The Anonymous Widower

Rolls-Royce To Develop mtu Hydrogen Electrolyser And Invest In Hoeller Electrolyser

The title of this post, is the same as that of this press release from Rolls-Royce.

These are the three main points in the press release.

  • Holdings in start-up companies in northern Germany secure Rolls-Royce Power Systems access to key green hydrogen production technology.
  • Electrolysis systems for several megawatts of power.
  • First demonstrator in 2023 using a Hoeller stack.

This is the introductory paragraph to the deal.

Rolls-Royce is entering the hydrogen production market and acquiring a 54% majority stake in electrolysis stack specialist Hoeller Electrolyzer, whose innovative technology will form the basis of a new range of mtu electrolyzer products from its Power Systems division. Hoeller Electrolyzer, based in Wismar, Germany, is an early-stage technology company that is developing highly efficient polymer electrolyte membrane (PEM) stacks, under the brand name Prometheus, for the cost-effective production of hydrogen.

This page on the Hoeller Electrolysis web site gives details of Prometheus.

  • Hoeller are planning small, medium and large electrolyser modules, the largest of which is rated at 1.4 MW.
  • Load changes of between 0 and 100 % within seconds.
  • Cold start capability.
  • It will produce 635 Kg/day.
  • They are talking of a cost of 4€/Kg.

It all sounds good to me.

This paragraph is from the press release.

Founded in 2016, Hoeller Electrolyzer has positioned itself, with Prometheus, as one of the few highly specialized expert players in the field of high-efficiency PEM electrolysis stacks. Its founder, Stefan Höller, has more than a quarter of a century’s experience of developing electrolysis technology and has already registered 14 patents connected with Prometheus. Particularly high efficiency is promised by special surface technologies for the bipolar plates which significantly reduce the use of expensive precious metals platinum and iridium as catalysts, as well as increased output pressure.

I know a small amount about electrolysis and feel that Rolls-Royce may have got themselves a high-class deal.

Rolls-Royce’s large German presence in companies like mtu, will also help to smooth any doubts about the deal.

This paragraph indicates a shared belief.

Rolls-Royce and Hoeller Electrolyzer are united by a shared belief in the opportunity of zero-carbon energy – both for power supply and the propulsion of heavy vehicles. With decades of experience and systems expertise, Rolls-Royce is going to develop a complete electrolyzer system and has a global sales and service network, which opens up the potential for significant worldwide sales.

But perhaps, this is the most significant paragraph of the press release.

Armin Fürderer, who heads up the Net Zero Solutions business unit of Power Systems, said: “We’re going to launch electrolyzers with several megawatts of power right from the start. A total output of over 100 megawatts is conceivable by combining several electrolyzers.”

A quick search of the Internet, indicates that 100 MW is the size of the world’s largest electrolysers.

Applications

I can see applications for these large electrolysers.

Rolls-Royce Power Systems

This is a sentence from the press release.

Hoeller Electrolyzer, whose innovative technology will form the basis of a new range of mtu electrolyzer products from its Power Systems division.

The Rolls-Royce Power Systems web site, has this mission statement.

The Power Systems Business Unit of Rolls-Royce is focused on creating sustainable, climate neutral solutions for drive, propulsion and power generation.

In Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology, I describe one of Rolls-Royce Power Systems projects.

The title of this post, is the same as this press release from Rolls-Royce.

This is the first sentence.

Rolls-Royce will ensure a climate-neutral energy supply at the container terminal currently under construction at the Port of Duisburg, Germany.

There is also this Rolls-Royce graphic, which shows the energy sources.

It would appear batteries,  combined heap and power (CHP), grid electricity, hydrogen electrolyser, hydrogen storage and renewable electricity are being brought together to create a climate-neutral energy system.

Note.

  1. The system uses a large hydrogen electrolyser.
  2. I suspect the hydrogen will be generated by off-peak electricity and local renewables.
  3. Hydrogen will probably power the container handling machines, ships, trucks, vehicles and other equipment in the port.

Hydrogen appears to be used as a means of storing energy and also for providing motive power.

I would suspect, the ultimate aim is that the port will not emit any carbon dioxide.

Other ports like Felixstowe and Holyhead seem to be going the hydrogen route.

Refuelling Hydrogen Buses and Charging Electric Buses

If you look at the Duisburg system, I can imagine a similar smaller system being used to refuel hydrogen buses and charge electric ones.

  • The hydrogen electrolyser would be sized to create enough hydrogen for a day or so’s work.
  • Hydrogen would be generated by off-peak electricity and local renewables.
  • If an operator bought more buses, I’m certain that the architecture of the electrolyser would allow expansion.
  • Hydrogen fuel cells would boost the electricity supply, when lots of buses needed to be charged.
  • Any spare hydrogen could be sold to those who have hydrogen-powered vehicles.
  • Any spare electricity could be sold back to the grid.

It should be noted that manufacturers like Wrightbus have developed a range of hydrogen and electric buses that use the same components. So will we see more mixed fleets of buses, where the best bus is assigned to each route?

I have used buses as an example, but the concept would apply to fleets of cars, trucks and vans.

Green Hydrogen

Large efficient electrolysers will surely be the key to producing large quantities of green hydrogen in the future.

It appears that about 55 MWh is needed to produce a tonne of green hydrogen using existing electrolysers.

The Hoeller electrolyser appears to be about 53 MWh, so it is more efficient.

Green Hydrogen From An Onshore Wind Farm

If you look at the average size of an onshore wind farm in the UK, a quick estimate gives a figure of 62 MW. I shouldn’t expect the figure for much of the world is very different, where you ignore the gigafarms, as these will distort the numbers.

An appropriately-sized electrolyser could be added to onshore wind farms to provide a local source of hydrogen for transport, an industrial process or a domestic gas supply for a new housing estate.

A single 5 MW wind turbine with a capacity factor of around 30 % would produce around 680 Kg of green hydrogen per day.

Green Hydrogen From An Offshore Wind Farm

There are basic methods to do this.

Put the electrolyser onshore or put the electrolyser offshore and pipe the hydrogen to the shore.

I think we will see some innovative configurations.

In ScotWind N3 Offshore Wind Farm, I described how Magnora ASA are developing the ScotWind N3 wind farm.

The floating turbines surround a concrete floater, which in the future could contain an electrolyser and tankage for hydrogen.

The ScotWind N3 wind farm is designed to be a wind farm rated at 500 MW.

I can see an electrolyser on the floater, of an optimal size to make sure all electricity is used.

Pink Hydrogen

Pink hydrogen, is zero-carbon hydrogen produced using nuclear-generated electricity.

There are industrial processes, like the making of zero-carbon chemicals, concrete and steel, that will require large quantities of zero-carbon green or pink hydrogen.

Rolls-Royce are developing the Rolls-Royce SMR, which will be a 470 MW small modular nuclear reactor.

One of these placed near to a steel works and coupled to one or more 100 MW electrolysers could provide enough zero-carbon electricity and hydrogen to produce large quantities of zero-carbon green steel.

Manufacturing

Rolls-Royce and their subsidiaries like mtu, seem to be extensive users of advanced manufacturing techniques and I would expect that they can improve Hoeller’s manufacturing.

Research And Development

The press release says this about the founder of Hoeller.

Its founder, Stefan Höller, has more than a quarter of a century’s experience of developing electrolysis technology and has already registered 14 patents connected with Prometheus.

If Rolls-Royce can develop and support Stefan Höller and his team, development could easily go to a higher level.

Conclusion

I think that Rolls-Royce have taken over a company, that will in the end, will design excellent efficient electrolysers.

 

 

 

June 29, 2022 Posted by | Hydrogen | , , , , , , , , , , , , , , | 1 Comment

News Of The Day From Rolls-Royce

This press release from Rolls-Royce is entitled Rolls-Royce Advances Hybrid-Electric Flight With New Technology To Lead The Way In Advanced Air Mobility.

This is the introductory paragraph.

Rolls-Royce is officially announcing the development of turbogenerator technology, which includes a new small engine designed for hybrid-electric applications. The system will be an on-board power source with scalable power offerings and will complement the Rolls-Royce Electrical propulsion portfolio, enabling extended range on sustainable aviation fuels and later as it comes available through hydrogen combustion.

This paragraph outlines the use of the new small engine.

Current battery technology means all-electric propulsion will enable eVTOL and fixed wing commuter aircraft for short flights in and between cities and island-hopping in locations like Norway and the Scottish Isles. By developing turbogenerator technology, that will be scaled to serve a power range between 500 kW and 1200 kW, we can open up new longer routes that our electric battery powered aircraft can also support.

There is also a video in the press release, which gives more information.

  • The turbogenerator is compatible to their electric power and propulsion offering.
  • The turbogenerator has a power of 500-1200 kW to serve different aircraft platforms.
  • The system is modular and can be tailored to different applications.
  • The turbogenerator can either power the aircraft directly or charge the batteries.
  • The system can be configured to provide primary power for other applications.
  • Rolls-Royce are designing all the components; the turbogenerator, the gas turbine, the generator, the power electronics, so they all fit together in a compact and lightweight solution.
  • Rolls-Royce intend to manufacture all components themselves and not rely on bought-in modules.
  • Every gram of weight saved is important.

I suspect that one of the keys to making this all work is a very comprehensive and clever control system.

I have a few thoughts.

Weight Is Key

Rolls-Royce emphasise weight saving in the video. Obviously, this is important with any form of flying machine.

An Example System

Let’s suppose you want an electric power system to power a railway locomotive or one of those large mining trucks.

  • The locomotive or truck has an electric transmission.
  • Power of 2 MW is needed.
  • A battery is needed.
  • Fuel will be Sustainable Aviation Fuel (SAF) or hydrogen.

A series hybrid-electric power unit will be created from available modules, which could be very fuel efficient.

What Will Rolls-Royce’s System Be Able to Power?

Although the system is aimed at the next generation of electric flying machines, these systems will be used in any application that wants an efficient zero- or low-carbon power source.

Consider.

  • Some large trucks have diesel engines with a power of almost 500 kW.
  • A Class 68 bi-mode locomotive has a 700 kW diesel engine.
  • A Class 802 train has three 700 kW diesel engines.
  • Rolls-Royce subsidiary MTU are a large supplier of diesel engines for rail, road and water.

It looks to me that Rolls-Royce have sized the system to hoover up applications and they have MTU’s experience to engineer the applications.

Class 43 Power Cars

The iconic Class 43 power cars running on UK railways are an interesting possibility for powering with Rolls-Royce’s new system.

  • Despite being over forty-years old, there are over a hundred and twenty still in service.
  • They were upgraded with new 1.7 MW MTU diesel engines in the early part of this century.
  • Rolls-Royce is based in Derby.
  • The Class 43 power cars were developed in Derby.
  • Hydrogen-powered Class 43 power cars, hauling GWR Castles or ScotRail Inter7Cities would be tourist attractions.
  • The Class 43 power cars need to be either decarbonised or replaced in the next few years.

Decarbonisation using Rolls-Royce’s new system would probably be more affordable.

This all sounds like a project designed in a pub in Derby, with large amounts of real ale involved.

But I wouldn’t be surprised if it happened.

Will The System Be Upgradable From Sustainable Aviation Fuel To Hydrogen?

This is an except from the introductory paragraph.

The system will be an on-board power source with scalable power offerings and will complement the Rolls-Royce Electrical propulsion portfolio, enabling extended range on sustainable aviation fuels and later as it comes available through hydrogen combustion.

This would appear that if used in aviation, it will be possible to upgrade the system from sustainable aviation fuel to hydrogen, when a suitable hydrogen supply becomes available.

But all applications could be upgraded.

A truck, like the one shown in the picture could be delivered as one running on sustainable aviation fuel and converted to hydrogen later.

Conclusion

Rolls-Royce have put together a modular system, that will have lots of applications.

 

 

June 22, 2022 Posted by | Energy, Hydrogen, Transport/Travel | , , , , , , , | Leave a comment

A Hydrogen-Electric Class 99 Locomotive

In GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I introduced the Class 99 locomotive, for which the first order was announced by Stadler and GB Railfreight yesterday.

This was the start of that post, which I wrote in early March 2022.

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

GB Railfreight is planning to order a fleet of main line electro-diesel locomotives with a modular design which would facilitate future replacement of the diesel engine with a battery or hydrogen fuel cell module.

In this post, I will look at the design of a Class 99 locomotive running on hydrogen.

These are my thoughts.

Using Hydrogen Fuel Cells

The Railway Gazette article suggests that hydrogen fuel-cells will be used to create a hydrogen-electric Class 99 locomotive.

A typical hydrogen fuel-cell transmission will have the following elements, which will replace the diesel-electric generator.

  • A hydrogen fuel tank
  • A appropriately-sized hydrogen fuel-cell which generates electricity from hydrogen.
  • A battery to store electricity.
  • Regenerative braking will also be used to charge the battery.
  • The locomotive will have an electric transmission.

The various components will be fitted into the space, that was occupied by the diesel engine.

This Alstom video promotes the Alstom Coradia iLint and explains how it works.

Most hydrogen fuel-cell trains and trucks , work as the train does in this video.

Using A Reciprocating Engine Running On Hydrogen

This press release from Caterpillar is entitled Caterpillar to Expand Hydrogen-Powered Solutions to Customers.

It describes how Caterpillar will develop versions of their reciprocating engines, that will run on 100 % hydrogen.

This would be an alternative way of developing a zero-carbon Class 99 locomotive.

Note that Cummins, JCB and Rolls-Royce mtu have also converted diesel engines to run on hydrogen.

This method of conversion has advantages.

April 30, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , | 5 Comments

Rolls-Royce Provide mtu Trigeneration Plant For Largest Data Centre In Romania

The title of this post, is the same as that of this press release on the Rolls Royce web site.

  • mtu Series 4000 gas generator sets to provide electricity, heat and cooling for ClusterPower’s Technology Campus in Craiova
    The completed campus will feature five data centers and provide a significant boost to the region’s global IT infrastructure competitiveness
  • Rolls-Royce, along with its distributor partner Knopf & Wallisch (K&W), has supplied three mtu customized and containerized combined cooling, heat and power plant (CCHP) trigeneration units to Romanian cloud service provider ClusterPower. They will be used for the efficient and sustainable energy supply at its new technology campus near the southern Romanian city of Craiova, where the IT company will open the largest data center in Romania.

The press release also says that trigeneration plants are hydrogen-ready.

The engines are gas engines, that can be converted to running on a mix of 25 % hydrogen and natural gas or eventually to pure hydrogen.

Conclusion

This would appear to be a neat way to sell the end customer an engine that can handle natural gas now and convert it over time to hydrogen.

January 14, 2022 Posted by | Computing, Energy, Hydrogen | , , , | Leave a comment

Will We See Class 43 Power Cars Converted To Hydrogen?

To say that the Class 43 power cars of the InterCity 125 trains are iconic is rather an understatement.

Note.

They were built by British Rail in the late 1970s and early 1980s.

  • They have an operating speed of 125 mph.
  • They are now powered by a modern MTU 16V4000 R41R diesel engine after being re-engined earlier this century.
  • They have an electric transmission.

According to Wikipedia, there are over a hundred and twenty in service.

At the back of the power car there is a lot of space, as this picture shows.

This press release from Rolls-Royce is entitled Rolls-Royce Launches mtu Hydrogen Solutions For Power Generation.

These are the introductory bullet points to the press release.

  • From 2022 mtu Series 500 and Series 4000 ready for 25% hydrogen
  • From 2023 mtu engines and conversion kits available for 100% hydrogen

And what engine is there in a Class 43 power car? – It’s an MTU 16V4000 R41R diesel engine.

Is it an mtu Series 4000 engine?

If it is, there is space in the back of the power car for the hydrogen tank and the diesel engine can be converted to run on hydrogen, Rolls-Royce have everything they need break the speed record for hydrogen-powered trains. After all power cars; 43102 and 43159 hold the diesel-train speed record at 148 mph.

That would be some Roller.

December 24, 2021 Posted by | Hydrogen, Transport/Travel | , , , | 9 Comments

Rolls-Royce Invests In Methanol Technology For Climate-Friendly Shipping

The title of this post, is the same as this press release from Rolls-Royce.

The press report starts with these bullet points.

  •  Rolls-Royce Power Systems to set standards in high-speed marine methanol engines
  •  New engines based on proven mtu technologies
  •  Methanol and synthetic diesel as key fuels of the future for climate-friendly engine operation
  •  Fuel cell another option on the way to climate-neutral ship operation

It then says this

Rolls-Royce is focusing on methanol as a fuel for climate-friendly shipping: Rolls-Royce business unit Power Systems is currently working on mtu engines for use with methanol. The new high-speed four-stroke engines, which are based on proven mtu technologies, are planned to be available to customers as soon as possible for use in commercial ships and yachts.

This paragraph gives the reasons, why Rolls-Royce is in favour of methanol.

Methanol offers a number of advantages for Rolls-Royce’s efforts to make shipping more climate-friendly and ultimately climate-neutral: The fuel can be produced in a CO2-neutral manner in the so-called power-to-X process, in which CO2 is captured from the air. The energy density of methanol is high compared to other sustainable fuels and, thanks to its liquid state, it can be easily stored and refuelled at ambient temperatures. Existing infrastructure can continue to be used in many cases. Unlike ammonia, methanol is not highly toxic and is environmentally safe. The combustion of methanol in a pure methanol engine can be climate-neutral with significantly reduced nitrogen oxide emissions, thus eliminating the need for complex SCR exhaust gas aftertreatment. Methanol tanks can be flexibly arranged in the ship and require significantly lower safety measures compared to hydrogen or ammonia. Besides the safety aspects and the lower complexity, the lower investment costs for users are a further upside of the methanol tank system.

Methanol seems to be a convenient and safe fuel, which is easier to incorporate into the marine environment, than hydrogen or ammonia.

Wikipedia says this about methanol’s use in shipping.

Methanol is an alternative fuel for ships that helps the shipping industry meet increasingly strict emissions regulations. It significantly reduces emissions of sulphur oxides (SOx), nitrogen oxides (NOx) and particulate matter. Methanol can be used with high efficiency in marine diesel engines after minor modifications using a small amount of pilot fuel (Dual fuel).

Rolls-Royce certainly seem to be keen to use the fuel. They also seem to have the technology.

December 24, 2021 Posted by | Energy | , , , , , | 4 Comments

Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology

The title of this post, is the same as this press release from Rolls-Royce.

This is the first sentence.

Rolls-Royce will ensure a climate-neutral energy supply at the container terminal currently under construction at the Port of Duisburg, Germany.

There is also this Rolls-Royce graphic, which shows the energy sources.

It would appear batteries,  combined heap and power (CHP), grid electricity, hydrogen electrolyser, hydrogen storage and renewable electricity are being brought together to create a climate-neutral energy system.

  • As the graphic was named hydrogen technology for ports, I would assume that this is a Rolls-Royce mtu system that will be deployed at more than one port around the world.
  • Note the H2 CHPs in the graphic. Could these be applications for Rolls-Royce’s beer keg-sized 2.5 MW electrical generator based on a Super Hercules engine?
  • One of Rolls-Royce’s small modular nuclear reactors could be ideal for a large port outside Germany.

This is the last paragraph of the press release.

“Hydrogen technology is no longer a dream of the future, but hydrogen technology will prove itself in everyday use in Duisburg. The parallel use of fuel cell solutions and hydrogen engines shows that we have taken the right path with our technology-open approach to the development of new solutions for the energy supply of the future,” says Andreas Schell, CEO of Rolls-Royce Power Systems.

Rolls-Royce mtu appear to be very serious about the possibilities of hydrogen.

 

December 24, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , | 2 Comments

What Will Happen To Northern’s Class 195 Trains?

Northern’s Class 195 trains could be a problem in the future.

  • They are diesel multiple units.
  • There are twenty-five two-car trains and thirty-three three-car trains.
  • All cars have a Rolls-Royce MTU 6H1800R85L diesel engine, that drives the train through a ZF EcoLife 6-speed transmission.
  • They are 100 mph trains, which is adequate for the routes they serve.
  • According to Wikipedia, the trains are designed for a lifespan of thirty-five years, which takes the trains past the date, when it is intended that all trains should be zero-carbon.

It looks to me, that a plan will be needed to decarbonise these trains, as they are probably too new and costly to scrap.

These are possibilities to upgrade them to zero-carbon.

Rebuild as Class 331 Electric Trains

The design of the Class 195 trains is based on the same platform as that of the Class 331 trains.

I would expect that it could be possible to rebuild the Class 195 trains as Class 331 trains.

But it would be an expensive and disruptive process and would require a lot of electrification.

Some battery-electric versions could be created to cut the need for electrification.

Run The Trains On Net-Zero Hydrogenated Vegetable Oil Or Other Fuels

In Powered By HVO, I wrote about research going on into the use of Hydrogenated Vegetable Oil or HVO.

There is also ongoing research into other net-zero fuels that can be used in a diesel engine.

The process used by Velocys to create sustainable aviation fuel can also be used to produce diesel from various sources like disposable nappies, household waste and scrap wood.

Run The Trains On A Dual Fuel Basis With Hydrogen

In Grand Central DMU To Be Used For Dual-Fuel Trial, I talk about how Grand Central in collaboration with a company called G-volution are running experiments with dual-fuelling a Class 180 train. G-volution state that they could dual fuel with hydrogen using their technology.

The Class 180 trains have Cummins engines, but I suspect G-volution’s technology or something similar could be applied to the Rolls-Royce MTU engines in the Class 195 trains.

This could be a very promising route.

Convert The Diesel Engines To Run On Hydrogen

Cummins and JCB have developed internal combustion engines, that can run on hydrogen. I would be very surprised if Rolls-Royce MTU are not developing this technology.

Conclusion

There are options to convert the Class 195 trains into low or zero-carbon trains.

.

December 23, 2021 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , , | 10 Comments

The Mathematics Of A Hydrogen-Powered Freight Locomotive

If we are going to decarbonise the railways in the UK and in many countries of the world, there is a need to replace diesel locomotives with a zero-carbon alternative.

In looking at Airbus’s proposal for hydrogen powered aircraft in ZEROe – Towards The World’s First Zero-Emission Commercial Aircraft, it opened my eyes to the possibilities of powering freight locomotives using gas-turbine engines running on liquid hydrogen.

A Hydrogen-Powered Equivalent Of A Class 68 Locomotive

The Class 68 Locomotive is a modern diesel locomotive used on UK railways.

This is a brief specification

  • It can pull both passenger and freight trains.
  • It has an operating speed of 100 mph.
  • The diesel engine is rated at 2.8 MW
  • It has an electric transmission.
  • It has a 5,000 litre diesel tank.
  • It weighs 85 tonnes.
  • It is 20.5 metres long.

There are thirty-four of these locomotives in service, where some haul passenger trains for Chiltern Railways and TransPennine Express.

Rolls-Royce’s Staggering Development

Staggering is not my word, but that of Paul Stein, who is Rolls-Royce’s Chief Technology Officer.

He used the word in a press release, which I discuss in Our Sustainability Journey.

To electrify aviation, Rolls-Royce has developed a 2.5 MW generator, based on a small gas-turbine engine, which Paul Stein describes like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

This generator is designed for flight and the data sheet for the gas-turbine engine is available on the Internet.

  • It has a weight of under a couple of tonnes compared to the thirteen tonnes of the diesel engine and generator in a Class 68 locomotive.
  • It is almost as powerful as the diesel.
  • It looks to be as frugal, if not more so!
  • Rolls-Royce haven’t said if this gas-turbine can run on aviation biofuel, but as many of Rolls-Royce’s large engines can, I would be very surprised if it couldn’t!

Rolls-Royce’s German subsidiary; MTU is a large producer of rail and maritime diesel engines, so the company has the expertise to customise the generator for rail applications.

Could this generator be modified to run on liquid hydrogen and used to power a Class 68-sized locomotive?

  • The size of the generator must be an advantage.
  • Most gas-turbine engines can be modified to run on natural gas and hydrogen.
  • Its power output is electricity.
  • There’s probably space to fit two engines in a Class 68 locomotive.

In addition, a battery could be added to the transmission to enable regenerative braking to battery, which would increase the efficiency of the locomotive.

Storing Enough Hydrogen

I believe that the hydrogen-powered locomotive should carry as much energy as a Class 68 locomotive.

  • A Class 68 locomotive has a capacity of 5,000 litres of diesel fuel.
  • This will have a mass of 4.19 tonnes.
  • Each kilogram of diesel can produce 47 Mega Joules of energy.
  • This means that full fuel tanks contain 196,695 Mega Joules of energy.
  • Each litre of liquid hydrogen can produce 10.273 Mega Joules of energy

This means that to carry the same amount of energy will need 19,147 litres or 19.15 cubic metres of liquid hydrogen.

  • This could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.
  • It would also weigh 1.38 tonnes.

The E-Fan-X aircraft project must have worked out how to store, similar amounts of liquid hydrogen.

Note that I used this Energy And Fuel Data Sheet from Birmingham University.

Running On Electrification

As the locomotive would have an electric transmission, there is no reason, why it could not run using both 25 KVAC overhead and 750 VDC third-rail electrification.

This would enable the locomotive to haul trains efficiently on partially electrified routes like between Felixstowe and Leeds.

Hydrogen-Powered Reciprocating Engines

When it comes to diesel engines to power railway locomotives and big trucks, there are few companies bigger than Cummins, which in 2018, turned over nearly 24 billion dollars.

  • A large proportion of this revenue could be at risk, if governments around the world, get serious about decarbonisation.
  • Cummins have not let the worst just happen and in 2019, they acquired Hydrogenics, who are a hydrogen power company, that they now own in an 81/19 partnership with Air Liquide.
  • Could all this expertise and Cummins research combine to produce powerful hydrogen-powered reciprocating engines?
  • Other companies, like ABC and ULEMCo are going this route, to modify existing diesel engines to run on hydrogen or a mixture of hydrogen and diesel.

I believe it is very likely, that Cummins or another company comes up with a solution to decarbonise rail locomotives, based on a conversion of an existing diesel engine.

Refuelling Hydrogen-Powered Rail Locomotives

One of problems with hydrogen-powered trucks and cars, is that there is no nationwide refuelling network providing hydrogen. But railway locomotives and trains usually return to depots at the end of the day for servicing and can be fuelled there.

Conclusion

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

September 25, 2020 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , , | 11 Comments