The Anonymous Widower

First Passenger Journey In The UK With mtu Hybrid PowerPack

The title of this post, is the same as that of this press release from Rolls-Royce.

This is the first paragraph.

The mtu Hybrid-PowerPack has passed another milestone successfully: In the UK, a train with mtu hybrid drive carried passengers for the first time as part of a special journey.

So how did mtu, a German manufacturer of large diesel engines for trains and ships, end up in bed with Rolls-Royce?

Wikipedia says this.

MTU Friedrichshafen remained a subsidiary of DaimlerChrysler until 2006 when it was sold off to the EQT IV private equity fund, becoming a part of the Tognum Corporation.

Rolls-Royce Holdings and Daimler AG acquired Tognum in 2011. In 2014, Tognum was renamed Rolls-Royce Power Systems, having become a 100 per cent subsidiary of Rolls-Royce Holdings.

A bit tortuous, to say the least!

This paragraph from the press release describes the journey.

The journey of the train – called HybridFLEX – was part of celebrations to mark the 25th anniversary of UK rail operator Chiltern Railways, which will use the train on its routes. It is a converted Turbostar DMU, which was previously equipped with a conventional mtu drive system.

It doesn’t sound very special, but it’s the equivalent of taking your BMW, Jaguar or Mercedes from twenty years ago and converting it to a full hybrid car with batteries, to assist the diesel engine.

Fuel and emission savings of 25 per cent are claimed, with the additional benefit that the train will not use the diesel engines in stations or sensitive areas.

In HybridFLEX Battery-Diesel Train Continues Programme Of Testing, I said this.

In the UK, the following diesel multiple units are fitted with modern MTU engines and could be candidates from a replacement power pack.

That is a total of 990 diesel engines.

As some of the Class 196 and Class 197 trains have yet to be delivered, I do wonder, if it would be sensible to deliver them as diesel-battery hybrid trains.

That is a lot of diesel engines, that could be replaced by MTU Hybrid Power Packs.

Conversions of other trains are also ongoing in Germany and Ireland.

This article from Rolls-Royce, is entitled  Hybrid Train Trials and gives a lot more details.

This is a quote from the article on fuel savings.

A fuel saving of 15 per cent is a
fantastic result and means that under
optimum conditions, 20 to 25
per cent should be possible. 

The savings certainly fit with Chiltern’s findings.

I have a few questions.

Can Locomotive Size PowerPacks Be Built?

As an engineer, I don’t see why not!

And there is certainly a need for them to cut diesel usage and carbon emissions with locomotives.

Conclusion

These conversions could be a very good interim solution.

 

July 25, 2021 Posted by | Transport | , , , , , | 22 Comments

Is This One Of The Most Significant Pages On The Internet?

The page is Rolls-Royce’s List Of Press Releases.

On July 8th, 2021, the company issued this press release, which is entitled Rolls-Royce Welcomes All-Electric Ground Support From Jaguar Land Rover For All-Electric Flight Speed World Record Attempt.

This is the opening paragraph.

Rolls-Royce’s all-electric aircraft the ‘Spirit of Innovation’ will take to the skies for the first time in the coming weeks as we work towards a world-record attempt with a target speed of 300+ MPH (480+ KMH). This exciting project will be carbon neutral and to support this ground-breaking innovation Jaguar Land Rover is loaning all-electric zero emission Jaguar I-PACE cars as towing and support vehicles.

This picture shows Spirit of Innovation and one the Jaguar I-PACE cars together in this Rolls-Royce picture

They make an interesting pair.

There is a full analysis of the plane in this article on CleanTechnica, which is entitled Rolls-Royce Attempting 100% Electric Aircraft Speed Record, Jaguar I-PACE Offering Ground Support.

The Jaguar can even tow the plane.

Unusual.

Also on On July 8th, 2021, the company issued this press release, which is entitled Rolls-Royce And Cavendish Nuclear Sign Delivery And Manufacturing Partnership Agreement For SMR Programme.

Another world-class company has joined the small modular nuclear reactor programme.

I have feelings, that this could be the start of something small and incredibly powerful!

Conclusion

I suspect Rolls-Royce have lots of useful research sitting in their archives. We should all follow, what they doing.

July 19, 2021 Posted by | Transport | , , , , , | 3 Comments

Will Zero-Carbon Freight Trains Be Powered By Battery, Electric Or Hydrogen Locomotives?

These are a few initial thoughts.

We Will Not Have A One-Size-Fits-All Solution

If you consider the various freight and other duties, where diesel locomotives are used, you get a long list.

  • Light freight, where perhaps a Class 66 locomotive moves a few wagons full of stone to support track maintenance.
  • Intermodal freight, where a Class 66 locomotive moves a long train of containers across the country.
  • Stone trains, where a Class 59 or Class 70 locomotive moves a very heavy train of aggregate across the country.
  • Empty stock movements, where a diesel locomotive moves an electrical multiple unit.
  • Supporting Network Rail with trains like the New Measurement Train, which is hauled by two diesel Class 43 power cars.
  • Passenger trains at up to and over 100 mph.

I can see a need for several types of zero-carbon locomotive.

  • A light freight locomotive.
  • A medium freight locomotive, that is capable of hauling many intermodal trains across the country and would also be capable of hauling passenger services.
  • A heavy freight locomotive, capable of hauling the heaviest freight trains.
  • A Class 43 power car replacement, which would probably be a conversion of the existing power cars. Everybody loves InterCity 125s and there are over a hundred power cars in regular service on railways in the UK.

There are probably others.

The UK Hydrogen Network Is Growing

Regularly, there are news items about companies in the UK, who will be providing green hydrogen to fuel cars, vans, buses, trucks and trains.

Hydrogen is becoming a fuel with a much high availability.

The UK Electricity Network Is Growing And Getting More Resilient

We are seeing more wind and solar farms and energy storage being added to the UK electricity network.

The ability to support large numbers of battery-electric buses, cars, trucks and trains in a reliable manner, is getting more resilient and much more comprehensive.

There Will Be More Railway Electrification

This will happen and installation will be more innovative. But predicting where electrification will be installed, will be very difficult.

Hydrogen Fuel Cells Now Have Rivals

Hydrogen fuel cells are normally used to convert hydrogen gas to electricity.

But over the last few years, alternative technology has evolved, which may offer better methods of generating electricity from hydrogen.

Fuel cells will not be having it all their own way.

Batteries Are Improving Their Energy Density

This is inevitable. and you are starting to see improvements in the fabrication of the battery packs to get more kWh into the space available.

In Wrightbus Presents Their First Battery-Electric Bus, I said this about the Forsee batteries used in the new buses from Wrightbus.

The Forsee brochure for the ZEN SLIM batteries gives an energy density of 166 Wh per Kg. This means that the weight of the 454 kWh battery is around 3.7 tonnes.

A one-tonne battery would have a capacity of 166 kWh.

  • It is the highest value I’ve so far found.
  • Technology is likely to improve.
  • Other battery manufacturers will be striving to match it.

For these reasons, in the rest of this post, I will use this figure.

Some Example Locomotives

In this section, I shall look at some possible locomotives.

Conversion Of A Class 43 Power Car

There are two Class 43 power cars in each InterCity 125 train.

  • The diesel engine is rated at 1678 kW.
  • The transmission is fully electric.
  • These days, they generally don’t haul more than five or six intermediate Mark 3 coaches.

I would see that the biggest problem in converting to battery power being providing the means to charge the batteries.

I suspect that these power cars would be converted to hydrogen, if they are converted to zero-carbon.

  • I would estimate that there is space for hydrogen tanks and a small gas-turbine generator in the back of the power car.
  • Much of the existing transmission could be retained.
  • A zero-carbon power car would certainly fit their main use in Scotland and the South-West of England.
  • I doubt hydrogen refuelling would be a problem.

They may even attract other operators to use the locomotives.

A Battery-Electric Locomotive Based on A Stadler Class 88 Locomotive

I am using this Class 88 locomotive as a starting point, as the locomotive is powerful, reliable and was built specifically for UK railways. There are also ten already in service in the UK.

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I started the article like this.

In Issue 864 of Rail Magazine, there is an article, which is entitled Johnson Targets A Bi-Mode Future.

As someone, who has examined the mathematics of battery-powered trains for several years, I wonder if the Age of the Hybrid Battery/Electric Locomotive is closer than we think.

A Battery/Electric Class 88 Locomotive

 After reading Dual Mode Delight (RM Issue 863), it would appear that a Class 88 locomotive is a powerful and reliable locomotive.

    • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle load of 21.5 tonnes.
    • It has a rating on electricity of 4,000 kW.
    • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
    • The locomotive has regenerative braking, when working using electrification.
    • It would appear the weight of the diesel engine is around seven tonnes
    • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

The locomotive would appear to be carrying between 7 and 12 tonnes of diesel-related gubbins.

Suppose  that the diesel-related gubbins of the Class 88 locomotive were to be replaced with a ten tonne battery.

Using the Forsee figures, that I quoted earlier, this battery would hold 1660 kWh.

At the power level of the 700 kW of the Caterpillar C27 diesel engine in the Class 88 locomotive, that would give more than two hours power.

It looks to me, that a battery-electric Class 88 locomotive could be a very useful locomotive.

It might even be able to haul freight trains in and out of the Port of Felixstowe, which would be a big advantage in decarbonising the port.

Certainly, methods to charge battery trains on the move, are being developed like the system from Hitachi ABB Power Grids, that put up short sections of 25 KVAC overhead electrification, which would be driven by a containerised power system.

These systems and others like them, may enable some battery-electric freight trains to work routes like.

  • Felixstowe and Ipswich.
  • Ipswich and Peterborough
  • Peterborough and Nuneaton.
  • Peterborough and Doncaster via Lincoln
  • Birmingham and Oxford

None of these routes are fully-electrified.

But because of the power limit imposed by the batteries, these locomotives will need to be recharged at points on the route.

This Google Map shows the Ipswich and Peterborough route crossing the Fen Line at Ely station.

Note.

  1. Ely Dock junction in the South-West corner, where the line from Ipswich and Bury St. Edmunds joins the lines through Ely.
  2. Ely station towards the North-East corner of the map.
  3. Passenger trains run through the station.

But freight trains can take a route on the Eastern side of the station, which is not electrified.

At Ely station, a loop like this can be electrified using the existing electrification power supply, but at other places, systems like that from Hitachi ABB Power Grids can be used to electrify the loop or an appropriate section of the route.

These short sections of electrification will allow the train to progress on either electric or battery power.

A Hydrogen-Electric Locomotive Based on A Stadler Class 88 Locomotive

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I looked at creating a hydrogen-powered locomotive from a Class 68 locomotive.

I decided it was totally feasible to use readily available technology from companies like Rolls-Royce and Cummins to create a powerful hydrogen-powered locomotive.

The Class 68 locomotive is the diesel-only cousin of the electro-diesel Class 88 locomotive and they share a lot of components including the body-shell, the bogies and the traction system.

I suspect Stadler could create a Class 88 locomotive with these characteristics.

  • 4 MW using electric power
  • At least 2.5 MW using hydrogen power.
  • Hydrogen power could come from Rolls-Royce’s 2.5 MW generator based on a small gas-turbine engine.
  • 100 mph on both electricity and hydrogen.
  • It would have power output on hydrogen roughly equal to a Class 66 locomotive on diesel.
  • It would have a range comparable to a Class 68 locomotive on diesel.

This locomotive would be a zero-carbon Class 66 locomotive replacement for all duties.

A Larger And More Powerful Hydrogen-Electric Locomotive

I feel that for the largest intermodal and stone trains, that a larger hydrogen-electric locomotive will be needed.

Conclusion

In the title of this post, I asked if freight locomotives of the future would be battery, electric or hydrogen.

I am sure of one thing, which is that all freight locomotives must be able to use electrification and if possible, that means both 25 KVAC overhead and 750 VDC third rail. Electrification will only increase in the future, making it necessary for most if not all locomotives in the future to be able to use it.

I feel there will be both battery-electric and hydrogen-electric locomotives, with the battery-electric locomotives towards the less-powerful end.

Hydrogen-electric will certainly dominate at the heavy end.

 

 

July 11, 2021 Posted by | Hydrogen, Transport | , , , , , , , | 2 Comments

Was This The Most Significant Statement On Freight Locomotives Last Week?

This press release from Freightliner, is entitled Freightliner Secures Government Funding For Dual-Fuel Project.

The dual-fuel project is important and will cut carbon emissions in the short term.

But it is only a quick fix, made possible by good technology.

It is also not zero-carbon.

This sixth paragraph from the press release is very significant.

This sustainable solution will support a programme to decarbonise freight operating companies’ diesel fleets in a cost-efficient manner that does not require significant short-term investment and facilitates operational learning in support of a longer-term fleet replacement programme, potentially using 100% hydrogen fuel.

I believe the paragraph indicates, that Freightliner and possibly the other companies involved in the building and operation of heavy freight locomotives have concluded, that the technology is now such, that a zero-carbon rail locomotive powered by 100 % hydrogen is now possible.

  • Rolls-Royce and possibly other gas-turbine companies have the technology to build small gas-turbine powered generators that can produce several megawatts of reliable electrical zero-carbon power, when fuelled by hydrogen.
  • We are seeing companies developing strategies for the safe supply of hydrogen in large industrial quantities.
  • Hydrogen has been successfully deployed on buses, trains and other large vehicles.
  • The technology has been proven that will allow dual-mode hydrogen-electric locomotives, that can use electrification, where it exists.
  • Some big companies like Cummins, JCB and Shell are backing hydrogen.

There are thousands of large diesel-powered locomotives all over the world and locomotive builders that can successfully replace these with hydrogen-powered locomotives will not go financially unrewarded!

July 11, 2021 Posted by | Hydrogen, Transport | , , , , , , , , | 2 Comments

United Airlines Eyes A Supersonic Future With Deal To Buy Boom’s Overture Jets

The title of this post, is the same as that of this article on The Times.

Some may feel that the future of supersonic aviation is about as rosy, as an empty glass of tap water.

But!

  • A flight across the Atlantic in three-and-a-half hours, as is promised by the Boom Overture, is below the four-hour travel limit, where average people start to get anxious about being banged up!
  • Not for nothing do UK train companies want to get London and Edinburgh services below, the magic four-hour time.
  • Technology will get better to reduce the noise and carbon emissions of all aircraft and not just supersonic ones!

I don’t put it outside the genius of engineers to by 2050, be able to create a supersonic, almost noise-free aircraft.

I do have a few thoughts about the Boom Overture.

A Comparison With Concorde

These are comparisons of the Boom Overture to Concorde.

  • Engines – Three as opposed to four.
  • Length – Similar
  • Wingspan – 71 % of Concorde
  • Passengers – 75 % of Concorde

It’s almost as if the Boom Overture is a three-quarter scale model of Concorde.

The Wing/Airframe

When I left Liverpool University in 1968, I wasn’t totally sure, what I wanted to do. So I visited a lot of engineering and aerospace companies including both BAC and Hawker Siddeley. Including my own University, I must have visited about four or five large wind tunnels in that period and every one had a Concorde-like model for the wind tunnel.

Every company had their own ideas on what a supersonic wing, should look like.

And surprise-surprise they were all very similar!

Take the advertising off Formula One cars and paint them all silver and very few could tell them apart.

Aerodynamics defines the shape so strongly, they all look the same.

It’s the same with supersonic aircraft and I’m not surprised that wing planform of the Boom Overture appears to be similar to Concorde, but narrower.

Perhaps the more dart-like shape significantly reduces the drag? It should be noted that drag is proportional to cross-sectional area.

In Concorde’s Wikipedia entry there is a section called Development, which explains how the Royal Aircraft Establishment developed the slender delta wing planform, used by Concorde and now likely to be used by Boom.

Although, it would be different inside the wing, as Concorde was mainly made from metal and the Overture is a composite aircraft.

Perhaps composite construction helps with creating the perfect aerodynamic shape. I don’t have any experience of composites, but they surely mean more aerodynamic shapes and they are regularly used for airframes.

This page on the Heritage Concorde web site gives details of the airframe production materials.

I suspect that Concorde was a nightmare to build, but that the challenge helped develop a large number of machining and fabrication techniques.

The Fuselage

As I said earlier, the length of the plane is similar to Concorde, but the wingspan is 29 % smaller and the number of passengers is around 25 % less.

But if you look at the picture of the aircraft in the Times article, where it is emerging from the hangar, it’s almost as if the fuselage has a square cross section than Concorde.

I wonder about this square cross section. I remember an interview on the radio with Barnes Wallis, where he talked about his latest idea for a fast supersonic aircraft capable of flying between the UK and Australia.

This paragraph is from Barnes Wallis’s Wikipedia entry.

In the late 1950s, Wallis gave a lecture entitled “The strength of England” at Eton College, and continued to deliver versions of the talk into the early 1970s, presenting technology and automation as a way to restore Britain’s dominance. He advocated nuclear-powered cargo submarines as a means of making Britain immune to future embargoes, and to make it a global trading power. He complained of the loss of aircraft design to the US, and suggested that Britain could dominate air travel by developing a small supersonic airliner capable of short take-off and landing.

It sounds to me that he would have been a Brexiteer.

Could this supersonic airliner, be what I heard him talking about?

I distinctly remember that he was advocating a fuselage with a square cross section for supersonic flight.

  • It would have given more space inside for passengers.
  • Concorde was a bit pokey with small windows!
  • The picture in The Times of the interior of the Boom Overture is certainly spacious.

Have Boom, been looking through Barnes Wallis’s ideas?

One quote I heard Barnes Wallis say, in an interview with Chris Brasher was this.

There is no greater thrill in life, than proving something is impossible and then showing how it can be done.

Boom may not have been able to develop a small supersonic airliner capable of short take-off and landing, but it does sound, they’ve developed a smaller supersonic airliner capable of shorter take-off and landing.

The Engines

In the Boom Overture’s Wikipedia entry there is a section called Engines, where this is the last sentence.

In July 2020, the company announced that it had entered into an agreement with Rolls-Royce to collaborate on engine development.

As Rolls-Royce built the engines for Concorde, they probably have some experience locked away.

The design of the Olympus 593 engines for Concorde wasn’t simple.

  • The engines were based on an Olympus engine used in aircraft like the Avro Vulcan and the TSR-2.
  • The engines were fitted with afterburners, as the extra thrust was needed for take-off.
  • According to Wikipedia the engines had a high thermal efficiency in supersonic cruise.
  • According to Wikipedia, there was an engine without afterburning for a longer range Concorde under development.

Over the years, there have been various proposals for supersonic aircraft, in military, commercial and business fields, so I suspect Rolls-Royce have done significant work in powering supersonic flight.

But then other engine companies would have gone down similar routes!

Rolls-Royce though probably have all the data on the engine ideas for Concorde that failed.

I wouldn’t be surprised, if one of the major aero-engine companies has a solution to the powerplant for the Boom Overture, based on the chase for supersonic speeds forty and fifty years ago.

But Rolls-Royce because of the Concorde experience could be closer to a successful development.

So I think signing with Rolls-Royce could be a very sensible move.

The Afterburners

The Wikipedia entry for the Boom Overture says this about afterburners.

Boom wants to use moderate bypass turbofans without afterburners, unlike Concorde’s Rolls-Royce/Snecma Olympus.

Could that be one piece of complication, that improvements in technology has eliminated?

The Engine Intakes

The Wikipedia entry for the Olympus 593 engines has a section called Intakes.

They were thought to be clever in the 1960s, but they just look complicated to me, with all my extra experience.

The intakes seem to have used very comprehensive digital control systems, but these days controls like these will be even more comprehensive and a lot more sophisticated, as computing has moved on.

I very much feel that if the Boom Overture needed sophisticated variable-geometry engine intakes like Concorde, we have the knowledge to create them and the computer expertise to make them act as needed.

The Exhaust Nozzle

The Wikipedia entry for the Olympus 593 engines has a section called Exhaust Nozzle.

These too are complicated and a lot of what I said for the intakes, would apply to the nozzles.

The Fuel

The Wikipedia entry for the Boom Overture says

The aircraft is intended to run on Sustainable Aviation Fuel.

It is likely, that Sustainable Aviation Fuel will be used for commercial aviation until there is a significant move to hydrogen.

  • In the UK, a company called Altalto is building a large plant to make the fuel at Immingham from household and industrial waste.
  • One idea being pursued by some companies is to create the fuel from used disposable nappies.
  • Wikipedia indicates that the fuel could cut CO2 emissions by between 20-98%.
  • Altalto is backed by British Airways and Velocys, who are a spin-out from Oxford University.

There is certainly a lot of money and technology being thrown behind Sustainable Aviation Fuel to make it a net-zero alternative for the powering of aircraft.

The Noise

This Youtube video shows Concorde’s last take-off from New York.

It was certainly a noisy aircraft.

  • Concorde’s engines had afterburners.
  • It also needed a long take-off run, so it made more noise on the ground.
  • It used to take off with a high angle of attack with the nose high.

All of these factors would have increased real and perceived noise levels.

I feel that if the Boom Overture is going to have significantly lower noise levels than Concorde, then its design will need to be radically different.

The lack of afterburners will make some difference.

It carries only about 75 % of the passengers of Concorde.

It is roughly, the same length as Concorde, but the wingspan is nearly thirty percent smaller.

To be continued…

 

 

June 6, 2021 Posted by | Design, Hydrogen, Transport | , , , , , , , , , | Leave a comment

Rolls-Royce Seeks Private Funds To Power Nuclear Project

The title of this post, is the same as that of this article on The Times.

The article is based on this press release on the Rolls-Royce web site, which is entitled More Power And Updated Design Revealed As Nuclear Power Team Targets First Place In The Assessment Queue In Autumn 2021.

This is the first two paragraphs.

The consortium, led by Rolls-Royce, which is creating a compact nuclear power station known as a small modular reactor (SMR), has revealed its latest design and an increase in power as it completes its first phase on time and under budget.

It has also announced it is aiming to be the first design to be assessed by regulators in the second half of 2021 in the newly-opened assessment window, which will keep it on track to complete its first unit in the early 2030s and build up to 10 by 2035.

It would appear that they are following AstraZeneca’s example and building the relationships with the regulators early, so the process of regulation doesn’t delay entry into service.

An Updated Design

These two paragraphs describe the design changes.

As the power station’s design has adjusted and improved during this latest phase – with more than 200 major engineering decisions made during this latest phase – the team has optimised the configuration, efficiency and performance criteria of the entire power station , which has increased its expected power capacity, without additional cost, from 440 megawatts (MW) to 470MW.

The refreshed design features a faceted aesthetic roof; an earth embankment surrounding the power station to integrate with the surrounding landscape; and a more compact building footprint, thanks to successes optimising the use of floor space.

These changes appear to be positive ones.

Transformation To A Focussed Business

Rolls-Royce are transforming the current consortium to an as yet unnamed stand-alone business, as detailed in this paragraph from the press release.

With a focus on continuing its progress at pace, the UK SMR team is transitioning from being a collaborative consortium to a stand-alone business, which will deliver a UK fleet of power stations to become a low carbon energy bastion alongside renewables, while securing exports to make the power station a key part of the world’s decarbonisation toolkit.

Are Rolls-Royce aiming to repeat the success they’ve had with Merlins in World War II and large turbofan engines for airliners with small modular nuclear reactors that decarbonise the world? The strategy is certainly not going against the heritage of the company.

Use Of A Small Modular Nuclear Reactor

This paragraph from the press release outlines a few uses.

The power station’s compact size makes it suitable for a variety of applications, helping decarbonise entire energy systems. Each power station can supply enough reliable low carbon power for around one million* homes, or be used to power net zero hydrogen and synthetic aviation fuel manufacturing facilities, desalination plants or energy intensive industrial sites.

Their size would appear to increase the number of applications.

Hydrogen Production

I particularly like the idea of using an SMR to produce hydrogen for chemical feedstock or to make steel.

I indicated this in Will INEOS And Rolls-Royce Get Together Over Hydrogen Production?

I estimate that a 470 MW SMR would produce around 4,900 tonnes of hydrogen per day.

The numbers certainly seem convenient.

Cost Of Energy And Capital Costs

Tom Samson, Chief Executive Officer of the UK SMR consortium is quoted as saying.

Nuclear power is central to tackling climate change, securing economic recovery and strengthening energy security. To do this it must be affordable, reliable and investable and the way we manufacture and assemble our power station brings down its cost to be comparable with offshore wind at around £50 per megawatt-hour.

Hinckley Point C has a strike price of over £80 per megawatt-hour.

The release also gives a price of around £2.2 billion per unit dropping to £1.8 billion by the time five have been completed.

Benefits To The UK

The press release lists these benefits to the UK.

  • create 40,000 regional UK jobs by 2050
  • generate £52 billion of economic benefit
  • have 80% of the plant’s components sourced from the UK
  • target an additional £250 billion of exports – memoranda of understanding are already in place with Estonia, Turkey and the Czech Republic

The value of exports would indicate export sales of over a hundred reactors.

Lifetime

The press release indicates the following about the lifetime of the reactors.

  • The reactor will operate for at least 60 years.
  • The design, which will be finalised at the end of the regulatory assessment process, proposes that all used fuel will be stored on each site for the lifetime of the plant.

I would assume that Rolls-Royce are developing a philosophy for taking the SMRs apart at the end of their life.

Construction

This paragraph from the press release talks about the construction process.

The power station’s design cuts costs by using standard nuclear energy technology used in 400 reactors around the world, so no prototyping is required. The components for the power station are manufactured in modules in factories, before being transported to existing nuclear sites for rapid assembly inside a weatherproof canopy. This replicates factory conditions for precision activities and further cuts costs by avoiding weather disruptions. The whole sequence secures efficiency savings by using streamlined and standardised processes for manufacturing and assembly, with 90% of activities carried out in factory conditions, helping maintain extremely high quality. In addition, all spoil excavated will be reused on site to build the earth embankment, removing the need for it to taken off site, reducing road journeys that are both financially and environmentally costly.

I have talked to project managers, who have assembled factory-built railway stations and their experiences would back the Rolls-Royce method of construction.

My project management knowledge would also indicate, that the construction of an SMR could be much more predictable than most construction projects, if the factory-built modules are built to the specification.

Funding

According to the article in The Times, the consortium now seems to be in line for £215 million of Government funding, which will unlock £300 million of private funding.

Conclusion

It looks like this project will soon be starting to roll.

 

May 18, 2021 Posted by | Energy, Finance | , , , , | 1 Comment

Rolls-Royce And Tecnam Join Forces With Widerøe To Deliver An All-Electric Passenger Aircraft Ready For Service In 2026

The title of this post, is the same as that of this press release from Rolls-Royce.

This is the first paragraph.

Rolls-Royce and airframer Tecnam are joining forces with Widerøe – the largest regional airline in Scandinavia, to deliver an all-electric passenger aircraft for the commuter market, ready for revenue service in 2026. The project expands on the successful research programme between Rolls-Royce and Widerøe on sustainable aviation and the existing partnership between Rolls-Royce and Tecnam on powering the all-electric P-Volt aircraft.

This picture from Rolls-Royce shows the proposed aircraft.

The P-Volt aircraft is based on the Tecnam P2012 Traveller.

The specification of this aircraft is as follows.

  • Crew – 1 or 2
  • Capacity – 9 passengers
  • Powerplant – 2 x 280 jW piston engines.
  • Cruise speed – 200 mph
  • Range – 1090 miles
  • Service ceiling – 19,500 ft.

The aim is to have an aircraft in service by 2026.

Use By Widerøe

This paragraph from the press release, outlines Widerøe‘s planned use of the aircraft.

The collaboration offers an opportunity to develop an exciting solution to the commuter aircraft market. Before the pandemic, Widerøe offered around 400 flights per day using a network of 44 airports, where 74% of the flights have distances less than 275 km. The shortest flight durations are between seven and fifteen minutes. Developing all-electric aircraft will enable people to be connected in a sustainable way and will fulfill Wideroe’s ambition to make its first all-electric flight by 2026. The all-electric P-Volt aircraft, which is based on the 11-seat Tecnam P2012 Traveller aircraft is ideal for the short take-off and landing as well as for routes in the North and the West Coast of Norway.

Conclusion

There are now five electric or low-carbon aircraft in the sub-nineteen passenger segment.

Note.

  1. The Slice and the Faradair are new designs.
  2. The Faradair is hybrid and all the others are fully electric.
  3. The Faradair can carry eighteen passengers and all the others are smaller.
  4. I suspect there are others under development.

Conclusion

The Tecnam P-Volt must have a high chance of success.

  • It’s designed for a purpose in a particular airline.
  • The Widerøe model would apply to large number of small feeder and commuter airlines.
  • Rolls-Royce are well-respected in aviation.
  • An existing airframe is being used, which shortens certification.
  • Norway is not short of a few bob.
  • Cape Air have ordered 93 of the piston engined variant.

I will look forward to flying this aircraft.

 

March 17, 2021 Posted by | Transport | , , , , , , , , , | 12 Comments

Is Sizewell The Ideal Site For A Fleet Of Small Modular Nuclear Reactors?

As someone who spent forty years in project management, the Small Modular Nuclear Reactor or SMR could be a project manager’s dream.

Suppose you were putting a fleet of SMRs alongside Sizewell B.

This Google Map shows the current Sizewell site.

Sizewell A power station, with Sizewell B to its North, is on the coast.

This second Google Map shows the power stations to an enlarged scale.

Note the white dome in the middle of Sizewell B.

Sizewell A

Sizewell A power station was shut down at the end of 2006 and is still being decommissioned, according to this extract from Wikipedia.

The power station was shut down on 31 December 2006. The Nuclear Decommissioning Authority (NDA) is responsible for placing contracts for the decommissioning of Sizewell A, at a budgeted cost of £1.2 billion. Defuelling and removal of most buildings is expected to take until 2034, followed by a care and maintenance phase from 2034 to 2092. Demolition of reactor buildings and final site clearance is planned for 2088 to 2098.

Only a few of those, reading this post, will be around to see the final end of Sizewell A.

Note that the size of the Sizewell A site is 245 acres.

It appears to me, that if any power station will be able to be built on the cleared site of Sizewell A, until the late 2080s or 2090s.

Sizewell B

Sizewell B power station opened in 1995 and was originally planned to close in 2035. The owner; EDF Energy, has applied for a twenty-year extension to 2055.

Sizewell C

Sizewell C power station is currently under discussion.

  • It will be built by the French, with the help of Chinese money.
  • It will have an output of 3260 MW or 3.26 GW.
  • It will cost £18 billion.
  • It will take twelve years to build.

This Google Map shows Sizewell B and the are to the North.

I would assume it will be built in this area.

 

A Fleet Of Small Modular Nuclear Reactors

These are my thoughts on building a fleet of SMRs at Sizewell instead of the proposed Sizewell C.

Land Use

In Rolls-Royce signs MoU With Exelon For Compact Nuclear Power Stations, I gave these details of the Rolls-Royce design of SMR.

  • A Rolls-Royce SMR has an output of 440 MW.
  • The target cost is £1.8 billion for the fifth unit built
  • Each SMR will occupy 10 acres.
  • Eight SMRs would need to be built to match the output of Hinckley Point C, which will occupy 430 acres.

It looks on a simple calculation, that even if the SMRs needed fifteen acres, the amount of land needed would be a lot less.

Connection To The National Grid

The transmission line to the National Grid is already in place.

This Google Map shows the sub-station, which is to the South-West of Sizewell A.

From Sizewell, there is a massive twin overhead line to Ipswich.

This Google Map shows the overhead line as it crosses Junction 53 of the A14 to the West of Ipswich.

The pylons are in the centre of the map, with the wires going across.

The line has been built for a massive amount of nuclear power at Sizewell.

The Sizewell Railhead

This Google Map shows the railhead at Sizewell.

It can also be picked out in the South West corner of the first map.

  • The railhead is used to take out spent fuel for processing.
  • In the past, it brought in construction materials.
  • Wikipedia suggests if the Sizewell C is built, the might be a new railhead closer to the site.
  • If a fleet of SMRs were to be built, as the modules are transportable by truck, surely they could be move in by rail to avoid the roads in the area.
  • I am an advocate of reinstating the railway from Saxmundham to Aldeburgh, as this would be a way of doubling the frequency on the Southern section of the East Suffolk Line between Saxmundham and Ipswich stations.

I hope that whatever is built at Sizewell, that the rail lines in the area is developed to ease construction, get workers to the site and improve rail services on the East Suffolk Line.

Building A Fleet Of SMRs

One of the disadvantages of a large nuclear power station, is that you can’t get any power from the system until it is complete.

This of course applies to each of the individual units, but because they are smaller and created from a series of modules built in a factory, construction of each member of the fleet should be much quicker.

  • Rolls-Royce are aiming for a construction time of 500 days, from the fifth unit off the production line.
  • That would mean, that from Day 501, it could be producing power and earning money to pay for its siblings.
  • If the eight units were built in series, that would take eleven years to build a fleet of eight.

But as anybody, who has built anything even as humble as a garden shed knows, you build anything in a series of tasks, starting with the foundations.

I suspect that if a fleet were being built, that construction and assembly would overlap, so the total construction time could be reduced.

That’s one of the reasons, I said that building a fleet could be a project manager’s dream.

I suspect that if the project management was top-class, then a build time for a fleet of eight reactors could be nine years or less.

Resources are often a big problem in large projects.

But in a phased program, with the eight units assembled in turn over a number of years, I think things could be a lot easier.

Financing A Fleet Of SMRs

I think that this could be a big advantage of a fleet of SMRs over a large conventional large nuclear power station.

Consider

  • I said earlier, that as each unit was completed, it could be producing power and earning money to pay for its siblings.
  • Hinckley Point C is budgeted to cost £18 billion.
  • Eight Rolls-Royce SMRs could cost only £14.4 billion.

I very much feel that, as you would get a cash-flow from Day 500 and the fleet costs less, that the fleet of smaller stations is easier to finance.

Safety

SMRs will be built to the same safety standards as all the other UK reactors.

In this section on Wikipedia this is said about the Rolls-Royce SMR.

Rolls-Royce is preparing a close-coupled three-loop PWR design, sometimes called the UK SMR.

PWRs or pressurised water reactors are the most common nuclear reactors in the world and their regulation and safety is well-understood.

This is from the History section of their Wikipedia entry.

Several hundred PWRs are used for marine propulsion in aircraft carriers, nuclear submarines and ice breakers. In the US, they were originally designed at the Oak Ridge National Laboratory for use as a nuclear submarine power plant with a fully operational submarine power plant located at the Idaho National Laboratory. Follow-on work was conducted by Westinghouse Bettis Atomic Power Laboratory.

Rolls-Royce have a long history of building PWRs, and Rolls-Royce PWRs have been installed in all the Royal Navy’s nuclear submarines except the first. The Royal Navy’s second nuclear submarine; HMS Valiant, which entered service in 1966, was the first to be powered by a Rolls-Royce PWR.

How much of the design and experience of the nuclear submarine powerplant is carried over into the design of the Rolls-Royce SMR?

I don’t know much about the safety of nuclear power plants, but I would expect that if there was a very serious accident in a small reactor, it would be less serious than a similar accident in a large one.

Also, as the reactors in a fleet would probably be independent of each other, it is unlikely that a fault in one reactor should affect its siblings.

Local Reaction

I lived in the area, when Sizewell B was built and I also went over Sizewell A, whilst it was working.

From personal experience, I believe that many in Suffolk would welcome a fleet of SMRs.

  • Sizewell B brought a lot of employment to the area.
  • House prices rose!
  • Both Sizewell A and B have been well-run incident-free plants

Like me, some would doubt the wisdom of having a Chinese-funded Sizewell C.

Conclusion

Big nuclear has been out-performed by Rolls-Royce

November 19, 2020 Posted by | Energy, Transport | , , , , , , , , , , | 1 Comment

Will INEOS And Rolls-Royce Get Together Over Hydrogen Production?

It has been a busy week for press releases.

8th November 2020 – Rolls-Royce signs MoU With Exelon For Compact Nuclear Power Stations

9th November 2020 – Rolls-Royce signs MoU with CEZ For Compact Nuclear Power Stations

9th November 2020 – INEOS Launches A New Clean Hydrogen Business To Accelerate The Drive To Net Zero Carbon Emissions

Does the timing of these three press releases indicate that there is possible co-operation between the INEOS and Rolls-Royce?

These are my thoughts.

Electricity Needs Of Integrated Chemical Plants

Integrated chemical plants, like those run by INEOS need a lot of electricity.

When I worked for ICI Plastics in the early 1970s, one of the big projects at Wilton works was the updating of the Wilton power station.

  • Fifty years later it is still producing electricity.
  • It is fired by a variety of fuels including coal, oil, gas and biomass.
  • It even burned 110,000 tonnes of cow fat (tallow) from the carcasses of animals slaughtered during the BSE Crisis of 1996.
  • It produces 227 MW of electricity.
  • It also produces around 4,000,000 tonnes of steam per year for the plants on the complex.
  • Wilton 10 is a 2007 addition to the station, that burns 300,000 tonnes of a combination of sustainable wood, sawmill waste and otherwise unusable wood offcuts a year.
  • Wilton 11 is a 2016 addition to the station, that burns domestic waste, which arrives by train from Merseyside.

ICI was proud of its power station at Wilton and there were regular rumours about the strange, but legal fuels, that ended up in the boilers.

Integrated chemical plants like those on Teesside can be voracious consumers of electricity and steam.

I can envisage companies like INEOS boosting their electricity and steam capacity, by purchasing one of Rolls-Royce’s small modular reactors.

A Look At Teesside

If you look at the maps of the mouth of the Tees, you have the Hartlepool nuclear power station on the North side of the river.

  • It was commissioned in 1983.
  • It can generate 320 MW of electricity.
  • It is expected to close in 2024.

This Google Map shows the mouth of the Tees.

Note.

  • Hartlepool power station is in the North-West corner of the map.
  • The Hartlepool site is probably about forty acres.
  • Wilton power station is on the South side of the Tees in the Wilton International site.

I can see, when Hartlepool power station closes, that more power will be needed on Teesside to feed the various industries in the area.

Some will come from offshore wind, but could a fleet of perhaps four of Rolls-Royce’s small modular reactors be built on a decommissioned Hartlepool power station site to replace the output of the current station?

If built in a planned sequence to correspond to the expected need, there are savings to be made because each unit can be commissioned, when they are completed and used to generate cash flow.

I can even see INEOS building a large electrolyser in the area, that is powered either by wind or nuclear power, according to what power is available and the various costs.

An Integrated Small Modular Nuclear Reactor And Electrolyser

Some countries don’t have good resources to exploit for renewable power.

Will a small modular nuclear reactor, be pared with a large electrolyser to produce hydrogen for feedstock for chemical plants and fuel for transport?

How Much Hydrogen Would A Small Modular Nuclear Reactor Produce?

Consider.

  • One of Rolls-Royce’s small modular nuclear reactors has a power output of 440 MW.
  • It takes 23 MWh of electricity to create ten tonnes of hydrogen.

This would create 4,600 tonnes of hydrogen in a day.

That is a lot of zero-carbon chemical feedstock to make fertiliser, plastics, pharmaceuticals and other chemicals and fuel for heavy transport.

Conclusion

I will be very surprised if INEOS were not talking to Rolls-Royce about using small modular nuclear reactors to generate the enormous quantities of electrical power and steam, needed to produce chemicals and fulfil their ambition to be a world leader in the supply of hydrogen.

November 13, 2020 Posted by | Business, Energy, Hydrogen | , , , , | 1 Comment

Rolls-Royce signs MoU With Exelon For Compact Nuclear Power Stations

The title of this post, is the same as that of this press release on the Rolls-Royce web site.

These are the first two paragraphs.

Rolls-Royce and Exelon Generation have signed a Memorandum of Understanding to pursue the potential for Exelon Generation to operate compact nuclear power stations both in the UK and internationally. Exelon Generation will be using their operational experience to assist Rolls Royce in the development and deployment of the UKSMR.

Rolls-Royce is leading a consortium that is designing a low-cost factory built nuclear power station, known as a small modular reactor (SMR). Its standardised, factory-made components and advanced manufacturing processes push costs down, while the rapid assembly of the modules and components inside a weatherproof canopy on the power station site itself avoid costly schedule disruptions.

This is the first paragraph of the Wikipedia entry of Exelon.

Exelon Corporation is an American Fortune 100 energy company headquartered in Chicago, Illinois and incorporated in Pennsylvania. It generates revenues of approximately $33.5 billion and employs approximately 33,400 people. Exelon is the largest electric parent company in the United States by revenue, the largest regulated electric utility in the United States with approximately 10 million customers, and also the largest operator of nuclear power plants in the United States and the largest non-governmental operator of nuclear power plants in the world.

These two paragraphs from the press release flesh out more details.

The consortium is working with its partners and UK Government to secure a commitment for a fleet of factory built nuclear power stations, each providing 440MW of electricity, to be operational within a decade, helping the UK meet its net zero obligations. A fleet deployment in the UK will lead to the creation of new factories that will make the components and modules which will help the economy recover from the Covid-19 pandemic and pave the way for significant export opportunities as well.

The consortium members feature the best of nuclear engineering, construction and infrastructure expertise in Assystem, Atkins, BAM Nuttall, Jacobs, Laing O’Rourke, National Nuclear Laboratory, Nuclear Advanced Manufacturing Research Centre, Rolls-Royce and TWI. Exelon will add valuable operational experience to the team.

This is not what you call a small deal.

This is the last section of the press release.

By 2050 a full UK programme of a fleet of factory built nuclear power stations in the UK could create:

  • Up to 40,000 jobs
  • £52BN of value to the UK economy
  • £250BN of exports

The current phase of the programme has been jointly funded by all consortium members and UK Research and Innovation.

But that is not all, as there is also a second press release, which is entitled Rolls-Royce Signs MoU With CEZ For Compact Nuclear Power Stations.

These are the first two paragraphs.

Rolls-Royce and CEZ have signed a Memorandum of Understanding to explore the potential for compact nuclear power stations, known as small modular reactors (SMR), to be built in the Czech Republic.

Rolls-Royce is leading the UK SMR Consortium that is designing this type of low-cost nuclear power station. Its standardised, factory-made components and advanced manufacturing processes push down costs; and the rapid assembly of the modules inside a weatherproof canopy at the power station site itself speeds up schedules.

These are my thoughts.

What Is A Small Modular Reactor or SMR?

This is the first paragraph of the Wikipedia entry for Small Nuclear Reactor.

Small modular reactors (SMRs) are a type of nuclear fission reactor which are smaller than conventional reactors. This allows them to be manufactured at a plant and brought to a site to be assembled. Modular reactors allow for less on-site construction, increased containment efficiency, and enhanced safety due to passive nuclear safety features. SMRs have been proposed as a way to bypass financial and safety barriers that have plagued conventional nuclear reactors.

This section on Wikipedia gives more details of the Rolls-Royce SMR.

Rolls-Royce is preparing a close-coupled three-loop PWR design, sometimes called the UK SMR.] The power output is planned to be 440 MWe, which is above the usual range considered to be a SMR. The design targets a 500 day construction time, on a 10 acres (4 ha) site. The target cost is £1.8 billion for the fifth unit built.

The consortium developing the design is seeking UK government finance to support further development. In 2017 the UK government provided funding of up to £56 million over three years to support SMR research and development. In 2019 the government committed a further £18 million to the development from its Industrial Strategy Challenge Fund.

The construction time, site size and cost make for one of the big advantages of SMRs.

Say you need to create a 3260 MW nuclear power station like Hinckley Point C.

  • This would need a fleet of eight 440 MW SMRs.
  • These would cost £14.4 billion
  • Wikipedia lists Hinkley Point C as costing between £21.5 billion and £ 22.5 billion.
  • I suspect there will be an adjustment for the connection to the National Grid, which is probably included in the Hinckley Point C figures.
  • Eight SMRs will occupy 80 acres.
  • Hinckley Point C will occupy 430 acres.
  • Hinckley Point C was planned to be built in seven years.
  • Eight SMRs built one after the other would take 11 years. But, they would probably be planned to be built in an optimal way, where reactors came on-line, when their power was needed.

The biggest advantage though, is that as each of the eight SMRs is commissioned, they can start supplying power to the grid and earning money. This means that financing is much easier and the first reactor helps to pay for its siblings.

Could An SMR Replace A Fossil Fuel Power Station?

Suppose you have a coal-fired power station of perhaps 800 MW.

The power station will have a connection to the grid, which will be able to handle 800 MW.

If the power station is closed, there is no reason, why it can’t be replaced by an appropriately-sized fleet of SMRs, provided the site is suitable.

Who Are TWI?

I would assume that TWI is The Welding Institute, who are described like this in their Wikipedia entry.

The Welding Institute (TWI) is a research and technology organisation, with a specialty in welding. With headquarters six miles south of Cambridge, Cambridgeshire, England, since 1946, and with facilities across the UK and around the world. TWI works across all industry sectors and in all aspects of manufacturing, fabrication and whole-life integrity management technologies.

It strikes me, this organisation could be a very important part of the consortium.

 

November 10, 2020 Posted by | Energy | , , , , | 3 Comments