The Anonymous Widower

Shooter Urges Caution On Hydrogen Hubris

The title of this post is the same as that of an article in the January 2021 Edition of Modern Railways.

This is the first paragraph.

Vivarail Chairman Adrian Shooter has urges caution about the widespread enthusiasm for hydrogen technology. In his keynote speech to the Golden Spanner Awards on 27 November, Mr. Shooter said the process to create ‘green hydrogen’ by electrolysis is ‘a wasteful use of electricity’ and was skeptical about using electricity to create hydrogen to then use a fuel cell to power a train, rather than charging batteries to power a train. ‘What you will discover is that a hydrogen train uses 3.5 times as much electricity because of inefficiencies in the electrolysis process and also in the fuel cells’ said Mr. Shooter. He also noted the energy density of hydrogen at 350 bar is only one-tenth of a similar quantity of diesel fuel, severely limiting the range of a hydrogen-powered train between refuelling.

Mr. Shooter then made the following points.

  • The complexity of delivering hydrogen to the railway depots.
  • The shorter range available from the amount of hydrogen that can be stored on a train compared to the range of a diesel train.
  • He points out limitations with the design of the Alstom Breeze train.

This is the last paragraph.

Whilst this may have seemed like a challenge designed purely to promote the battery alternatives that Vivarail is developing, and which he believes to be more efficient, Mr. Shooter explained: ‘I think that hydrogen fuel cell trains could work in this country, but people just need to remember that there are downsides. I’m sure we’ll see some, and in fact we should because competition improves the breed.’

i think Mr. Shooter may have made several good points.

These are my thoughts.

Creating Green Hydrogen

I haven’t done an analysis of the costs of creating green hydrogen from electrolysis, but I have a feeling, that electrolysis won’t be the only way to create large amounts of carbon-free hydrogen, in a few years.

These methods are currently available or under development or construction.

  • The hydrogen tram-buses in Pau have a personal electrolyser, that provides hydrogen at 350 bar.
  • London’s hydrogen buses will be provided with hydrogen from an electrolyser at Herne Bay by truck. Will the trucks be hydrogen-powered?

Some industrial processes like the Castner-Kellner process create hydrogen as a by-product.

In Shell Process To Make Blue Hydrogen Production Affordable, I describe the Shell Blue Hydrogen Process, which appears to be a way of making massive amounts of carbon-free hydrogen for processes like steel-making and cement production. Surely some could be piped or transported by truck to the rail depot.

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I describe how ITM Power and Ørsted plan to create the hydrogen off shore and bring it by pipeline to the shore.

Note.

  1. The last two methods could offer savings in the cost of production of carbon-free hydrogen.
  2. Surely, the delivery trucks if used, must be hydrogen-powered.
  3. The Shell Blue Hydrogen Process uses natural gas as a feedstock and converts it to hydrogen using a newly-developed catalyst. The carbon-dioxide is captured and used or stored.
  4. If the local gas network has been converted to hydrogen, the hydrogen can be delivered to the depot or filling station through that gas network.

I very much feel that affordable hydrogen can be supplied to bus, train, tram or transport depot. For remote or difficult locations. personal electrolysers, powered by renewable electricity, can be used, as at Pau.

Hydrogen Storage On Trains

Liquid hydrogen could be the answer and Airbus are developing methods of storing large quantities on aircraft.

In What Size Of Hydrogen Tank Will Be Needed On A ZEROe Turbofan?, I calculated how much liquid hydrogen would be needed for this ZEROe Turbofan.

I calculate that to carry the equivalent amount of fuel to an Airbus A320neo would need a liquid hydrogen tank with a near 100 cubic metre capacity. This sized tank would fit in the rear fuselage.

I feel that in a few years, a hydrogen train will be able to carry enough liquid hydrogen in a fuel tank, but the fuel tank will be large.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I calculated how much liquid hydrogen would be needed to provide the same amount of energy as that carried in a full diesel tank on a Class 68 locomotive.

The locomotive would need 19,147 litres or 19.15 cubic metres of liquid hydrogen, which could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.

Hydrogen Locomotives Or Multiple Units?

We have only seen first generation hydrogen trains so far.

This picture shows the Alstom Coradia iLint, which is a conversion of a Coradia Lint.

It is a so-so train and works reasonably well, but the design means there is a lot of transmission noise.

This is a visualisation of an Alstom Breeze or Class 600 train.

Note that the front half of the first car of the train, is taken up with a large hydrogen tank. It will be the same at the other end of the train.

As Mr. Shooter said, Alstom are converting a three-car train into a two-car train. Not all conversions live up to the hype of their proposers.

I would hope that the next generation of a hydrogen train designed from scratch, will be a better design.

I haven’t done any calculations, but I wonder if a lighter weight vehicle may be better.

Hydrogen Locomotives

I do wonder, if hydrogen locomotives are a better bet and easier to design!

  • There is a great need all over the world for zero-carbon locomotives to haul freight trains.
  • Powerful small gas-turbine engines, that can run on liquid hydrogen are becoming available.
  • Rolls-Royce have developed a 2.5 MW gas-turbine generator, that is the size of a beer-keg.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I wondered if the Rolls-Royce generator could power a locomotive, the size of a Class 68 locomotive.

This was my conclusion.

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

In the UK, it might be possible to convert some existing locomotives to zero-carbon, using either liquid hydrogen, biodiesel or aviation biofuel.

Perhaps, hydrogen locomotives could replace Chiltern Railways eight Class 68 locomotives.

  • A refuelling strategy would need to be developed.
  • Emissions and noise, would be reduced in Marylebone and Birmingham Moor Street stations.
  • The rakes of carriages would not need any modifications to use existing stations.

It could be a way to decarbonise Chiltern Railways without full electrification.

It looks to me that a hydrogen-powered locomotive has several advantages over a hydrogen-powered multiple unit.

  • It can carry more fuel.
  • It can be as powerful as required.
  • Locomotives could work in pairs for more power.
  • It is probably easier to accommodate the hydrogen tank.
  • Passenger capacity can be increased, if required by adding more coaches.

It should also be noted that both hydrogen locomotives and multiple units can build heavily on technology being developed for zero-carbon aviation.

The Upward Curve Of Battery Power

Sparking A Revolution is the title an article in Issue 898 of Rail Magazine, which is mainly an interview with  Andrew Barr of Hitachi Rail.

The article contains a box, called Costs And Power, where this is said.

The costs of batteries are expected to halve in the next years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2030 and £47/kWh in 3030.

United Kingdom Research and Innovation (UKRI) are predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1400 Wh/l in 2-35, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg to 12 kW/kg in 2035.

These are impressive improvements that can only increase the performance and reduce the cost of batteries in all applications.

Hitachi’s Regional Battery Train

This infographic gives the specification of Hitachi Regional Battery Train, which they are creating in partnership with Hyperdrive Innovation.

Note that Hitachi are promising a battery life of 8-10 years.

Financing Batteries

This paragraph is from this page on BuyaCar, which is entitled Electric Car Battery Leasing: Should I Lease Or Buy The Batteries?

When you finance or buy a petrol or diesel car it’s pretty simple; the car will be fitted with an engine. However, with some electric cars you have the choice to finance or buy the whole car, or to pay for the car and lease the batteries separately.

I suspect that battery train manufacturers, will offer similar finance models for their products.

This paragraph is from this page on the Hyperdrive Innovation web site.

With a standardised design, our modular product range provides a flexible and scalable battery energy storage solution. Combining a high-performance lithium-ion NMC battery pack with a built in Battery Management System (BMS) our intelligent systems are designed for rapid deployment and volume manufacture, supplying you with class leading energy density and performance.

I can envisage that as a battery train ages, every few years or so, the batteries will get bigger electrically, but still be the same physical size, due to the improvements in battery technology, design and manufacture.

I have been involved in the finance industry both as a part-owner of a small finance company and as a modeller of the dynamics of their lending. It looks to me, that train batteries could be a very suitable asset for financing by a fund. But given the success of energy storage funds like Gore Street and Gresham House, this is not surprising.

I can envisage that battery electric trains will be very operator friendly, as they are likely to get better with age and they will be very finance-friendly.

Charging Battery Trains

I must say something about the charging of battery trains.

Battery trains will need to be charged and various methods are emerging.

Using Existing Electrification

This will probably be one of the most common methods used, as many battery electric services will be run on partly on electrified routes.

Take a typical route for a battery electric train like London Paddington and Oxford.

  • The route is electrified between London Paddington and Didcot Junction.
  • There is no electrification on the 10.4 miles of track between Didcot Junction and Oxford.

If a full battery on the train has sufficient charge to take the train from Didcot Junction to Oxford and back, charging on the main line between London Paddington and Didcot Junction, will be all that will be needed to run the service.

I would expect that in the UK, we’ll be seeing battery trains using both 25 KVAC overhead and 750 VDC third rail electrification.

Short Lengths Of New Strategic Electrification

I think that Great Western Railway would like to run either of Hitachi’s two proposed battery electric trains to Swansea.

As there is 45.7 miles pf track without .electrification, some form of charging in Swansea station, will probably be necessary.

The easiest way would probably be to electrify Swansea station and perhaps for a short distance to the North.

This Google Map shows Swansea station and the railway leading North.

Note.

  1. There is a Hitachi Rail Depot at the Northern edge of the map.
  2. Swansea station is in South-West corner of the map.
  3. Swansea station has four platforms.

Swansea station would probably make an excellent battery train hub, as trains typically spend enough time in the station to fully charge the batteries before continuing.

There are other tracks and stations of the UK, that I would electrify to enable the running of battery electric trains.

  • Leeds and York, which would enable carbon-free London and Edinburgh services via Leeds and help TransPennine services. This is partially underway.
  • Leicester and East Midlands Parkway and Clay Cross North Junction and Sheffield – These two sections would enable EMR InterCity services to go battery electric.
  • Sheffield and Leeds via Meadowhall, Barnsley Dearne Valley and the Wakefield Line, which would enable four trains per hour (tph) between Sheffield and Leeds and an extension of EMR InterCity services to Leeds.
  • Hull and Brough, would enable battery electric services to Hull and Beverley.
  • Scarborough and Seamer, would enable electric services services to Scarborough and between Hull and Scarborough.
  • Middlesbrough and Redcar, would enable electric services services to Teesside.
  • Crewe and Chester and around Llandudno Junction station – These two sections would enable Avanti West Coast service to Holyhead to go battery electric.
  • Shrewsbury station – This could become a battery train hub, as I talked about for Swansea.
  • Taunton and Exeter and around Penzance, Plymouth and Westbury stations – These three sections would enable Great Western Railway to cut a substantial amount of carbon emissions.
  • Exeter, Yeovil Junction and Salisbury stations. – Electrifying these three stations would enable South Western Railway to run between London and Exeter using Hitachi Regional Battery Trains, as I wrote in Bi-Modes Offered To Solve Waterloo-Exeter Constraints.

We will also need fast chargers for intermediate stations, so that a train can charge the batteries on a long route.

I know of two fast chargers under development.

I believe it should be possible to battery-electrify a route by doing the following.

  • Add short lengths of electrification and fast charging systems as required.
  • Improve the track, so that trains can use their full performance.
  • Add ERTMS signalling.
  • Add some suitable trains.

Note.

  1. I feel ERTMS  signalling with a degree of automatic train control could be used with automatic charging systems, to make station stops more efficient.
  2. In my view, there is no point in installing better modern trains, unless the track is up to their performance.

January 4, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Gore Street Energy’s £60mln Fundraise Significantly Oversubscribed

The title of this post, is the same as that of this article on Proactive Investors.

Surprise! Surprise!

Well not to me! Or I suspect Which!

This article on Which is entitled Solar Panel Battery Popularity Is Booming: Should You Buy One?

I have read the article and it leaves, the overall impression, that the UK population are thinking seriously about adding batteries to their solar panels.

So if the UK population is thinking seriously about personal energy storage, it would be very surprising if professional fund managers weren’t thinking the same.

After all, I did write World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, over two years ago.

So if we’re operating and commissioning offshore wind farms like these.

We’re going to need some humungous batteries to tide us through calm periods.

As I write this post on a Monday afternoon, the UK is generating 11.5 GW of electricity by wind, which is more than we’re generating by biomass, coal and nuclear combined.

This is a quote from Alex O’Cinneide, who is Gore Street Capital’s chief executive, in the Proactive Investors article.

We are looking forward to deploying this capital against our significant global pipeline of 1.3GW and towards the capital expenditure requirements in the company’s existing 440MW portfolio.

Gore Street certainly seem to be expanding, their portfolio of batteries.

Conclusion

The City of London has discovered renewable energy and found a way to fund it, to the benefit of all investors, from the guy with a pension managed by a reputable company to global insurance companies, funds and other companies, who have billions of pounds, dollars or euros, that needs a profitable home.

The next big development will come, when a company like Gore Street goes Giga and decide to fund Gigawatt batteries being developed by the next generation of energy storage companies, like Gravitricity, Highview Power, Siemens Ganesa and Zinc8.

 

December 14, 2020 Posted by | Energy, Energy Storage, Finance | , , | Leave a comment

Gore Street Energy Welcomes Green Light For Larger Battery Projects In England And Wales

The title of this post, is the same as that of this article on Proactive Investors.

These are the introductory paragraphs..

Gore Street Energy Fund has welcomed legal changes to allow battery projects larger than 50MW in England and 350MW in Wales.

The new legislation removes energy storage, except pumped hydro, from the Nationally Significant Infrastructure Projects regime in England and Wales, said the fund.

This will allow larger projects to receive planning permission without government approval.

I can see why they are pleased, as it removes a level of bureaucracy.

I suspect companies like Highview Power will also be pleased as 50 MW is at the lower end of their battery range.

July 20, 2020 Posted by | Energy Storage | , | Leave a comment

Japan A ‘Very Interesting Market’ For Gore Street As It Becomes An ‘Enabler’ Of JXTG’s Transition

The title of this post, is the same as that of this article on the Solar Power Portal.

This is the introductory paragraph.

London Stock Exchange-listed energy storage fund Gore Street has outlined how it sees Japan as a “very interesting market” following its investment from JXTG Nippon Oil & Energy Corporation.

I like Gore Street’s philosophy and its execution.

I am not an investor and probably never will be, but they seem to be based on sound principles and do their modelling well. I’ve built enough large financial models to know a good one from its results.

Gore Street is normally investing in lithium-ion batteries.

  • These batteries now have a predictable reliability profile and I suspect cash-flow from owning a battery is fairly predictable.
  • The control and monitoring software will get better as time goes by and these batteries will probably update themselves automatically.
  • They probably aren’t that affected by COVID-19, as lockdown still needs energy to be balanced and these batteries are probably performing as normal.
  • The heat of the last few weeks probably caused more grief than COVID-19.
  • If a site visit is necessary, they can probably be done with one man in a van with a key to the security system. So maintenance is probably easy to do, whilst maintaining social distance.

I also liked this paragraph from the article.

, Gore Street Capital CEO, Alex O’Cinneide, said that the fact that the deregulation of the Japanese market over the next few years makes it of interest to the company, alongside it having the same characteristics of the UK in terms of the decommissioning of coal, nuclear and gas and increasing levels of renewables.

Could Gore Street Energy Fund, be a safe investment for today’s difficult times?

 

July 2, 2020 Posted by | Energy, Energy Storage, Finance, Health | , , , | Leave a comment

Do We Need A UK Lithium-Ion Battery Factory?

My post, Gore Street Acquires 50MW Ferrymuir Battery Project, Eyes More In Scotland and the article on the Energyst with the same name, got me thinking.

It was this statement about Gore Street Energy Fund, that really started the thought.

The fund said the addition takes its portfolio built or under development to 293MW and added that is has options for a further 900MW.

Gore Street obviously have the money to build all of this energy storage.

  • I have also looked at some of their projects on Google Maps and there are still plenty of sites on green- or brown-field land close to electricity sub-stations, where energy storage would be easy to connect.
  • I suspect, they have some good engineers or electricity marketing specialists available.
  • My worry, would be, with many countries going the energy storage route, is there enough capacity to build all the batteries we need.

We have three routes, we could easily take in this country.

  • Convert suplus energy to hydrogen using electrolysers from ITM Power in Rotherham.
  • Develop some BALDIES (Build Anywhere Long Duration Intermittent Energy Storage). British technology is available as the CRYObatteryfrom Highview Power, who signed to build their first full-size plant in the UK, last week.
  • Build a lithium-ion battery factory. Preferably of the next generation, so that battery vehicles will go further on a charge.

It is my view, that we should do all three!

Will Gore Street, add a BALDIES to their portfolio of lithium-ion energy storage.

I think the decision makers at Gore Street would sleep comfortably in their beds if they bought a CRYObattery for a location, that needed a larger battery.

Conclusion

As to the answer to my question, the answer is yes, as mobile application will need more and better batteries and on balance, we should have our own supply.

 

 

June 24, 2020 Posted by | Energy Storage | , , , | 2 Comments

Gore Street Acquires 50MW Ferrymuir Battery Project, Eyes More In Scotland

The title of this post, is the same as this article on The Energyst.

This is a paragraph.

The Ferrymuir project in Fife, Scotland, has all connections and consents in place. Gore Street hopes to commission it in 2022.

 

It looks like it just needs the money to fit it out.

Judging by the numbers quoted for Gore Street in the article, it looks like a lot of fund managers and people with money, are putting money into energy storage.

June 24, 2020 Posted by | Energy Storage | | 1 Comment

Gore Street Contracts NEC For 100 MW Of Storage

The title of this post is the same as that of this article on the Solar Power Portal.

This is the introductory paragraph.

Gore Street Energy Storage Fund has awarded NEC Energy Solutions both EPC and long-term O&M contracts for 100MW of storage in Northern Ireland.

What I find most comforting, is the matter-of-fact tone of the article.

Although, the author does seem to think that MW and MWh are the same, when in fact MW is used to define the rate of energy used or transferred and MWh the quantity.

If you use one MW for an hour, that is one MWh.

Gore Street appear to have needed two 50 MW energy storage systems for Drumkee and Mullavilly in Northern Ireland to back up a solar farm investment.

And they appear to have just ordered them off the shelf from NEC, in much the way, an individual might buy a Tesla Powerwall for their house.

According to this article on OVO Energy, the average European house uses 3,600 kWh per year.As there are 8760 hours in a year, the average consumption for a year is 0.4 kW per hour.

So if we assume that these two energy storage systems can deliver 50 MW for an hour, the following can be said.

  • The total capacity of each system is 50 MWh.
  • Each system can supply  125,000 houses for an hour or 25,000 houses for five hours.
  • As each housing unit has an average occupancy of 2.66 people, this means that a 50 MWh battery could supply a town of 66,500 people, for five hours.

Note that Lowestoft in Suffolk has a population of 71,000.

These batteries are not small.

January 11, 2020 Posted by | Energy Storage | , | Leave a comment

19MW Storage Capacity To Participate In Three UK Flexible Markets

The title of this post is the same as that of this article on Smart Energy.

in Batteries On The Boil As Fund Attracts Investors, I talked about energy storage funds, which are a way of investing in energy storage to add capabilities to electricity grids.

This article talks about how the Gore Street Energy Fund is investing in two energy storage facilities at the Port of Tilbury and Lower Road in Essex

I have also found this article on Solar Power Portal, which is entitled Gore Street Fund Makes New Battery Acquisitions With New 19MW Pair From Origami Energy.

The second article has a picture of a 4 MW/4.8 MWh Tesla battery at Cenin Renewables.

The link to Tesla gives a well-presented page of applications of these batteries.

One example given is Renewable Integration, where this is said.

Smooth and firm the output of a renewable power generation source such as wind or solar.

This will be a large application for these types of large batteries, as although we don’t have masses of sun, we do have a lot of wind.

Big financial institutions like Pension Funds and Insurance Companies need secure long term investment to place their money and these energy storage devices, would appear to offer a sensible return, that enables them to pay their investors, like anybody who has a pension. Traditionally,these financial institutions have invested in property and government bonds for example.

Lately, they have been investing in railway rolling stock, which have a life of up to forty years. These energy storage systems should offer a reasonable life, if well-maintained and updated.

As there will large numbers of energy  storage systems installed in the UK in the next decades, I think they could be a big area for investment.

At an individual level, we will also see houses built or refurbished with solar panels and batteries.

We are at the start of an exciting revolution!

 

November 24, 2018 Posted by | Energy, Energy Storage | , , , | Leave a comment

Batteries On The Boil As Fund Attracts Investors

The title of this post is the same as that of an article in the Business section of today’s Times.

This is the first two paragraph.

Investors have sunk £100million into a new listed company that aims to use shipping containers packed with lithium-ion batteries to buy, store and sell electricity.

Gresham House Energy Storage Fund claims that it will make a return of 15 per ceent a year by providing electricity when surges in demand coincide with periods when the wind is not blowing  or the sun is not shining.

Gresham House Energy Storage Fund is the second listed energy storage fund in London, after Gore Street Energy Storage Fund , launched in May.

I think we’ll see more of these funds and use of the technology.

Suppose you were a farmer with a windy hill top farm, that had a heavy electricity bill.

Realistically, sized, priced and financed a  wind-turbine and a container full of batteries, might be just what your finances wanted.

All you’d need now would be an electric Range-Rover and a fleet of electric tractors!

November 10, 2018 Posted by | Energy, Energy Storage | , , , | 2 Comments