efficiency read the section on series hybrid, in Wikipedia.

I’m fairly certain that the MTU Hybrid PowerPack works as a series hybrid.

Will The Train Performance Be Increased?

I suspect the following improvements will be achieved.

  • Acceleration will be higher, as it seems to be in all battery road vehicles.
  • Braking will be smother and the rate of deceleration will probably be higher.
  • Station dwell times will be shorter.
  • Noise levels will be reduced.

This video explains the thinking.behind the MTU Hybrid PowerPack.

These trains will be liked by passengers, train operators and rail staff, especially if they enable faster services.

Will The MTU Hybrid PowerPacks Be Difficult To Install?

MTU built the original engines in the Class 170 trains and their must be well over two hundred installations in this class of train alone.

So in designing the PowerPack, it would be a very poor team of engineers, who didn’t design the PowerPack as almost a direct replacement for the existing engine,.

Fitting the new PowerPacks then becomes a question for the accountants, rather than the engineers.

As both a UK and a German project have been announced in the last few days, it looks likely that MTU have come up with a one PowerPack fits all their old engine installations solution.

Conclusion

This project could be a really successful one for MTU and their owner; Rolls-Royce.

 

September 20, 2018 Posted by | Transport | , , , , | 1 Comment

Alpha Trains Commits To Hybrid Retrofit For Diesel Fleet

The title of this post is the same as that on this article on Global Rail News.

This is the first paragraph.

Alpha Trains has signed a letter of intent with Rolls-Royce to retrofit its existing diesel train fleet with hybrid drive systems.

This involves using an MTU Hybrid PowerPack, from the same family as those, that will be used in the UK to upgrade the Class 170 trains. I talked about the latter project in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks.

It certainly looks like Rolls-Royce have created the MTU Hybrid PowerPack for a worthwhile market.

This video explains Rolls-Royce’s thinking.

September 20, 2018 Posted by | Transport | , , | 1 Comment

Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks

The title of this post is the same as that on this Press Release from Porterbrook.

Porterbrook, Eversholt and the other train leasing companies have a problem, that can be turned into an opportunity to make money in a way, few will find unacceptable.

There are several fleets of trains in the UK, that are reasonably new and have plenty of life left in their basic structure, running gear and traction equipment.

But compared to modern rolling stock, they are like a twenty-year-old BMW, Jaguar or Mercedes. Good runners and comfortable, but not up to the standards, passengers, rail operators, rail staff and environmentalists expect.

So the train leasing companies are looking for ways to update their fleets, so that they can continue to earn money and satisfy everybody’s needs and aspirations.

Class 769 Train

Porterbrook started this innovation by taking redundant Class 319 trains and converting them into Class 769 trains, so they could be used on lines without electrification.

The picture shows one of Northern’s Class 319 trains.

Thirty-five of these trains have been ordered. So far, due to design and testing issues none have been delivered. Hopefully, as testing has now started, some will be in traffic before the end of the year.

This project could create upwards of fifty much-needed four-car bi-mode trains for running on partially-electrified routes.

Class 321 Hydrogen Train

Eversholt have also teamed up with Alstom to create a hydrogen-powered version of their Class 321 train.

This project could create around a hundred four-car 100 mph, zero-emission electric trains, for running on routes with no or only partial electrification.electrification.

The Four-Car High Speed Train

Everybody loves High Speed Trains and Scotrail and Great Western Railway  are taking a number of them and creating four-car quality trains to increase their rolling stock.

The picture shows a High Speed Train under test in Glasgow Queen Street station.

They are already running in Cornwall and they should be running in Scotland before the end of the year.

Updating The Class 170 Trains

The Press Release announces Porterbrook’s latest project and gives this picture.

There are 122 Class 170 trains on the UK rail network, which were built around twenty years ago. There are also nearly a hundred other Class 168, 171 and 172 trains with a similar design.

They are 100 mph trains, that are diesel-powered and some are used on long distances.

As a passenger, they are not a bad train, but being diesel, they are not that environmentally friendly.

The Class 172 trains, which are currently running on the Gospel Oak to Barking Line, would surely be a much better train with a smoother electric transmission, that had regenerative braking. Although, as they have a mechanical transmission, rather than the hydraulic of the other Turbostars, this might not be possible.

On the other hand, West Midlands Trains will soon have a fleet of thirty-five Class 172 trains of various sub-types, so fuel savings could be significant.

This is from the Press Release.

Rolls-Royce and Porterbrook, the UK’s largest owner of passenger rolling stock, have agreed the delivery of MTU Hybrid PowerPacks that can convert Class 168 and Class 170 ‘Turbostar’ DMUs from diesel-only to hybrid-electric operation. Hybrid technology allows for the cleaner and quieter operation of trains in stations and through urban areas.

As I understand it, the current hydraulic traction system will be replaced by an electric one with a battery, that will enable.

  • Regenerative braking using a battery.
  • Battery electric power in urban areas, stations and depots.
  • Lower noise levels
  • Lower maintenance costs.

This should also reduce diesel fuel consumption and carbon emissions.

Conclusion

The good Class 170 trains, are being improved and should give another twenty years of service.

How many other projects like these will surface in the next few years?

 

September 20, 2018 Posted by | Transport | , , , , , , , | 13 Comments

The Great Electric Air Race Has Begun

The title of this post is the first sentence of this article in The Independent, which is entitled Electric Planes: Could You Be Flying On A Battery-Powered Aircraft By 2027?.

This is the full first paragraph in an article by respected travel writer; Simon Calder.

The great electric air race has begun. Three European industry heavyweights have teamed up against a US startup and Britain’s biggest budget airline to develop the first commercial electric aircraft.

So is such an aircraft feasible?

When you consider that the three European heavyweights are Airbus, Rolls-Royce and Siemens, I suspect that the proposed project is serious.

It should also be said that the companies are not aiming for an all-electric aircraft, but a hybrid plane with a very efficient on-board generator and a two-tonne battery.

The key to success will probably include.

  • Batteries with a very high energy density.
  • A highly-efficient and quiet gas turbine, that generates a lot of energy.
  • Radical air-frame design to take advantage of the technology.

In my view, the batteries will be the key, but making more efficient batteries with high charge densities will also do the following.

  • Improve the range and performance of battery and hybrid road vehicles like buses, cars and trucks.
  • Improve the range and performance of trains and trams.
  • Transform energy storage, so wind and solar power can be stored and used in times of high demand.
  • Allow every house, apartment or office to have its own affordable energy storage.

In all of these applications, the weight of the battery will be less of a problem.

This leads me to the conclusion, that we may see smaller electric plasnes in a few years, but the technology that will make it possible, may well improve other modes of transport so much, that electric planes are never an economic proposition.

It’ll be interesting to see what happens!

I think most travellers and members of the oublic will benefit in some ways.

 

December 3, 2017 Posted by | Transport | , , , , , , , | Leave a comment

Musings On Airliners And Engines

I flew to and from Iceland in an Icelandic Air Boeing 757. It’s funny, but I think that these are my only journeys in the type, as normally on short-haul flights around Europe it’s a Boeing 737 or a babyAirbus.

The 757s, that I flew on were powered by Rolls-Royce RB211-535 engines. These engines first flew on a 757 in January 1983 and were a launch engine for the airliner.

Incidentally, I wonder when the two Icelandic 757s I flew were built! Not that I worry, as well-maintained aircraft can last a lot longer than thirty years. These weren’t that old and were probably about twenty.

When I was at University, the father of one of the fellow students,  worked at Tesco in Derby. Tesco used to supply Rolls-Royce with time-expired frozen chickens, which were used by the engine company to test the first version of the RB-211 with its carbon-fibre fan blades for bird-strikes. That must have been about 1966, a few years before the RB211-22 entered service in 1972 on a Lockheed Tristar.

Today in the Sunday Times, there is an article which talks about how Airbus and Boeing, instead of designing new aircraft, are redesigning old ones. The article talks about the Airbus A330neo powered by Rolls-Royce Trent 7000 engines. And what is a Trent engine? It’s a developed and renamed RB-211. Someone got the basic design right fifty years ago.

One paragraph in the Wikipedia entry for the Trent 700 must be shown.

Compared to the A330 engines the Trent 7000 will improve specific fuel consumption by ten per cent, double the bypass ratio and halve perceived noise enabling the A330neo to meet the stricter London airport (QC) noise regulations of QC1/0.25 for departure and arrivals respectively.

But then they’re only following a long tradition of the company or squeezing every drop of performance out of a design, just as they did with the Merlin.

Is it just a coincidence, that another of the UK’s long-lived and much-developed engineering icons; the InterCity 125, also has strong connections to the city of Derby in the years around 1970?

July 20, 2014 Posted by | Transport | , , , , , , | Leave a comment

Stories of Lady Houston

I’m just watching James May’s Toy Stories about building an Airfix Spitfire.

May has got a few facts wrong about the Battle of Britain, where the Hawker Hurricane was more numerous and was more influential in the Battle of Britain.  (To the French, we are too selfish in calling that battle that name.  They made a documentary to commemorate the 25th anniversary and said it was the Battle of Europe.  If our aerial knights had lost, it would have given Hitler everything he wanted.  But the rest, as they say is history!)

I have to put one story that happened to me concerning a Hurricane.  I was flying my Piper Arrow from Staverton airport to Ipswich and to do this I had to transit the USAF base at Upper Heyford.  Just as I’d received my clearance to cross the zone, I heard a clipped accent say something like this. ‘Heyford Tower, this is Hurricane One, request transit your zone.’  The voice was all very wizard prang and the call-sign was that of the Battle of Britain Memorial Flight.

The reply was American and slightly worried.  ‘Say again call-sign and aircraft type’.

The clipped accent replied. ‘Heyford Tower, this is Hurricane One, request transit your zone.’

The American still had no idea what aircraft he had and repeated his request for call-sign and aircraft type.  It was at this time, that another American voice broke in.  ‘Hurricane One, this is Heyford Tower, permission to transit the zone.  That’s a mighty fine aircraft you have there.  Any chance of a pass of the tower.’

‘Hurricane One.  Wilco!’

Even some Americans know how significant Sidney Camm‘s design is in the history of the UK.  Sir Sidney also laid down the design of the Harrier, which had tremendous influence in the outcome of the Falklands War.  Has any other designer helped his country in a major way in two wars forty years apart? 

I didn’t see the Hurricane that day, but I have stopped by Duxford and seen one doing aerobatic practice on a crisp morning.  As someone born just after the Second World War, I felt a lump in my throat.  Do children today understand the significance of the Hurricane and the Spitfire?

But why is Lady Houston the title of this post?

Dame Fanny Lucy Houston was one of the first five Dames of the British Empire.  She was given that title for looking after tired nurses in the First World War. In Wikipedia she is described as an “English benefactor, philanthropist, adventuress and patriot”.

They also describe her relationship to Robert Houston.

Her third and final marriage, on December 12, 1924, was to Sir Robert Paterson Houston, 1st Bt., member of parliament for West Toxteth, and a shipping magnate. Robert Houston is described in the Oxford Dictionary of National Biography as “a hard, ruthless, unpleasant bachelor”. They lived as tax exiles on the island of Jersey.

When Sir Robert showed her his will, Lucy tore it up telling him that one million pounds was not good enough. Sir Robert then suffered a series of mental disorders and Lucy employed a food-taster to ensure that he was not being poisoned. Even so Sir Robert mysteriously died on his yacht Liberty on 14 April 1926, leaving his widow roughly £5.5 million.

She was described as paranoid with religious delusions and declared mentally unfit to manage her own affairs, but she left Jersey in the Liberty. She then negotiated with the British Government the payment of £1.6 million in death duties. Her political opinions were extreme (she supported Mussolini). According to the Oxford Dictionary of National Biography “she paid for nine by-election meetings by the British National Government to be disrupted”.

Yes!  I suspect we’d say she was a couple of bricks short of a full load.

But!

She used her fortune to fund the defence of the Schneider Trophy in 1931. But her gift had long-lasting affects according to Wikipedia.

The gift gave Lucy Houston an opportunity to attack the Labour government, with the declaration: “Every true Briton would rather sell his last shirt than admit that England could not afford to defend herself.” The Prime Minister could not ignore the patriotic fervour that she generated and so yielded.

There were only nine months to prepare and so Supermarine’s designer Reginald Mitchell could only update the existing airframes. Rolls-Royce increased the power of the R-Type engine by 400 hp to 2,300 hp. The improved aircraft Supermarine S.6B won the trophy, though the technical achievement is slightly tarnished by the fact two S6Bs and an S6 were the only participants. (One S6B later broke the air speed record.)

Lady Houston’s gift provided a valuable impetus to the development of engine technology that would ultimately vital in the Second World War in particular the Battle of Britain. The lessons learned in building racing seaplanes also helped Reginald Mitchell to develop the Supermarine Spitfire. As Arthur Sidgreaves, the managing director of Rolls Royce, commented at the time: “It is not too much to say that research for the Schneider Trophy contest over the past two years is what our aero-engine department would otherwise have taken six to 10 years to learn.”

So every Merlin engine that powered the Spitfire, Hurricane, Mosquito and many other aircraft owed a debt to an eccentric English woman. 

Would the Battle of Britain have been won, without her gift?

I’ve stood on the Fourth Plinth in Trafalgar Square, but who should be there are Lady Houston, Sydney Camm, R. J. Mitchell and Henry Royce.  Three of them were dead before the Second World War, but without them Britain would have lost its most desperate battle.

We think of Royce as the second half of Rolls-Royce, but he was a self-educated engineer of genius.  Wikipedia tells this tale, about the successor to the “R” Type engine, that powered the seaplanes.

Following the success of the “R” engine, it was clear that they had an engine that would be of use to the Royal Air Force. As no Government assistance was forthcoming at first, in the national interest, they went ahead with development of what was called the “P.V.12” engine (P.V. standing for Private Venture). The idea was to produce an engine of about the same performance as the “R”, albeit with a much longer life. Royce launched the PV12 in October 1932 but unfortunately did not live to see its completion. The engine completed its first test in 1934, the year after he died. Later, the PV12 became the Rolls-Royce Merlin engine and the man who had once humbly signed the visitors’ book at the RAF Calshot seaplane base as “F.H. Royce – Mechanic” would never know how his engines would go on to change the course of the Second World War.

Most will think of Rolls-Royce as a car manufacturer, but how many know that Royce was one of the most influential men of the twentieth century for what he did in the final years of his life.

But to return to Lady Houston.

My father met her and he described her as mad.  She was in bed, with red, white and blue curtains and a Union Flag bedspread.  What he was doing, I don’t know and I can’t ask him, but my father was a man who dabbled in left-wing Tory politics and somehow this may have led him to Lady Houston.

I may not have agreed with some of her politics, but…

November 1, 2009 Posted by | World | , , | 2 Comments