The Anonymous Widower

MAN And Highview Power Sign World-First LAES Project Contract

The title of this post, is the same as that of this article on gasworld.

This first paragraph fills out the title and explains the acronyms.

A contract has been signed between the two companies for MAN Energy Solutions (MAN) to provide Highview Power’s (Highview) CRYOBattery facility with its liquid-air energy-storage (LAES) turbomachinery solution.

This contract may apply to only the 50MW/250MWh system at Carrington, near Manchester, but if this system is successful, as Highview have sold nearly a dozen systems worldwide and MAN most certainly has a worldwide support network, it is probably not a small deal for a company like MAN.

Last night, I had a drink with a friend who is the Operations Director for one of London’s largest bus companies. His company is looking seriously at  batteries to ease charging of electric buses.

As MAN Energy Solutions are part of the Volkswagen Group could MAN’s interest in Highview’s technology be partly driven by Volkswagen’s need to provide a charging solution for all of the fleets of battery buses, cars, trucks and vans, that they hope to sell in the next few years.

It must surely help in the selling of thousands of electric vans to a company like Amazon, if you can sell them a charging solution, that includes a large eco-friendly battery, that can be fitted into the average site.

July 15, 2021 Posted by | Energy Storage, Transport | , , | Leave a comment

MAN Energy Partners With Highview Power On Liquid-Air Energy-Storage Project

The title of this post, is the same as that of this article on Renewable Energy Magazine.

This is the introductory paragraph.

Highview Power, a leader in long duration energy storage solutions, has selected MAN Energy Solutions to provide its LAES turbomachinery solution to Highview Power for its CRYOBattery™ facility, a 50 MW liquid-air, energy-storage facility – with a minimum of 250MWh – located in Carrington Village, Greater Manchester , U.K.

The article is almost a word-for-word copy of this press release from MAN Energy Solutions, which has a similar title to this post and the Renewable Energy Magazine article.

As an Electrical Engineer who has done a lot of work in Project Management, I find these two paragraphs significant.

Construction will proceed in two phases. Phase 1 will involve the installation of a ‘stability island’, to provide near-instantaneous energy grid stabilisation. This will be achieved using a generator and flywheel, among other components. Enabling short-term stabilisation will provide the basis for Phase 2 and the completion of the more complex liquid air energy storage system that includes various compressors, air expanders and cryogenic equipment.

Phase 2 will represent the integration of stability services with a full-scale long-duration energy storage system, and in doing so promote the full integration of renewable energy. The Carrington project will offer a blueprint for future projects and cement the partnership between MAN Energy Solutions and Highview Power.

I first became acquainted with the use of flywheels to stabilise energy, when I was working in Enfield Rolling Mills as a vacation job at sixteen.

The centerpiece of their factory was a rolling mill, which took heated copper wirebars about two metres long  amd ten centimetres square and rolled them into thick copper wire just a few millimetres in diameter. The mill was driven by a powerful electric motor, to which it was connected with a 97 tonne flywheel perhaps four metres in diameter in between. The flywheel spun at probably 3000 revolutions per minute.

The wirebar used to meander through the rolling mill several times and at each turn, the head would be caught by a man with a pair of tongs and turned back through the mill.

Each time the wire-bar went through a new pair of rolls the energy needed increased, as there was more rolling to do. So this extra energy was taken from the flywheel!

The rolling mill incidentally had been built by Krupp before the First World War. It still had the Krupp trademark of three interlocked railway tyres all over it. It had ended up in Enfield as reparations after the First World War. Enfield Rolling Mills added a fourth ring to create their own trademark.

It would appear that the kinetic energy of that flywheel could be as high as 1.6 MWh. Flywheels also react very fast.

Flywheel energy storage would appear to be a feasible intermediate energy store for this type of application.

I always remember Shimatovitch, who was the Chief Engineer of the company had jokingly once said that if the flywheel came off its bearings, it would have ended up a couple of miles away and would have demolished all the houses in its path. But he was a man with a dark sense of humour, who had spent most of the Second World War in a Nazi concentration camp.

Could it be that Phase 1 is the installation of a similar system to that I saw working in the 1960s, but upgraded with modern electronics, which exchanges power with the grid to create the stability island referred to in the press release.

In Phase 2 electricity can be passed to and from the CRYOBattery.

Looking at the MAN Energy Solutions web site, I suspect that they don’t care what sort of energy store they connect to the grid.

They would appear to be an excellent choice of engineering partner for Highview Power.

I also wonder how many other applications and customers, they will bring into the partnership.

Conclusion

This looks like a very sensible and low-risk strategy to connect the CRYOBattery to the grid.

 

April 22, 2021 Posted by | Energy, Energy Storage | , , , , , | 2 Comments