The Anonymous Widower

Could Chiltern Go Battery-Electric?

In the October 2022 Edition of Modern Railways, there is an article, which is entitled Chiltern Considers Turbo Future, with a sub-title of Battery Replacement Could Be On The Cards.

These are the first two paragraphs.

In early September Chiltern Railways was preparing to launch a market sounding exercise to consider options for the future of the Class 165 Turbo DMU fleet.

The operator has 28×2-car and 11×3-car ‘165s’. which operate alongside its more modern Class 168 DMUs and its loco-hauled sets. The market sounding exercise will consider two options for the future of the fleet – some sort of hybrid conversion, or outright replacement.

The Class 165 Trains

The Class 165 trains were built in 1990-1991.

  • Maximum Speed – 75 mph
  • Prime Movers – One per car, Perkins 2006-TWH
  • 2-car Trains – 28
  • 3-car Trains – 11

One is being converted to a diesel/battery hybrid.

The Class 168 Trains

The Class 168 trains were built in 1998-2004.

  • Maximum Speed – 100 mph
  • Prime Movers – One per car, MTU 6R 183TD13H
  • 2-car Trains – 9
  • 3-car Trains – 8
  • 4-car Trains – 11

One has been converted to a diesel/battery hybrid.

Conversion To Hybrid Operation

If this proves to be feasible, it will surely be the more affordable of the two options.

But it does leave Chiltern with a mixed fleet with two types of train with different maximum speeds and these lengths.

  • 2-car Trains – 37
  • 3-car Trains – 19
  • 4-car Trains – 11

Would a fleet of similar trains, with perhaps a maximum speed of 100 mph, be better operationally?

Battery-Electric Operation

The Modern Railways article introduces the concept of battery-electric operation with this paragraph.

If a replacement fleet is considered the best option for the Turbo units, the replacements could take the form of a straight battery EMU, taking advantage of recent advances in ‘fast charge’ technology.

The article also says this about battery technology and electrification.

There is optimism that advances in battery technology will provide a smooth pathway to decarbonise Chiltern’s operations – the company serves the only non-electrified London terminus.

In the longer-term, it is hoped electrification from Birmingham to Banbury as part of a strategy to decarbonise CrossCountry and freight services would enable Chiltern to run a battery EMU on London to Birmingham duties, running under battery power as far north as Banbury and switching to overhead wires from there, both powering the unit and enabling the batteries to be recharged.

The Modern Railways article looked at each route and I will do this in more detail.

London Marylebone And Aylesbury via High Wycombe

London Marylebone and Oxford would be under battery operation for 40 miles.

Trains would be charged at London Marylebone and Aylesbury stations.

London Marylebone And Aylesbury Vale Parkway

London Marylebone and Oxford would be under battery operation for 41 miles.

Trains would be charged at London Marylebone and Aylesbury Vale Parkway stations.

It might be better to electrify between Aylesbury and Aylesbury Vale Parkway stations.

London Marylebone And Banbury

London Marylebone and Oxford would be under battery operation for 69 miles.

Trains would be charged at London Marylebone and Banbury stations.

Leamington Spa And Birmingham Moor Street

Assuming the Birmingham and Banbury section of the route is electrified, this route will be electrified.

London Marylebone And Birmingham Moor Street Or Birmingham Snow Hill

Assuming the Birmingham and Banbury section of the route is electrified, this route can be considered to be in two sections.

  • London Marylebone and Banbury – Battery operation – 69 miles
  • Banbury and Birmingham – Electric operation – 42 miles

Trains would be charged at London Marylebone station and on the electrified section.

London Marylebone And Gerrards Cross

London Marylebone and Oxford would be under battery operation for 19 miles or 38 miles both ways.

Trains would be charged at London Marylebone station.

London Marylebone And High Wycombe

London Marylebone and Oxford would be under battery operation for 28 miles or 56 miles both ways.

Trains would be charged at London Marylebone station.

London Marylebone And Oxford

London Marylebone and Oxford would be under battery operation for 66.8 miles.

Trains would be charged at London Marylebone and Oxford stations.

London Marylebone And Stratford-upon-Avon

Assuming the Birmingham and Banbury section of the route is electrified, this route can be considered to be in two sections.

  • London Marylebone and Banbury – Battery operation – 69 miles
  • Banbury and Hatton Junction – Electric operation – 26 miles
  • Hatton Junction and Stratford-upon-Avon – Battery operation – 9 miles

Trains would be charged at London Marylebone station and on the electrified section.

Chiltern’s Mainline Service

Chiltern’s Mainline service between London and Birmingham is run by either a Class 68 locomotive pulling a rake of six Mark 3 coaches and a driving van trailer or two or three Class 168 trains.

As the locomotive-hauled train is about eight coaches, it could surely be replaced by two four-car multiple units working together.

I believe that if Chiltern obtained a fleet of four-car battery electric trains, this would be the most efficient fleets for all their routes.

Charging At London Marylebone Station

I took these pictures at Marylebone station today.

Note.

  1. It is a surprisingly spacious station and I feel that Furrer+Frey or some other specialist company could add some form of charging to the platforms.
  2. Charging would probably performed using the train’s pantograph.

It appears that the turnround time in Marylebone is typically twelve minutes or more, which should be adequate to fully charge a train.

 

Conclusion

Both solutions will work for Chiltern.

But I prefer the new battery-electric train, which has some crucial advantages.

  • Battery-electric trains will be quieter than hybrid trains.
  • Marylebone station has a noise problem and battery-electric trains are very quiet.
  • Chiltern have ambitions to built new platforms at Old Oak Common and to serve Paddington. This could be easier with a battery electric train.

Rhe only disadvantage is that Banbury and Birmingham would need to be electrified.

 

 

September 25, 2022 Posted by | Transport/Travel | , , , , , , , , , , , | 5 Comments

York And Church Fenton Electrification

This news item from Network Rail is entitled Yorkshire’s First New Electric Railway In 25 Years Set To Cut Carbon And Slash Journey Times.

This section summarised the work

Work began on the York to Church Fenton electrification scheme in October 2019, and to date has delivered:

  • 17 kilometres of new, more reliable track, ready to run faster trains
  • An innovative 65-metre-wide under-track crossing
  • 270 new steel masts, which carry the overhead electric wires

When the new wires are energised, they will allow more environmentally friendly hybrid trains to run along this section at speeds of up to 125mph – that’s 30mph faster than they currently run.

This OpenRailwayMap shows between York and Church Fenton.

Note.

red lines indicate 25 KVAC overhead electrification.

York is in the North-East corner of the map.

Church Fenton is in the South-West corner of the map.

The track marked in red going South is the Selby Diversion, which was built in 1983 to avoid the Selby coalfield. It joins the York and Church Fenton route at Colton Junction.

The Colton Junction and Church Fenton section is marked in red and black, indicating this section is being electrified.

This second OpenRailwayMap shows between Church Fenton and Neville Hill TMD in the East of Leeds.

Note.

  • Church Fenton is in the North-East corner of the map.
  • Neville Hill TMD is the big black blob in the middle of the West edge of the map.
  • The route marked in red and black will probably be the next to be electrified.
  • Between Leeds and Neville Hill is electrified.

Electrification of Church Fenton and Neville Hill TMD means that the electrification between Leeds and York would be complete.

These services use this route between Leeds and York.

  • TransPennine Express – 1 tph – Liverpool Lime Street and Newcastle
  • TransPennine Express – 1 tph – Manchester Airport and Redcar Central
  • CrossCountry – 1 tph – Plymouth and Edinburgh Waverley

In addition, the new electrified route will have other effects.

Electric trains will have direct electrified access to Neville Hill TMD from York.

Micklefield is only 42 miles from Hull and with charging at Hull, I suspect TransPennine’s Manchester Piccadilly and Hull service could go battery-electric.

 

July 12, 2022 Posted by | Transport/Travel | , , , , | 3 Comments

Discontinuous Electrification Through Derwent Valley Mills

One big problem area of electrification on the Midland Main Line could be North of Derby, where the railway runs through the World Heritage Site of the Derwent Valley Mills. There might be serious objections to electrification in this area.

But if electrification were to be installed between Leicester and Derby stations, the following would be possible.

  • The Midland Main Line would be electrified at East Midlands Hub station.
  • Power could be taken from High Speed Two’s supply at East Midland Hub station, even if High Speed Two is not built in full.
  • Battery-electric trains could do a return trip to Nottingham from an electrified East Midlands Parkway station, as it’s only sixteen miles in total.

I am sure, that Hitachi’s Class 810 trains could be upgraded to have a of perhaps twenty-five miles on battery power, as this fits with Hitachi’s statements.

North of Derby, there would be electrification on the following sections.

  • Derby station and South of the heritage-sensitive section at Belper station.
  • Sheffield station and North of the heritage-sensitive section at Duffield station.

Milford Tunnel, which has Grade II Listed portals and is part of the World Heritage Site would not be electrified.

Belper and Duffield stations are 2.6 miles or 4.8 kilometres apart.

I believe it could be arranged that there would be no electrification in the sensitive section, where the Heritage Taliban might object.

The Hitachi Intercity Battery Hybrid Train

Hitachi will start testing their Intercity Battery Hybrid Train next year.

The train is described in this Hitachi infographic.

Note that is has a gap-jumping range of 5 km, which would handle the gap between Belper and Duffield stations.

CrossCountry Services Between Derby And Sheffield

CrossCountry operate the following services between Derby and Sheffield through Milford Tunnel and the World Heritage Site.

  • Plymouth and Edinburgh Waverley/Glasgow Central
  • Southampton/Reading and Newcastle

CrossCountry would need new trains and one of the current Hitachi Class 802 trains could handle this route and use electrification where it exists.

A five kilometre gap will be no big obstacle to designing a battery-electric train for these CrossCountry services.

Freight Trains

In Will Zero-Carbon Freight Trains Be Powered By Battery, Electric Or Hydrogen Locomotives?, I came to this conclusion.

In the title of this post, I asked if freight locomotives of the future would be battery, electric or hydrogen.

I am sure of one thing, which is that all freight locomotives must be able to use electrification and if possible, that means both 25 KVAC overhead and 750 VDC third rail. Electrification will only increase in the future, making it necessary for most if not all locomotives in the future to be able to use it.

I feel there will be both battery-electric and hydrogen-electric locomotives, with the battery-electric locomotives towards the less powerful end.

Hydrogen-electric will certainly dominate at the heavy end.

These locomotives would be able to handle the section of the Midland Main Line through Derwent Valley Mills.

 

December 30, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 7 Comments

How Feasible Is A High Speed Line Between Birmingham And Nottingham?

In Red Wall Commuters To Get Rail Revolution, I indicated that the Department of Transport is considering creating three new high speed lines in the Midlands and the North of England.

One is proposed between Birmingham and East Midlands Parkway, which is described in the original article in The Sunday Times like this.

A 42-mile line from Birmingham to East Midlands Parkway, just south of Nottingham. This is expected to cut journey times between the two cities from 72 minutes to 27 minutes.

There is a currently, a CrossCountry service between Nottingham and Birmingham New Street stations.

  • The frequency is two trains per hour (tph)
  • Trains are generally three- or four-car formations of Class 170 diesel trains.
  • All trains stop at Tamworth, Burton-on-Trent and Derby.
  • Some trains stop at Wilnecote, Willington, Spondon, Long Eaton and Beeston
  • The services take upwards of seventy-one minutes.

Note.

  1. The frequency between Birmingham New Street and Derby is four tph.
  2. Trains reverse at Derby which takes seven minutes.
  3. Three tph stop at Burton-on-Trent.

I feel that the current service is very much a compromise, which is trying to handle three services.

  • A fast train between Birmingham and Nottingham.
  • A fast train between Birmingham and Derby.
  • A local service between Nottingham and Derby.

High Speed Two will be providing a non-stop service between Birmingham Curzon Street and East Midlands Hub stations.

  • The frequency will be three tph.
  • There will also be an hourly train between Birmingham Interchange and East Midlands Hub station.
  • The services will take twenty minutes or slightly less from Interchange.

The services will only get you to East Midlands Hub station.

In addition after High Speed Two opens Midlands Connect are planning to run a direct service between Nottingham and Birmingham Curzon Street stations.

  • The frequency will be one tph.
  • The service will use High Speed Two Classic Compatible trains.
  • The only stop will be East Midlands Hub station.
  • The service will take thirty-three minutes.

So how does a new high speed line connect Birmingham and Nottingham in twenty-seven minutes?

Consider.

  • The route between Birmingham New Street and North Stafford Junction is 35.9 miles
  • At North Stafford junction a double-track freight line leads to the East.
  • The freight line passes to the North of East Midlands Airport and South of Long Eaton station before joining the Midland Main Line at Trent junction to the North of East Midlands Parkway station.
  • Trains can pass straight into Nottingham via Beeston.
  • Nottingham is just 6.7 miles to the East of Trent junction and East Midlands Parkway is just a mile South of Trent junction.
  • South Stafford junction to Trent junction is probably about seven miles.

I believe that this is the route that will be upgraded to create a high speed line between Birmingham and Nottingham.

  • Part of the route between Tamworth and Burton-on-Trent was upgraded to 125 mph running by British Rail.
  • Between Birmingham New Street and North Stafford Junction is used by CrossCountry services between Birmingham and Derby and Nottingham.
  • I believe that the route can be fully electrified and upgraded, so that most of the route could be suitable for 125 mph running.
  • The Midland Main Line is already capable of handling trains at 125 mph.

This should make it possible for services to run between Birmingham New Street and Nottingham in the required twenty-seven minutes.

I will answer a few questions.

Could The Trains Serve Birmingham Curzon Street In Birmingham?

In Birmingham Airport Connectivity, I said this

But look at this map clipped from the High Speed Two web site.

Note.

  1. The blue dot shows the location of Curzon Street station.
    The West Coast Main Line running into New Street station, is just to the South of Curzon Street station.
    New Street station can be picked out to the West of Curzon Street station.

This Google Map shows a close-up of the current Curzon Street station site.

The same pattern of rail lines going past the Curzon Street site into New Street station can be picked out.

Surely, a connection could be made to allow trains from a couple of platforms in Curzon Street station to terminate trains from the West Coast Main Line.

Possible services could include.

  • London Euston and Birmingham Curzon Street via Watford Junction, Milton Keynes, Rugby and Coventry
  • Cardiff and Birmingham Curzon Street via Bristol Parkway, Swindon, Oxford and Milton Keynes.
  • Cambridge and Birmingham Curzon Street via Bristol Parkway, Bedford and Milton Keynes.

There are a lot of possibilities to give High Speed Two much bigger coverage.

I also suspect that the proposed Nottingham and Birmingham service could terminate in Birmingham Curzon Street.

Could High Speed Two Classic Compatible Trains Run Between Birmingham And Nottingham?

As High Speed Two Classic Compatible Trains would have the same loading gauge as current trains, I don’t see why not.

Could A London Euston And Nottingham Service Be Run With A Reverse At Birmingham Curzon Street?

These are prospective times for High Speed Two.

  • London Euston and Birmingham Curzon Street – 45 minutes
  • London Euston and East Midlands Hub – 52 minutes

Note that East Midlands Hub and Nottingham could take at least twenty minutes.

And this is a current timing.

  • London St. Pancras And Nottingham – 95 minutes

It is possible calculate the time for London Euston to Nottingham with a reverse at Birmingham.

  • London Euston and Birmingham Curzon Street – 45 minutes
  • Reverse at Birmingham Curzon Street – 3 minutes
  • Birmingham Curzon Street and Nottingham – 27 minutes

This would give a time of 75 minutes between London Euston and Nottingham.

It does look to me, that the fastest route between London and Nottingham, will be to to go via Birmingham and the proposed new high speed route.

So the answer to the question in the title of this section is a Yes!

Could A London Euston And Sheffield Service Be Run With A Reverse At Birmingham Curzon Street?

These are prospective times for High Speed Two.

  • London Euston and Birmingham Curzon Street – 45 minutes
  • London Euston and East Midlands Hub – 52 minutes
  • London Euston and Sheffield – 87 minutes

And these are current timings.

  • London St. Pancras And Derby- 85 minutes
  • London St. Pancras And Sheffield- 118 minutes
  • Birmingham New Street And Derby- 33 minutes
  • Birmingham New Street And Sheffield- 75 minutes

It is possible calculate the time for London Euston to Sheffield with a reverse at Birmingham.

  • London Euston and Birmingham Curzon Street – 45 minutes
  • Reverse at Birmingham Curzon Street – 3 minutes
  • Birmingham Curzon Street and Sheffield – 75 minutes

This would give a time of 123 minutes between London Euston and Sheffield.

I wonder what time could be achieved between London Euston and Sheffield could be achieved with improvements to the following lines.

  • The CrossCountry Route between North Stafford junction and Derby station.
  • The Midland Main Line between Derby and Sheffield.

I would expect that the improvement to these routes would include.

  • At least almost full electrification.
  • Removal of level crossings.
  • Full digital signalling.
  • Upgrading to 140 mph running.

I could see the following service improvements.

  • A substantial reduction of the times between Birmingham and Sheffield.
  • Derby and Burton-on-Trent would get a fast service to London Euston via High Speed Two.
  • Derby and Burton-on-Trent would get a fast service to Birmingham probably with a frequency of 4 tph.
  • CrossCountry services between Birmingham and Sheffield would be faster.

Derby and Burton-on-Trent would get a much better train service.

Could Burton-on-Trent, Derby, Nottingham And Sheffield Be served By Trains Splitting And Reversing At Birmingham Curzon Street?

These are prospective frequencies for High Speed Two.

  • Burton-on-Trent – No trains
  • Chesterfield  1 tph
  • Derby – No trains
  • East Midland Hub – 7 tph
  • Nottingham – 0 tph
  • Sheffield – 2 tph

Suppose there were two tph between London and Birmingham Curzon Street, that split into two trains in Birmingham.

  • One train could go to Nottingham and call at Tamworth and Burton-on-Trent.
  • The other train could go to Sheffield and call at Tamworth, Burton-on-Trent, Derby and Chesterfield.

This would give the following frequencies from London on High Speed Two.

  • Burton-on-Trent – 2 tph
  • Chesterfield  – 2  tph
  • Derby – 2 tph
  • Nottingham – 2 tph
  • Sheffield – 2 tph

Note that I am ignoring the Eastern Leg of High Speed Two in this analysis.

Could We Go For The Full Burton?

In the previous sections, I suggested serving Nottingham and Sheffield from Euston using High Speed Two with a reverse at Birmingham Curzon Street, where the train would split into two trains, with one train going to Sheffield and the other going to Nottingham.

But could the split be at a rebuilt Burton station?

Consider.

  • Burton station could become an Eastern terminus of Birmingham’s Cross-City Line.
  • Burton station could become the Western terminus of the Ivanhoe Line to Leicester.
  • If the Cross Country Route is upgraded, Burton station would have fast connections to Birmingham, Derby, Chesterfield, Sheffield and Leeds,
  • If the new Birmingham and Nottingham route is created, this would mean fast connections to Nottingham and possibly Lincoln.

Burton-on-Trent could become the passenger rail hub for the Mid Midlands.

I

November 14, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | Leave a comment

Electrification Between Clay Cross North Junction And Sheffield Station

Long term readers of this blog, will have noticed that I make regular references to this proposed electrification, that is part of High Speed Two’s proposals to connect Sheffield to the new high speed railway.

So I thought I would bring all my thoughts together in this post.

Connecting Sheffield To High Speed Two

Sheffield is to be accessed from a branch off the Main High Speed Two route to Leeds.

This map clipped from High Speed Two’s interactive map, shows the route of the Sheffield Branch, from where it branches North West from the main Eastern Leg of High Speed Two.

Note.

  1. Orange indicates new High Speed Two track.
  2. Blue indicates track that High Speed Two will share with other services.
  3. The orange route goes North to Leeds, along the M1
  4. The blue route goes North to Chesterfield and Sheffield, after skirting to the East of Clay Cross.
  5. The orange route goes South to East Midlands Hub station.

This second map, shows where the Erewash Valley Line joins the Sheffield Branch near the village of Stonebroom.

Note.

  1. Red is an embankment.
  2. Yellow is a cutting.
  3. The Sheffield Branch goes North-West to Clay Cross, Chesterfield and Sheffield
  4. The Sheffield Branch goes South-East to East Midlands Hub station.
  5. The Sheffield Branch goes through Doe Hill Country Park.
  6. The Sheffield Branch runs alongside the existing Erewash Valley Line, which goes South to Langley Mill, Ilkeston and the Derby-Nottingham area.

The Sheffield Branch and the Erewash Valley Line appear to share a route, which continues round Clay Cross and is shown in this third map.

Note

  1. Doe Hill Country Park is in the South-East corner of the map.
  2. The dark line running North-South is the A61.
  3. Running to the West of the A61 is the Midland Main Line, which currently joins the Erewash Valley Line at Clay Cross North junction.

High Speed Two and the Midland Main Line will share a route and/or tracks from Clay Cross North junction to Sheffield.

This fourth map, shows where the combined route joins the Hope Valley Line to Manchester to the South West of Sheffield.

Note.

  1. Sheffield is to the North East.
  2. Chesterfield is to the South East,
  3. Totley junction is a large triangular junction, that connects to the Hope Valley Line.

These are some timings for various sections of the route.

  • Clay Cross North Junction and Chesterfield (current) – 4 minutes
  • Clay Cross North Junction and Sheffield (current) – 17 minutes
  • Chesterfield and Sheffield (current) – 13 minutes
  • Chesterfield and Sheffield (High Speed Two) – 13 minutes
  • East Midlands Hub and Chesterfield (High Speed Two) – 16 minutes
  • East Midlands Hub and Sheffield (High Speed Two) – 27 minutes

As Class Cross North Junction and Sheffield are 15.5 miles, this means the section is run at an average speed of 53 mph.

Can I draw any conclusions from the maps and timings?

  • There would appear to be similar current and High Speed Two timings between Chesterfield and Sheffield.
  • The various junctions appear to be built for speed.

The Midland Main Line will be electrified between Clay Cross North Junction and Sheffield, so that High Speed Two trains can use the route.

What will be the characteristics of the tracks between Clay Cross North Junction and Sheffield?

  • Will it be just two tracks as it mainly is now or will it be a multi-track railway to separate the freight trains from the high speed trains?
  • Will it have a high enough maximum speed, so that East Midland Railway’s new Class 810 trains can go at their maximum speed of 140 mph?
  • Will it be capable of handling a frequency of 18 tph, which is the maximum frequency of High Speed Two?

Surely, it will be built to a full High Speed Two standard to future-proof the line.

Current Passenger Services Between Clay Cross North Junction And Sheffield Station

These trains use all or part of the route between Cross North Junction And Sheffield stations.

  • CrossCountry – Plymouth and Edinburgh via Derby, Chesterfield, Sheffield and Leeds – 1 tph
  • East Midlands Railway – London St. Pancras and Sheffield via Derby and Chesterfield – 2 tph
  • East Midlands Railway – Liverpool Lime Street and Norwich via Stockport, The Hope Valley Line, Sheffield and Chesterfield – 1 tph
  • Northern Trains – Manchester Piccadilly and Sheffield via the Hope Valley Line – 1 tph
  • Northern Trains – Leeds and Nottingham via Meadowhall, Sheffield and Chesterfield – 1 tph
  • TransPennine Express – Manchester Airport and Cleethorpes via Stockport, the Hope Valley Line and Sheffield – 1 tph

Note.

  1. tph is trains per hour.
  2. High Speed Two is currently planning to run two tph to Sheffield, which will run between Cross North junction and Sheffield stations.
  3. The services on the Hope Valley Line run on electrified tracks at the Manchester end.

These services can be aggregated to show the number of trains on each section of track.

  • Hope Valley Line between Manchester and Totley junction – 3 tph
  • Totley junction and Sheffield station – 7 tph
  • Totley junction and Clay Cross North junction via Chesterfield – 4 tph

Adding in the High Speed Two services gives these numbers.

  • Hope Valley Line between Manchester and Totley junction – 3 tph
  • Totley junction and Sheffield station – 9 tph
  • Totley junction and Clay Cross North junction via Chesterfield – 6 tph

This report on the Transport for the North web site, is entitled At A Glance – Northern Powerhouse Rail. It states that Transport for the North’s aspirations for Manchester and Sheffield are four tph with a journey time of forty minutes.

Adding in the extra train gives these numbers.

  • Hope Valley Line between Manchester and Totley junction – 4 tph
  • Totley junction and Sheffield station – 10 tph
  • Totley junction and Clay Cross North junction via Chesterfield – 6 tph

This level of services can be accommodated on a twin-track railway designed to the right high speed standards.

Freight Services Between Clay Cross North Junction And Sheffield Station

The route is used by freight trains, with up to two tph on each of the three routes from Totley junction.

And these are likely to increase.

Tracks Between Clay Cross North Junction And Sheffield Station

I am absolutely certain, that two tracks between Clay Cross North junction And Sheffield station will not be enough, even if they are built to High Speed Two standards to allow at least 140 mph running under digital signalling.

Battery Electric Trains

The only battery-electric train with a partly-revealed specification is Hitachi’s Regional Battery Train, which is described in this Hitachi infographic.

Note.

  1. The train is a 100 mph unit.
  2. Ninety kilometres is fifty-six miles.

I would expect that battery-electric trains from other manufacturers like Alstom, CAF and Siemens would have similar performance on battery power.

In Thoughts On CAF’s Battery-Electric Class 331 Trains, I concluded CAF’s approach could give the following ranges.

  • Three-car battery-electric train with one battery pack – 46.7 miles
  • Four-car battery-electric train with one battery pack – 35 miles
  • Four-car battery-electric train with two battery packs – 70 miles

I was impressed.

These are my thoughts on battery-electric trains on the routes from an electrified Sheffield.

Adwick

Sheffield  and Adwick is 22.7 miles without electrification

I am sure that battery-electric trains can handle this route.

If the battery range is sufficient, there may not need to be charging at Adwick.

Bridlington

Sheffield and Bridlington is 90.5 miles without electrification, except for a short section through Doncaster, where trains could top up batteries.

I am sure that battery-electric trains can handle this route.

But there would need to be a charging system at Hull, where the trains reverse.

An alternative would be to electrify Hull and Brough, which is just 10.4 miles and takes about twelve minutes.

Derby Via The Midland Main Line

Clay Cross North junction and Derby is 20.9 miles without electrification.

I am sure that battery-electric trains can handle this route.

Gainsborough Central

Sheffield  and Gainsborough Central is 33.6 miles without electrification

I am sure that battery-electric trains can handle this route.

But there will need to be a charging system at Gainsborough Central.

Huddersfield Via The Penistone Line

This is a distance of 36.4 miles with electrification at both ends, after the electrification between Huddersfield and Westtown is completed.

I am sure that battery-electric trains can handle this route.

Hull

Sheffield and Hull is 59.4 miles without electrification, except for a short section through Doncaster, where trains could top up batteries.

I am sure that battery-electric trains can handle this route.

But there will probably need to be a charging system at Hull.

An alternative would be to electrify Hull and Brough, which is just 10.4 miles and takes about twelve minutes.

Leeds Via The Hallam Or Wakefield Lines

This is a distance of 40-45 miles with electrification at both ends.

I am sure that battery-electric trains can handle this route.

Lincoln

Sheffield and Lincoln Central is 48.5 miles without electrification

I am sure that battery-electric trains can handle this route.

But there will probably need to be a charging system at Lincoln Central.

Manchester Via The Hope Valley Line

This is a distance of forty-two miles with electrification at both ends.

I am sure that battery-electric trains can handle this route.

Nottingham

Clay Cross North junction and Nottingham is 25.1 miles without electrification

I am sure that battery-electric trains can handle this route.

But there may need to be a charging system at Nottingham.

York

This is a distance of 46.4 miles with electrification at both ends.

I am sure that battery-electric trains can handle this route.

Is London St. Pancras And Sheffield Within Range Of Battery-Electric Trains?

In the previous section, I showed that it would be possible to easily reach Derby, as Clay Cross North junction and Derby is 20.9 miles without electrification.

  • Current plans include electrifying the Midland Main Line as far North as Market Harborough.
  • Market Harborough is 82.8 miles from London St. Pancras
  • Derby is 128.3 miles from London St. Pancras

So what would be the best way to cover the 45.5 miles in the middle?

One of the best ways would surely be to electrify between Derby and East Midlands Parkway stations.

  • Derby and East Midlands Parkway stations are just 10.2 miles apart.
  • Current services take around twelve-fourteen minutes to travel between the two stations, so it would be more than enough time to charge a battery-electric train.
  • Power for the electrification should not be a problem, as Radcliffe-on-Soar power station is by East Midlands Parkway station. Although the coal-fired power station will soon be closed, it must have a high class connection to the electricity grid.
  • The East Midlands Hub station of High Speed Two will be built at Toton between Derby and Nottingham and will have connections to the Midland Main Line.
  • An electrified spur could connect to Nottingham station.

I have flown my virtual helicopter along the route and found the following.

  • Three overbridges that are not modern and built for large containers and electrification.
  • Two level crossings.
  • One short tunnel.
  • Two intermediate stations.
  • Perhaps half-a-dozen modern footbridges designed to clear electrification.

I’ve certainly seen routes that would be much more challenging to electrify.

I wonder if gauge clearance has already been performed on this key section of the Midland Main Line.

If this section were to be electrified, the sections of the Midland Main Line between London St. Pancras and Sheffield would be as follows.

  • London St. Pancras and Market Harborough – Electrified – 82.8 miles
  • Market Harborough and East Midlands Parkway – Not Electrified – 35.3 miles
  • East Midlands Parkway and Derby – Electrified – 10.2 miles
  • Derby and Clay Cross North junction – Not Electrified – 20.9 miles
  • Clay Cross North junction and Sheffield – Electrified – 15.5 miles

Note.

  1. The World Heritage Site of the Derwent Valley Mills is not electrified, which could ease the planning.
  2. Leicester station with its low bridge, which could be difficult to electrify, has not been electrified.
  3. Under thirty miles of electrification will allow battery-electric trains to run between London St. Pancras and Sheffield, provided they had a range on batteries of around forty miles.

Probably, the best way to electrify between East Midlands Parkway and Derby might be to develop a joint project with High Speed Two, that combines all the power and other early works for East Midlands Hub station, with the electrification between the two stations.

Will The Class 810 Trains Be Converted To Battery-Electric Operation?

Hitachi’s Class 8xx trains tend to be different, when it comes to power. These figures relate to five-car trains.

  • Class 800 train – 3 x 560 kW diesel engines
  • Class 801 train – 1 x 560 kW diesel engine
  • Class 802 train – 3 x 700 kW diesel engines
  • Class 803 train – All electric – No diesel and an emergency battery
  • Class 805 train – 3 x 700 kW diesel engines (?)
  • Class 807 train – All electric – No diesel or emergency battery
  • Class 810 train – 4 x 700 kW diesel engines (?)

Note.

  1. These figures relate to five-car trains.
  2. Class 807 train are seven-car trains.
  3. Where there is a question mark (?), the power has not been disclosed.
  4. Hitachi use two sizes of diesel engine; 560 kW and 700 kW.

It was generally thought with the Class 810 train to be used on the Midland Main Line, will be fitted with four engines to be able to run at 125 mph on diesel.

But are they 560 kW or 700 kW engines?

  • A Class 802 train has an operating speed of 110 mph on diesel, with 2100 kW of installed power.
  • To increase speed, the power will probably be related to something like the square of the speed.

So crudely the power required for 125 mph would be 2100*125*125/110/110, which works out at 2712 kW.

Could this explain why four engines are fitted? And why they are 700 kW versions?

Interestingly, I suspect, Hitachi’s five-car trains have two more or less identical driver cars, except for the passenger interiors, for the efficiency of manufacturing and servicing.

So does that mean, that a fifth engine could be fitted if required?

There probably wouldn’t be a need for five diesel engines, but as I also believe that the Hyperdrive Innovation battery packs for these trains are plug-compatible with the diesel engines, does that mean that Hitachi’s trains can be fitted with five batteries?

Suppose you wanted to run a Class 810 train at 125 mph to clear an electrification gap of forty miles would mean the following.

  • It would take 0.32 hours or 19.2 minutes to cross the gap.
  • In that time 2800 kW of diesel engines would generate 896 kWh.
  • So to do the same on batteries would need a total battery capacity of 896 kWh.
  • If all diesel engines were replaced, each battery would need to be 224 kWh

A battery of this size is not impractical and probably weighs less than the at least four tonnes of the diesel engine it replaces.

Conclusions

Electrification between Clay Cross North Junction and Sheffield station is an important project that enables the following.

  • A high proportion of diesel services to and from Sheffield to be converted to battery-electric power.
  • With electrification between Derby and East Midlands Parkway, it enables 125 mph battery-electric trains to run between London St. Pancras and Sheffield.
  • It prepares Sheffield for High Speed Two.

It should be carried out as soon as possible.

 

 

 

 

 

 

 

 

 

 

September 5, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , | 2 Comments

New Rail Service From Newcastle To Edinburgh To Stop At These Northumberland Stations

The title of this post, is the same as that of this article on the Chronicle Live.

Details of the service are as follows.

  • It will be run by TransPennine Express.
  • It starts in December 2021.
  • It will run five times per day (tpd)
  • It will call at Cramlington, Morpeth, Widdrington, Alnmouth, Berwick-upon-Tweed, Reston and Dunbar.

It is planned to run at least until May 2023.

These are my thoughts.

What Trains Will TransPennine Express Use?

The service will probably need a single train, if it was run by a dedicated fleet of trains, that just shuttled between Edinburgh and Newcastle. TransPennine could use either an electric  Class 802 train or a diesel Class 185 train.

The diesel train might not be a good idea for operational reasons as TransPennine’s current services to Newcastle and Edinburgh use Class 802 trains.

But this service wouldn’t need a Class 802 train, as the route is fully electrified, so TransPennine might use a Class 800 train, if one were available from another company in the First Group.

TransPennine could also extend selected Manchester Airport and Newcastle services to Edinburgh, which might be the most efficient ways of using both trains and platforms in Newcastle.

This would give those using the intermediate stations between Edinburgh and Newcastle a service to and from Manchester Airport and the intervening stations, with a change at Newcastle, which would involve staying on the same train.

I’d organise the service as five tpd between Manchester Airport and Edinburgh with calls at Manchester Piccadilly, Manchester Oxford Road, Manchester Victoria, Huddersfield, Dewsbury, Leeds, York, Northallerton, Darlington, Durham, Chester-le-Street, Newcastle, Cramlington, Morpeth, Widdrington, Alnmouth, Berwick-upon-Tweed, Reston and Dunbar.

The big advantage of this, is that TransPennine could use the existing Class 802 trains, although they may need one more.

Reston Station

It looks like it will be a much needed service, that will get the new Reston station up and running.

I suspect that,  passenger numbers at Reston station will determine the calling pattern after May 2023.

Will Other Services Continue?

TransPennine Express only has one service that stops between Newcastle and Edinburgh and that is the hourly service between Liverpool Lime Street and Edinburgh stations and that only stops at Morpeth.

I doubt this service will be changed, although after May 2023, it may make some extra stops depending on passenger numbers on the new service.

It should be noted that CrossCountry and LNER call irregularly at Alnmouth, Berwick-upon-Tweed and Dunbar.

As LNER are in rather a mess over their new timetable, I suspect that after May 2023, there could be a bit of a sort out of services.

How Will The New Service Fit With The Reopened Northumberland Line?

Initially the Northumberland Line will run as far as Ashington and won’t open until 2023 at the earliest.

But plans exist to extend the Northumberland Line to Morpeth.

The new service would fit well with an extended Northumberland Line service.

How Will The New Service Fit With East Coast Trains New London And Edinburgh Service?

East Coast Trains will be running a new Open Access service between London and Edinburgh from this autumn.

  • It will have a frequency of 5 tpd.
  • It will stop at Newcastle, Morpeth and Stevenage.
  • It will offer one way fares of £25.

East Coast Trains are another First Group company.

As both services are five tpd in both directions, will the two services co-ordinate stops, so that passengers between say London and Reston can take advantage?

Going North, the stopping train could follow the East Coast Trains express and going South the stopping train would be a few minutes in front of the express.

This would also help with maximising capacity between Edinburgh and Newcastle on the busy East Coast Main Line.

Conclusion

This new stopping service between Edinburgh and Newcastle looks to be a simple solution to improve passenger services for intermediate stations between the two important cities.

 

September 3, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | 3 Comments

Improving The Cross Country Route

The Cross Country Route is one of the UK’s forgotten railway lines.

  • It runs between York and Bristol Temple Meads.
  • Intermediate stations include Leeds, Wakefield Westgate, Rotherham Central, Meadowhall, Sheffield, Chesterfield, Derby, Burton-on-Trent, Tamworth, Birmingham New Street, University, Bromsgrove, Worcestershire Parkway, Cheltenham Spa and Bristol Parkway.
  • At the Northern end trains can swap to the electrified East Coast Main Line and can extend services to Edinburgh and Aberdeen.
  • At the Southern end trains can swap to the Great Western Main Line and extend services to Taunton, Exeter, Plymouth and Penzance.
  • Trains can also swap to the South Wales Main Line in the Bristol area, to serve Cardiff and South Wales.
  • Operating speeds are generally around 100 mph, but there are sections of 125 mph running.
  • Some sections of the route have 25 KVAC overhead electrification.

I very much believe that it is a route that is ripe for improvement.

These are my thoughts.

Extra And Rebuilt Stations

Recently, Worcestershire Parkway station has been opened on the route.

Bromsgrove station was rebuilt and reopened in 2016.

Derby station was remodelled in 2018.

In addition, there are aspirations for other mew stations and station improvements on the route.

I can see more station improvements and additions on the Cross Country Route.

New Trains

Most services are run by CrossCountry, who only use diesel trains.

Their core services are as follows.

Plymouth And Edinburgh uses the route between York and Bristol Temple Meads. The service runs under wires North of Leeds and at Bristol Parkway and at Birmingham New Street.

Southampton Central And Newcastle uses the route between York and Birmingham New Street. The service runs under wires North of Leeds and at Reading and at Birmingham New Street.

Bournemouth and Manchester Piccadilly uses the route at Birmingham New Street. The service runs under wires North of Birmingham New Street.

Bristol Temple Meads and Manchester Piccadilly uses the route between Bristol Temple Meads and Birmingham New Street. The service runs under wires at Bristol Parkway and North of Birmingham New Street.

Cardiff Central and Nottingham uses the route between Gloucester and Derby. The service runs under the wires West of Bristol Parkway and at Birmingham New Street.

Birmingham New Street and Nottingham uses the route between Birmingham New Street and Derby. The service runs under the wires at Birmingham New Street.

Birmingham New Street and Stansted Airport does not use the route. The service runs under the wires at Birmingham New Street and around Cambridge and Peterborough.

Birmingham New Street and Leicester does not use the route. The service runs under the wires at Birmingham New Street.

Note.

  1. Several services run under wires for sufficient time to charge a battery-electric train.
  2. Several services turn in stations for sufficient time to charge a battery-electric train.
  3. At least six or possibly seven of the services run for at least fifty miles on tracks that can handle 125 mph running. Some of this track will be upgraded to 140 mph with digital signalling.

This Hitachi infographic shows the Hitachi Intercity Tri-Mode Battery Train.

I believe that Hitachi could produce a version of this train, that would partially meet CrossCountry’s need for a new fleet to reduce their carbon footprint.

For the purpose of this analysis, I will assume this about the trains.

  • Battery power will always be used in stations.
  • The trains have a battery range of around forty miles at 100 mph.
  • Running at 125 mph will need 25 KVAC overhead electrification.

This table shows the current electrification status of the Cross Country Route.

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Birmingham New Street – 96.6 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles- Not Electrified

The trains would appear to still need to use diesel on some parts of the route.

Or Hitachi ABB Power Grids could install short lengths of 25 KVAC overhead electrification to top up the trains’ batteries in appropriate places.

I believe CrossCountry could decarbonise this route using battery-electric trains and discontinuous electrification.

This would surely refresh the line and attract passengers, but would the trains speed up the service?

  • Birmingham New Street and Leeds is 116.4 miles and currently takes just under two hours at an average speed of 59.3 mph in a Class 221 train.
  • Several sections of line between Birmingham New Street and Leeds can sustain 125 mph running.
  • London Liverpool Street and Norwich is 114.5 miles and has regularly been achieved by British Rail-era electric trains in ninety minutes on a 100 mph line, which is an average speed of 76 mph.
  • Averaging 76 mph between Birmingham New Street and Leeds would give a time of 92 minutes.

For these and other reasons, I am fairly sure that a battery-electric train capable of running at 125 mph with fast acceleration could run between Birmingham New Street and Leeds in under ninety minutes, with the addition of some discontinuous electrification.

  • There is currently one tph between Birmingham New Street and Leeds, which also serves Sheffield.
  • There is also one tph between Birmingham New Street and Sheffield by a different route.
  • There is two tph between Birmingham New Street and Nottingham.
  • My calculations indicate that the Nottingham and Sheffield services would take under an hour to and from Birmingham New Street, with the Leeds service taking thirty minutes longer.

In normal circumstances no diesel would be used.

Track Improvements And Discontinuous Electrification

This table shows the current electrification status of the Cross Country Route.

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Birmingham New Street – 96.6 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles – Not Electrified

Solutions will have to be found to decarbonise a lot of the route.

I have flown my virtual helicopter from Tamworth to Sheffield and this part of the route seems to the sort of route that could be upgraded to a full 125 mph line, as it is fairly straight and some sections already allow trains to travel at this speed.

As the 15.5 miles between Clay Cross North Junction and Sheffield will be updated and electrified for High Speed Two’s spur into Sheffield sometime in the future, I would feel that as updating this section benefits High Speed Two, the Midland Main Line, the Cross Country Route and the Hope Valley Line, that this section should be rebuilt as necessary and electrified, as soon as is practically possible.

I believe that Clay Cross North Junction and Sheffield is one of the most important routes in the country to be electrified, if not the most important.

This table shows the electrification status of the Cross Country Route after electrification of Clay Cross North Junction and Sheffield.

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Sheffield – 18.8 miles – Not Electrified
  • Sheffield and Clay Cross North junction – 15.5 miles – Electrified
  • Clay Cross North junction and Birmingham New Street – 62.1 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles – Not Electrified

It looks that by electrifying the 15.5 miles between Sheffield and Clay Cross North junction, the gap of 18.8 miles between South Kirby junction and Sheffield could be easily bridged by a battery-electric train.

The section between Clay Cross North junction and Birmingham New Street can be split into three.

  • Clay Cross North junction and Derby – 20.9 miles
  • Derby and Tamworth – 23.9 miles
  • Tamworth and Birmingham New Street – 17.3 miles

If Hitachi ABB Power Grids installed discontinuous electrification at Derby and Tamworth, this should bridge the gap to the electrification at Birmingham.

As some of this section can sustain 125 mph running, it may be better to fully electrify part of the route.

This table shows the electrification status of the route would become

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Sheffield – 18.8 miles – Not Electrified
  • Sheffield and Clay Cross North junction – 15.5 miles – Electrified
  • Clay Cross North junction and Derby – 20.9 miles – Not Electrified
  • Derby and Tamworth – 23.9 miles – Not Electrified
  • Tamworth and Birmingham New Street – 17.3 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles – Not Electrified

I have also flown my virtual helicopter from Bromsgrove to Westerleigh junction, where the Cross Country Route joins the electrified Great Western Main Line, about 4.5 miles East of Bristol Parkway station.

It looks to me that this Southern short section of electrified line would be able to charge a battery-electric train so that it could reach Bristol Temple Meads station.

But the sixty-plus miles of route without electrification between Bromsgrove and Westerleigh junction would be too far to travel without some electrification.

This could either be full electrification or discontinuous using the methods proposed by Hitachi ABB Power Grids.

It certainly looks to me, that Hitachi’s technology or similar, that I talked about in Solving The Electrification Conundrum could be used to run battery-electric trains between York and Bristol Temple Meads on the Cross Country Route.

Digital Signalling

I would assume this will be installed on the route, to give more precise control of trains on the more complicated sections of the route.

East Coast Main Line Improvements

There are several improvements to the North of York, that will reduce journey times on all services using the East Coast Main Line.

These could contribute time saving of up to ten minutes, according to High Speed Two’s Journey Planner and current timetables.

Comparison With The Proposed Eastern Leg Of High Speed Two

With all the talk about possible cancellation of the Eastern Leg of High Speed Two could an improved Cross Country Route be used in the interim?

I will look at a few timings from Birmingham.

Birmingham And Leeds

A fully-developed High Speed Two is claiming forty-nine minutes, as against the one hour and fifty-eight minutes today.

I have stated that ninety minutes is an attainable time on a 116.4 mile journey, where a good proportion of 125 mph running will be possible, sustained by electrification.

But with full electrification, more 125 mph running and even some 140 mph running under the control of digital signalling, I suspect that ninety minutes is only an upper limit to the journey time between Birmingham and Leeds.

High Speed Two are saying they will run two tph between Birmingham and Leeds, which is twice the current frequency.

I could see that an improved frequency on the Cross Country Route could be very convenient, if it increased the frequency between the two cities to four tph.

Is it going to annoy passengers, that services will leave from two different stations in Birmingham and if you go to the wrong one, you’ll have to wait thirty minutes for the next train?

Birmingham And Middlesbrough

Times between Birmingham and Middlesbrough will be determined by adding a Leeds and Middlesbrough time to the Birmingham and Leeds times.

The best time between Leeds and Middlesbrough today is one hour and 23 minutes, which I suspect will lose a few minutes due to East Coast Main Line improvements North of York.

This gives using High Speed Two to Leeds a time of two hours and eight minutes, as against two hours and forty-nine minutes using an improved Cross Country Route.

Birmingham And Newcastle

A fully-developed High Speed Two is claiming one hour and  fifty-seven minutes, as against the three hours and twenty-six minutes today.

Based on the current and possible times between Birmingham at Leeds using CrossCountry, I feel times to stations North of Leeds will be reduced by at least twenty-eight minutes, putting the Birmingham and Newcastle time a few minutes under three hours.

Birmingham And Nottingham

A fully-developed High Speed Two is claiming twenty minutes to East Midlands Hub, which when adding in the tram to Nottingham City Centre will be thirty-five minutes..

,Current services are one hour and ten minutes today.

On an improved Cross Country Route, with with battery-electric trains and some 125 mph running, I can see this time shrink to under an hour, even with the reverse at Derby.

Midlands Connect are also proposing a high speed service between Birmingham Curzon Street and Nottingham station, which will take thirty-three minutes.

High Speed Two are saying they will run three tph between Birmingham and East Midlands Hub, which compares with two tph using the Cross Country Route.

Birmingham And Sheffield

A fully-developed High Speed Two is claiming fifty-seven minutes, as against the one hour and fifteen minutes today.

I have stated that an hour is an attainable time on this route, with battery-electric trains and some 125 mph running.

A time of an hour would be very competitive with the Eastern Leg of High Speed Two.

High Speed Two are saying they will run two tph between Birmingham and Sheffield with a change at East Midlands Hub, which compares with two tph using the Cross Country Route.

Conclusion

A fully developed East Coast Main Line will give High Speed Two a good run for its money on services between London and Yorkshire, North East England and Scotland. I indicated my thoughts and conclusions in What Is Possible On The East Coast Main Line?.

I also believe that an improved Cross Country Route could give the Eastern Leg of High Speed Two a very good run for its money.

Perhaps, we should safeguard the route of Eastern Leg of High Speed Two for building later to increase capacity when it is needed, but in the interim we should upgrade the following routes.

  • Cross Country Route
  • East Coast Main Line
  • Midland Main Line
  • Northern Powerhouse Rail
  • West Coast Main Line

These routes should have at least these minimum standards.

  • All passenger trains electric or battery-electric.
  • All freight locomotives electric, battery-electric or hydrogen-electric.
  • Where possible all lines should allow 125 mph running.
  • Universal in-cab digital signalling
  • There should be sections of 140 mph running, where possible.

We will need the Eastern Leg of High Speed Two in the future, but we don’t need it in the next few years.

 

 

 

 

 

August 26, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 4 Comments

Thoughts On The Eastern Leg Of High Speed Two

These are a few thoughts on the Eastern Leg of High Speed Two.

Serving The North-East Quarter Of England From London

In Anxiety Over HS2 Eastern Leg Future, I gave a table of timings from London to towns and cities in the North-East quarter of England from Lincoln and Nottingham Northwards.

I’ll repeat it here.

  • Bradford – Will not be served by High Speed Two – One hour and fifty-four minutes
  • Cleethorpes – Will not be served by High Speed Two – Two hours and fifty-one minutes
  • Darlington – One hour and forty-nine minutes – One hour and forty-nine minutes
  • Doncaster – Will not be served by High Speed Two – One hour
  • Edinburgh – Three hours and forty minutes via Western Leg – Three hours and thirty minutes.
  • Grimsby – Will not be served by High Speed Two – Two hours and thirty-six minutes
  • Harrogate – Will not be served by High Speed Two – One hour and fifty-two minutes
  • Huddersfield – Will not served by High Speed Two – Two hours and eight minutes
  • Hull – Will not be served by High Speed Two – One hour and fifty minutes
  • Leeds – One hour and twenty-one minutes – One hour and thirty minutes
  • Lincoln – Will not be served by High Speed Two – One hour and fifty-one minutes
  • Middlesbrough – Will not be served by High Speed Two – Two hours and twenty minutes
  • Newcastle – Two hours and seventeen minutes – Two hours and sixteen minutes
  • Nottingham – One hour and seven minutes – One hour and fifty minutes
  • Scarborough – Will not be served by High Speed Two – Two hours and fifty-seven minutes
  • Sheffield – One hour and twenty-seven minutes – One hour and twenty-seven minutes
  • Skipton – Will not be served by High Speed Two – Two hours and seven minutes
  • Sunderland – Will not be served by High Speed Two – Two hours and thirty minutes
  • York – One hour and twenty-four minutes – One hour and twenty-four minutes

Note.

  1. I have included all destinations served by Grand Central, Hull Trains and LNER.
  2. I have included Nottingham and Sheffield for completeness and in case whilst electrification is installed on the Midland Main Line, LNER run services to the two cities.
  3. I suspect LNER services to Bradford, Harrogate, Huddersfield and Skipton will split and join at Leeds.

There are a total of nineteen destination in this table.

  • Twelve are not served by High Speed Two.
  • Six are not more than fifteen minutes slower by the East Coast Main Line.

Only Nottingham is substantially quicker by High Speed Two.

Serving The North-East Quarter Of England From Birmingham

Fenland Scouser felt the above table might be interesting to and from Birmingham with or without the Eastern Leg of High Speed Two.

I think, I can give more information than that and it should be possible to give for each destination the following.

  • Whether of not the route exists on High Speed Two.
  • Time on High Speed Two from Birmingham.
  • Time on High Speed Two and Northern Powerhouse Rail from Birmingham via Manchester
  • Time by current trains from Birmingham

In the following table, the fields are in the order of the previous table.

  • Bradford – No direct route – No time – One hour and three minutes – Two hours and twenty-seven minutes
  • Cleethorpes – No direct route – No time – Three hours and eight minutes – Three hours and eighteen minutes
  • Darlington – Route Exists – One hour and twenty-three minutes – One hour and forty minutes – Two hours and fifty-five minutes
  • Doncaster – No direct route – No time – One hour and thirty-six minutes – Two hours and nineteen minutes
  • Edinburgh- Route Exists – Three hours and fourteen minutes – Four hours – Four hours and thirteen minutes
  • Grimsby – No direct route – No time – Two hours and fifty-three minutes – Three hours and three minutes
  • Harrogate – No direct route – No time – One hour and twenty-eight minutes – Three hours
  • Huddersfield – No direct route – No time – Fifty-six minutes – Two hours and eleven minutes
  • Hull – No direct route – No time – One hour and forty-four minutes – Three hours and two minutes
  • Leeds – Route Exists – Forty-nine minutes – One hour and six minutes – One hour and fifty-nine minutes
  • Lincoln – No direct route – No time – Two hours and fifty-three minutes – Two hours and thirteen minutes
  • Middlesbrough – No direct route – No time – Two hours and twenty-nine minutes – Three hours and thirty-two minutes
  • Newcastle – No direct route – No time – Two hours and four minutes – Three hours and twenty-six minutes
  • Nottingham – Route Exists – Fifty-seven minutes – Two hours and fifty-five minutes – One hour and ten minutes
  • Sheffield – Route Exists – Thirty-five minutes – One hour and thirty-four minutes – One hour and fifteen minutes
  • Skipton – No direct route – No time – One hour and forty-three minutes – Two hours and fifty-two minutes
  • Sunderland – No direct route – No time – Two hours and fifty-nine minutes – Three hours and fifty-eight minutes
  • York – Route Exists – Fifty-seven minutes – One hour and twenty-eight minutes – Two hours and twenty-seven minutes

Note.

  1. No time means just that!
  2. One of the crucial times is that Birmingham Curzon Street and Leeds is just an hour and six minutes via High Speed Two and Northern Powerhouse Rail. This time gives good times to all destinations served from Leeds.
  3. Nottingham and Sheffield are both around an hour and fifteen minutes from Birmingham New Street, by the current trains.

I’ll now look at some routes in detail.

Birmingham And Leeds

The time of one hour and six minutes is derived from the following.

  • Birmingham Curzon Street and Manchester Piccadilly by High Speed Two – Forty-one minutes
  • Manchester Piccadilly and Leeds by Northern Powerhouse Rail – Twenty-five minutes

It would be seventeen minutes slower than the direct time of forty-nine minutes.

But it is quicker than the current time of one hour and fifty-nine minutes

Note.

  1. As Manchester Piccadilly will have a time to and from London of one hour and eleven minutes, Leeds will have a time of one hour and twenty-six minutes to London via Northern Powerhouse Rail and Manchester.
  2. If the Eastern Leg is built, The London and Leeds time will be one hour and twenty-one minutes.
  3. The Eastern Leg would therefore save just five minutes.

The Northern Powerhouse route could probably mean that Huddersfield, Bradford and Hull would be served by High Speed Two from London.

Manchester Airport, Manchester Piccadilly and Leeds would be connected by a tunnel deep under the Pennines.

  • Manchester Piccadilly, Huddersfield and Bradford could be underground platforms added to existing stations.
  • Piccadilly and Leeds would have a journey time of under 25 minutes and six trains per hour (tph).
  • The tunnel would also carry freight.
  • It would be modelled on the Gotthard Base Tunnel in Switzerland.

I wrote full details in Will HS2 And Northern Powerhouse Rail Go For The Big Bore?

Birmingham And Nottingham

The time of two hours and fifty-five minutes is derived from the following.

  • Birmingham Curzon Street and Manchester Piccadilly by High Speed Two – Forty-one minutes
  • Manchester Piccadilly and Leeds by Northern Powerhouse Rail – Twenty-five minutes
  • Leeds and Nottingham – One hour and forty-nine minutes

It would be one hour and fifty-eight minutes slower than the direct time of fifty-nine minutes.

The current time of one hour and ten minutes is much quicker.

Birmingham And Sheffield

The time of two hours and thirty-four minutes is derived from the following.

  • Birmingham Curzon Street and Manchester Piccadilly by High Speed Two – Forty-one minutes
  • Manchester Piccadilly and Leeds by Northern Powerhouse Rail – Twenty-five minutes
  • Leeds and Sheffield – One hour and twenty-eight minutes

It would be one hour and fifty-nine minutes slower than the direct time of thirty-five minutes.

The current time of one hour and fifteen minutes is much quicker.

Conclusions On The Timings

I am led to the following conclusions on the timings.

The building of the Eastern Leg of High Speed Two gives the fastest times between Birmingham and Leeds, Nottingham and Sheffield.

But if the Eastern Leg of High Speed Two is not built, then the following is true, if Northern Powerhouse Rail is created between Manchester and Leeds.

The time of an hour and six minutes between Birmingham Curzon Street and Leeds is probably an acceptable time.

This time probably enables  acceptable times between Birmingham Curzon Street and destinations North of Leeds.

But with Nottingham and Sheffield the current CrossCountry service is faster than the route via Manchester.

The speed of the CrossCountry services surprised me, but then there is a section of 125 mph running between Derby and Birmingham, which is used by CrossCountry services between Birmingham New Street and Leeds, Nottingham and Sheffield.

This table gives details of these services.

  • Birmingham New Street and Leeds – 116,4 miles – One hour and 58 minutes – 59.3 mph
  • Birmingham New Street and Nottingham – 57.2 miles – One hour and 14 minutes – 46.4 mph
  • Birmingham New Street and Sheffield – 77.6 miles – One hour and 18 minutes – 59.7 mph

Note.

  1. The Leeds and Sheffield services are run by 125 mph Class 220 trains.
  2. The Notting service is run by 100 mph Class 170 trains.
  3. All trains are diesel-powered.

As there is 125 mph running between Derby and Birmingham, the train performance probably accounts for the slower average speed of the Nottingham service.

CrossCountry And Decarbonisation

Consider.

  • CrossCountry has an all-diesel fleet.
  • All train companies in the UK are planning on decarbonising.
  • Some of CrossCountry’s routes are partially electrified and have sections where 125 mph running is possible.

The only standard train that is built in the UK that would fit CrossCountry’s requirements, would appear to be one of Hitachi’s 125 mph trains like a bi-mode Class 802 train.

  • These trains are available in various lengths
  • Hitachi will be testing battery packs in the trains in the next year, with the aim of entering service in 2023.
  • Hitachi have formed a company with ABB, which is called Hitachi ABB Power Grids to develop and install discontinuous electrification.

When CrossCountry do replace their fleet and run 125 mph trains on these services several stations will be connected to Birmingham for High Speed Two.

The route between Leeds and Birmingham via Sheffield is part of the Cross Country Route, for which electrification appears to have planned in the 1960s according to a section in Wikipedia called Abortive British Rail Proposals For Complete Electrification,

I suspect that the following times could be achieved with a frequency of two tph

  • Birmingham New Street and Leeds – 90 minutes
  • Birmingham New Street and Nottingham – 60 minutes
  • Birmingham New Street and Sheffield – 60 minutes

It is not the Eastern Leg of High Speed Two, but it could do in the interim.

Electrification Of The Midland Main Line

I don’t believe that the Midland Main Line needs full electrification to speed up services to Derby, Nottingham and Sheffield, but I believe that by fitting batteries to Hitachi’s Class 810 trains, that will soon be running on the line and using the Hitachi ABB Power Grids system of discontinuous electrification, that the route can be decarbonised.

I would also apply full digital in-cab signalling to the Midland Main Line.

Conclusion

We will need the Eastern Leg of High Speed Two at some time in the future, but if we do the following we can do more than cope.

  • Create Northern Powerhouse Rail between Manchester and Leeds, so that High Speed Two can serve Leeds and Hull via Manchester.
  • Decarbonise CrossCountry with some 125 mph battery-electric trains.
  • Electrify the Midland Main Line.

I would also deliver as much as possible before Phase 1 and 2a of High Speed Two opens.

 

August 24, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | 4 Comments

Should All High Speed Long Distance Services To Newcastle Extend To Edinburgh?

Look at this Google Map of Newcastle station.

Note.

  1. It is built on a curve.
  2. It is on a cramped site.
  3. Platforms are numbered from 1 at the top to 8 at the bottom.
  4. Platform 2 seems to be used for all express services going North.
  5. Platforms 3 and 4 seem to be used for all express services going South.
  6. Not all platforms would appear to be long enough for nine-car Class 80x trains.

I am certain, that any nation with a sophisticated railway system wouldn’t build a station on a curve with no avoiding lines like Newcastle these days.

Network Rail have a plan to sort out Darlington station and I’m sure they’d like to sort out Newcastle as well!

Current Long Distance Trains Through And To Newcastle

These include.

  • CrossCountry – Plymouth and Edinburgh or Glasgow via Alnmouth, Berwick-upon-Tweed and Dunbar.
  • CrossCountry – Southampton Central or Reading and Newcastle.
  • LNER – King’s Cross and Edinburgh via Berwick-upon-Tweed
  • LNER – King’s Cross and Edinburgh via Alnmouth
  • TransPennine Express – Liverpool Lime Street and Edinburgh via Morpeth
  • TransPennine Express – Manchester Airport and Newcastle.

Note.

  1. All have a frequency of one train per hour (tph)
  2. All trains call at Newcastle.
  3. Two tph terminate at Newcastle and four tph terminate at Edinburgh or beyond.

There is also a new and Edinburgh service from East Coast Trains, that will start this year.

  • It will run five trains per day (tpd).
  • It will call at Newcastle.
  • It will stop at Morpeth between Newcastle and Edinburgh.

There will also be High Speed Two services to Newcastle in a few years.

  • There will be two tph between Euston and Newcastle
  • There will be one tph between Birmingham Curzon Street and Newcastle.

Note.

  1. All services will be run by 200 metre long High Speed Two Classic-Compatible trains.
  2. There is no High Speed Two service to Newcastle, that calls at Leeds.
  3. Only one High Speed Two service to Newcastle calls at East Midlands Hub.

I suspect High Speed Two services need a dedicated platform at Newcastle, especially, if another High Speed Two service were to be added.

Extra Paths For LNER

In the December 2020 Edition of Modern Railways, there is an article, which is entitled LNER Seeks 10 More Bi-Modes.

This is the last paragraph.

Infrastructure upgrades are due to prompt a timetable recast in May 2022 (delayed from December 2021), from which point LNER will operate 6.5 trains per hour out of King’s Cross, compared to five today. As an interim measure  LNER is retaining seven rakes of Mk. 4 coaches hauled by 12 Class 91 locomotives to supplement the Azuma fleet and support its timetable ambitions until new trains are delivered.

There would certainly appear to be a path available if LNER wanted to increase the frequency of trains between King’s Cross and Edinburgh from the current two trains per hour (tph) to three.

I laid out how I would use this third path to Edinburgh in A New Elizabethan.

The Possible Long Distance Trains Through And To Newcastle

These trains can be summed up as follows.

  • 1 tph – CrossCountry – Plymouth and Edinburgh or Glasgow via Alnmouth, Berwick-upon-Tweed and Dunbar.
  • 1 tph – CrossCountry – Southampton Central or Reading and Newcastle.
  • 1 tph – LNER – King’s Cross and Edinburgh via Berwick-upon-Tweed
  • 1 tph – LNER – King’s Cross and Edinburgh via Alnmouth
  • 1 tph – TransPennine Express – Liverpool Lime Street and Edinburgh via Morpeth
  • 1 tph – TransPennine Express – Manchester Airport and Newcastle.
  • 5 tpd – East Coast Trains – King’s Cross and Edinburgh via Morpeth
  • 2 tph – High Speed Two – Euston and Newcastle
  • 1 tph – High Speed Two – Birmingham Curzon Street and Newcastle
  • 1 tph – LNER – King’s Cross and Edinburgh – Extra service

This is ten tph and the five tpd of East Coast Trains.

Capacity Between Newcastle And Edinburgh

I wonder what capacity and linespeed would be possible on the East Coast Main Line between Newcastle and Edinburgh.

There are a few freight trains and some suburban electrics at the Northern end, but I suspect that the route could handle ten tph with some upgrades.

Edinburgh As A Terminal

Consider.

  • Not all trains terminate at Edinburgh, but several tpd go through to places like Aberdeen, Glasgow, Inverness and Stirling.
  • Edinburgh has several shorter East-facing bay platforms, that can take five-car Class 802 trains.
  • Edinburgh has undergone a lot of reconstruction in recent years, so that it can turn more trains.

I very much feel that Edinburgh could handle, at least ten tph from the South.

Conclusion

I think it would be possible to extend all trains to Newcastle to at least Edinburgh.

Would it increase passenger capacity between the two capitals?

It would certainly avoid the difficult and expensive rebuilding at Newcastle station.

 

 

 

May 30, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 5 Comments

Through Settle And Carlisle Service Under Consideration

The title of this post, is the same as that of an article in the June 2021 Edition of Modern Railways.

This is the first paragraph.

Plans for a new Leeds to Glasgow through service via the Settle and Carlisle line are being developed, with CrossCountry and the Department for Transport starting to look at the possible scheme.

It sounds like a sensible idea to me.

The article also suggests the following.

  • CrossCountry is a possible operator.
  • CrossCountry are keen to improve services between Leeds and Glasgow
  • The trains could be InterCity 125s, freed up, by a the arrival of Class 221 trains from Avanti West Coast, when they receive their new Class 805 trains.
  • Maintenance of the trains wouldn’t be a problem, as this could be done at Neville Hill in Leeds or Craigentinny in Edinburgh.
  • Services could start in December 2023.

I have a few thoughts of my own!

The Route

The route between Leeds and Carlisle is obvious, but there are two routes between Carlisle and Glasgow.

Trains would probably choose a route and call at stations to maximise passenger numbers.

These stations are on the various routes.

  • Settle and Carlisle – Shipley, Bingley, Keighley, Skipton, Gargrave, Hellifield, Long Preston, Settle, Horton in Ribblesdale, Ribblehead, Dent, Garsdale, Kirkby Stephen, Appleby, Langwathby, Lazonby & Kirkoswald and Armathwaite
  • Glasgow South Western – Dunlop, Stewarton, Kilmaurs, Kilmarnock, Auchinleck, New Cumnock, Kirkconnel, Sanquhar, Dumfries, Annan and Gretna Green
  • West Coast Main – Motherwell, Carstairs and Lockerbie

There are certainly a lot of possibilities.

 Upgrading The InterCity 125 Trains

CrossCountry appear to have enough InterCity 125 trains to muster five in a two Class 43  power car and seven Mark 3 coach formation.

They may not be fully in-line with the latest regulations and there may be a need for a certain degree of refurbishment.

These pictures show some details of a refurbished Great Western Railway Castle, which has been fitted with sliding doors.

Will The InterCity 125 Trains Be Shortened?

Scotrail’s Inter7City trains and Great Western Railway’s Castle trains have all been shortened to four or five coaches.

This picture shows a pair of Castles.

Journey Times, Timetable And Frequency

The current journey time between Leeds and Glasgow Central stations via the East Coast Main Line is four hours and eight minutes with nine stops.

The Modern Railways article says this about the current service.

The new service would be targeted at business and leisure travellers, with through journey times competitive with road and faster than the current direct CrossCountry Leeds to Glasgow services via the East Coast main line.

I would expect that CrossCountry are looking for a time of around four hours including the turn round.

  • Stops could be removed to achieve the timing.
  • The trains could run at 125 mph on the West Coast Main Line.

This could enable a train to have the following diagram.

  • 0800 – Depart Leeds
  • 1200 – Depart Glasgow Central
  • 1600 – Depart Leeds
  • 2000 – Depart Glasgow Central
  • Before 2400 – Arrive Leeds

Note.

  1. A second train could start in Glasgow and perform the mirrored timetable.
  2. Timings would probably be ideal for train catering.
  3. Trains would leave both termini at 0800, 1200, 1600 and 2000.
  4. The timetable would need just two trains.

I also think, if a second pair of trains were to be worked into the timetable, there could be one train every two hours on the route, if the demand was there.

I certainly believe there could be a timetable, that would meet the objectives of attracting business and leisure passengers away from the roads.

Tourism And Leisure Potential

The Settle and Carlisle Line is known as one of the most scenic railway lines in England, if not the whole of the UK.

There are important tourist sites all along the route between Leeds and Glasgow

Many of the stations are used by walkers and others interested in country pursuits.

I believe that it is a route that needs a quality rail service.

Travel Between London and Towns Along The Settle And Carlisle Line

In Thoughts On Digital Signalling On The East Coast Main Line, I said this.

I think it is highly likely that in the future, there will be at least one train per hour (tph) between London Kings Cross and Leeds, that does the trip in two hours.

It may seem fast compared to today, but I do believe it is possible.

With a timely connection at Leeds station, will this encourage passengers to places along the Settle and Carlisle line to use the train?

What About the Carbon Emissions?

The one problem with using InterCity 125 trains on this route, is that they are diesel-powered, using a pair of Class 43 locomotives.

But then there are over a hundred of these diesel-electric locomotives in service, nearly all of which are now powered by modern MTU diesel engines, which were fitted in the first decade of this century.

Consider.

  • The locomotives and the coaches they haul have an iconic status.
  • Great Western Railway and Scotrail have recently developed shorter versions of the trains for important routes.
  • There are over a hundred of the locomotives in service.
  • Companies like ULEMCo are developing technology to create diesel-powered vehicles that can run on diesel or hydrogen.
  • There is plenty of space in the back of the locomotives for extra equipment.
  • MTU have a very large number of diesel engines in service. It must be in the company’s interest to find an easy way to cut carbon emissions.
  • I believe that the modern MTU diesel engines could run on biodiesel to reduce their carbon footprint.

And we shouldn’t forget JCB’s technology, which I wrote about in JCB Finds Cheap Way To Run Digger Using Hydrogen.

If they could develop a 2 MW hydrogen engine, it could be a shoe-in.

I believe that for these and other reasons, a solution will be found to reduce the carbon emissions of these locomotives to acceptable levels.

Conclusion

In this quick look, it appears to me that a Glasgow and Leeds service using InterCity 125 trains could be a very good idea.

May 21, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , | 2 Comments