The Anonymous Widower

Job Sharing

I found this little story on the Railway Gazette web site.

Leasing company Porterbrook has jointly appointed Helen Simpson and Chandra Morbey to the role of Innovation & Projects Director as a job-share; they will report to Director of Engineering Services Jason Groombridge. Both have been involved with the development of Porterbrook’s Innovation Hub and the Hydro Flex fuel-cell multiple-unit demonstrator.

I’ve always thought job-sharing is a good idea, but rarely do you see it formally announced.

Perhaps, Porterbrook are making a statement about their policy towards job-sharing?

August 8, 2019 Posted by | World | , | Leave a comment

A Brief Glimpse Of The Class 799 Train On BBC Breakfast

The Class 799 train is being launched today and BBC Breakfast were there with cameras.

These are my thoughts.

A Test Train

Helen Simpson from Porterbrook, said it was very much a test train.

Seats appear to be in some of the cars.

It looks like Birmingham University have sensibly put the hydrogen drive system in one or both of the two central cars, which in the original Class 319 train were given the designations PMSO and MSOL

The Hydrogen Tanks And Fuel Cell

The hydrogen tanks didn’t appear to be unduly large, which suggests, the the train is not going for a very long rang. But it is only a test train.

The fuel cell was clearly marked from Ballard and was just a large anonymous box. I would think, that it was probably upwards of 100 kW.

It should be noted that the Class 319 train was originally a 1,000 kW train, with a top speed of 100 mph and good acceleration.

I’ll be interested to see what size these components are, when they are published.

The Battery System

The battery did appear to be large, but then these are probably not batteries designed to fit the train, but what is available.

As with the hydrogen tanks and fuel cell, sizes would appear to have been chosen large enough to make sure that the train is not significantly less powerful, than current Class 319 trains.

June 23, 2019 Posted by | Transport | , , , | 1 Comment

Is There Nothing A Class 319 Train Can’t Do?

If a train every goes into orbit round the world, it will be highly-likely that it will be a Class 319 train!

Electric Trains In North-West England

The fleet of eighty-six trains entered service in 1987 on Thameslink  and now twenty-seven are plying their trade on the electrified routes around the North-West of England.

  • You don’t hear many complaints about them being called London’s cast-offs.
  • Passengers fill them up in Blackpool, Liverpool, Manchester and Preston.
  • They still do 100 mph where possible.
  • They seem to be reliable.
  • They are not the most attractive of trains.

But handsome is as handsome does!

Drivers have told me, that although the suspension may be a bit soft for the bumpy route across Chat Moss, the trains do have superb brakes.

Bi-Mode Class 769 Trains

Nearly thirty of the trains are being converted into bi-mode Class 769 trains for working partially-electrifired routes and although these are running late, they should be in service this year.

Rail Operations Group

Two Class 769 trains have been ordered to be fast logistics trains by Rail Operations Group.

Wikipedia says the trains will be used to transport mail.

But if you read the history of the Rail Operations Group, they make the assets sweat and I’ve read the trains will still have seats, so they might do some other rail operations.

The Hydrogen-Powered Class 799 Train 

And now comes the Class 799 train!

This is a demonstrator to prove the concept of conversion to hydrogen power.

The fact that the train now has it’s own number must be of some significance.

Alstom are converting Class 321 trains into Class 321 Breeze trains.

  • The conversion will reduce passenger capacity, due to the large hydrogen tank
  • It will have a 1,000 km range.
  • It will have regenerative breaking.
  • It will have a new AC traction package
  • It will probably have the interior of a Class 321 Renatus train.

The conversion will obviously build on Alstom’s experience with the Alstom Coradia iLint train and Eversholt’s experience with the Renatus.

When it comes to the Class 799 train, the following will apply.

  • Porterbrook have all the experience of creating the bi-mode and dual-voltage Class 769 train.
  • Birmingham University’s Birmingham Centre For Railway Research And Education (BCRRE) are providing the expertise to design and convert the Class 319 train to hydrogen power.
  • I also wouldn’t be surprised to find out, that the BCRRE has applied some very extensive mathematical modelling to find out the performance of a hydrogen-powered Class 319 train.
  • The conversion could be based closely on Class 769 experience and sub-systems,

Could the main purpose be to demonstrate the technology and ascertain the views of train operators and passengers on hydrogen power?

The most important question, is whether the Class 799 train, will have the same passenger capacity as the original Class 319 train?

If it does, then BCRRE must have found a way to store the hydrogen in the roof or under the floor.

It should be noted, that it was only in September 2018, that the contract to develop the Class 799 train was signed and yet less than a year later BCRRE and Porterbrook will be demonstrating the train at a trade show.

This short development time, must mean that there is not enough time to modify the structure of the train to fit a large hydrphen tank inside, as Alstom are proposing.

A smaller hydrogen tank could be placed in one of three places.

  • Underneath the train.
  • On the roof.
  • Inside the train, if it is small enough to fit through the train’s doors.

Note.

  1. I doubt that anybody would put the tank inside the train for perceived safety reasons from passengers.
  2. On the roof, would require substantial structural modifications. Is there enough time?

So how do you reduce the size of the hydrogen tank and still store enough hydrogen in it to give the train a useful range?

In Better Storage Might Give Hydrogen The Edge As Renewable Car Fuel, I indicated technology from Lancaster University, that could store four times as much hydrogen in a given size of tank.

This reduced tank size would make the following possible.

  • The hydrogen tank, the fuel cell and the batteries could be located underneath the four-cars of the Class 319 train.
  • The seating capacity of the Class 799 train could be the same as that of a Class 319 train.

Clever electronics would link everything together.

If BCRRE succeed in their development and produce a working hydrogen-powered Class 799 train, how would the technology be used?

Personally, I don’t think we’ll see too many hydrogen-powered Class 799 trains, running passengers on the UK network.

  • The trains are based on a thirty-year-old train.
  • The interiors are rather utilitarian and would need a lot of improvement, to satisfy what passengers expect.
  • Their market can probably be filled in the short-term by more Class 769 trains.

But I do believe that the technology could be applied to more modern trains.

A Hydrogen-Powered Electrostar

Porterbrook own at least twenty four-car Electrostar trains, which have been built in recent years.

Six Class 387 trains, currently used by c2c, may come off lease in the next few years.

Could these trains be converted into a train with the following specification?

  • Modern train interior, with lots of tables and everything passengers want.
  • No reduction in passenger capacity.
  • 110 mph operating speed using electrification.
  • Useful speed and range on hydrogen power.
  • ERTMS capability, which Porterbrook are fitting to the Class 387 trains to be used by Heathrow Express.

It should be born in mind, that a closely-related Class 379 train proved the concept of a UK battery train.

  • The train was converted by Bombardier.
  • It ran successfully for three months between Manningtree and Harwich.
  • The interior of the train was untouched.

But what was impressive was that the train was converted to battery operation and back to normal operation in a very short time.

This leads me to think, that adding new power sources to an Electrostar, is not a complicated rebuild of the train’s electrical system.

If the smaller hydrogen tank, fuel cell and batteries can be fitted under a Class 319 train, I suspect that fitting them under an Electrostar will be no more difficult.

I believe that once the technology is proven with the Class 799 train, then there is no reason, why later Electrostars couldn’t be converted to hydrogen power.

  • Class 387 trains from c2c, Great Northern and Great Western Railway.
  • Class 379 trains, that will be released from Greater Anglia by new Class 745 trains.
  • Class 377 trains from Southeastern could be released by the new franchise holder.

In addition, some Class 378 trains on the London Overground could be converted for service on the proposed West London Orbital Railway.

A Hydrogen-Powered Aventra

If the Electrostar can be converted, I don’t see why an Aventra couldn’t be fitted with a similar system.

Conclusion

A smaller hydrogen tank, holding hydrogen at a high-density would enable trains to be converted without major structural modifications or reducing the passenger capacity.

The development of a more efficient method of hydrogen storage, would open up the possibilities for the conversion of trains to electric-hydrogen hybrid trains.

 

 

 

 

 

 

 

 

June 13, 2019 Posted by | Transport | , , , , , , , , , , , , | 1 Comment

42 Technology To Showcase Adaptable Carriage On Innovation Hub Train

The title of this post is the same as that of this article on Cambridge Network,

This page on the 42 Technology web site, is the original press release.

These are the first two paragraphs.

42 Technology has installed its innovative Adaptable Carriage seating system into a real train carriage for the first time as part of its Innovate UK ‘First of a Kind’ project.

The system has been installed on Porterbrook’s Innovation Hub which will be launched next week at Rail Live 2019 (19-20 June) at Quinton Rail Technology Centre, the dedicated rail testing and trialling site near Stratford-upon-Avon.

Porterbrook’s Innovation Hub is a Class 319 train, that is made available for innovators.

Like 42 Technology, an innovator might have ideas for how to design the inside of a train, or someone might want to run an innovative freight service and wants to design the containers.

At the lowest level, the Innovation Hub, gives innovators, the chance to see inside a real train.

This article on the BBC is entitled Pacer trains ‘could be used as village halls’.

Surely, the leasing companies, who own these trains should park one at a convenient site and allow interested parties and the wider public to look at it.

Who knows what will happen? There are some crazy people with even crazier ideas out there! But successful innovation is liberally sprinkled with people, who were three-quarters of the way to the funny farm.

 

June 13, 2019 Posted by | Transport | , , , | Leave a comment

Scotrail Boss Pledges More Seats And Stops On Borders Railway

The title of this post is the same as that of this article on the Southern Reporter.

If you live near or use the Borders Railway, I suggest you read the article.

Alex Hynes, who is Managing Director of ScotRail has promised.

  • Three-car Class 170 trains will replace the current two-car trains.
  • More drivers will be trained.
  • Extra stops including at Stow will be added to services.
  • In 2015, in the Peak, there were 850 seats out of Edinburgh. After the new trains are introduced, there will be 1,400.

He also said that things would happen in months not years.

This is a paragraph from the article, as spoken by Alex Hynes.

The three-carriage Class 170 trains accelerate and brake more quickly that the current two-carriage trains. That means we can put a stop at Stow in all the time without it affecting our performance, but to do that we need Class 170 trains on the route all the time and to be able to make sure that stop doesn’t affect our service performance.

It’s a good explanation of why you need fast trains on stopping services.

There is also something that is worth noting about the Class 170 trains.

Currently, they are diesel trains with a hydraulic transmission. But Porterbrook, who are the leasing company, who actually own the trains, are planning to test a new diesel-electric hybrid system in 2020, that will increase the performance of the trains, in terms of speed, acceleration, noise and emission.

I wrote about this important upgrade in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks.

I will be watching this development with interest, as if it is successful, passengers, residents, train companies and staff will benefit.

 

April 19, 2019 Posted by | Transport | , , | Leave a comment

SWR And Porterbrook Trial New Emission-Slashing Rail Technology

The title of this post is the same as that as this article on Rail Technology Magazine.

This is the first three paragraphs of the article.

Groundbreaking emission-reducing technology is to be fitted to South Western Railway (SWR) train units as part of a new trial aiming to cut down harmful emissions from diesel trains by 80%.

Porterbrook is working in partnership with exhaust manufacturer Eminox to carry out the trial, with the DfT supporting the rolling stock company’s investment.

This will see South Western Railway’s Class 159 diesel units fitted with a first-of-its-kind emissions control device, with plans to roll out the technology to hundreds of diesel trains across the UK’s rail network.

I have looked up Eminox on their web site.

This is the mission statement on the front page.

Eminox designs and manufactures exhaust after-treatment systems, reducing emissions from heavy-duty vehicles and equipment.

Our products are supplied as original equipment to meet the latest emissions standards. We also produce complete emissions systems for retrofit to meet the ever-changing demands of local air quality programmes such as London’s Ultra Low Emission Zone and Clean Air Zones across the country.

Our Eminox Custom team specialises in exhaust conversions and bespoke systems.

While politicians dither and fiddle, engineers engineer, with a little bot of help from Porterbrook and the DfT.

If this technology proves to be successful, I can see its application to large numbers of diesel trains around the world.

March 9, 2019 Posted by | Transport | , , , , , , | 4 Comments

Poetic Return For The Night Train In The Era Of ECommerce

The title of this post is the same as that of a half-page article on Page 34 of the Business Section of today’s copy pf The Times.

As you can see The Times gave it the full treatment with stills from the classic documentary film;  The Night Mail, which has a verse commentary written by W. H. Auden.

It’s an idea from the seemingly irrepressible  Karl Watts, who is Chief Executive of Rail Operations (UK) Limited.

He plans to start test operations with two Class 769 trains leased from Porterbrook.

I wrote about this concept two years ago, in The Go-Anywhere Express Parcel And Pallet Carrier (HSPT).

January 2, 2019 Posted by | Transport | , , , , | Leave a comment

Class 769 Flex In Action

The title of this post is the same as that of this article on Rail Engineer.

The article describes a ride in a Class 769 train, which is under test on the Grand Central Railway.

The article is very comprehensive, so if you want information on the progress of these trains, you ought to read the article.

One overall impression, I received, was that the train is a lot quieter, than the author expected.

This was the last sentence.

That said, based on the Flex experience, this writer would rather travel on a Class 769 than on a Class 150.

I can’t wait to have a ride, when they enter service in the New Year.

The article also gives a summary of Porterbrook’s various FLEX projects, which are taking redundant, but very serviceable electric-trains and converting them into self-powered trains needed on the UK rail network.

The article also says this about the future of the Class 319 trains.

There are 86 Class 319 four-car units, all of which were made redundant from the Thameslink route. Porterbrook has been successful in placing approximately 45 units for further use – 32 for Northern (eight of which will be converted to Flex specification) and 13 units with West Midlands Trains. In addition, there are Flex orders for five units for Wales, 19 units for Great Western Railway and one for the University of Birmingham (the HydroFlex). This makes a grand total of 71 of the 86 units, leaving 15 still to find new homes.

I believe that Porterbrook’s reaction to finding that they had a fleet of trains for some of which, there were no obvious uses has been admirable. But also very pragmatic and hopefully financially rewarding in the long-term.

Looking back to the days of British Rail, these trains would probably have been sent to the scrapyard.

 

December 21, 2018 Posted by | Transport | , , | 1 Comment

How Do Porterbrook’s Battery/FLEX Trains Compare With Eversholt’s Hydrogen-Powered Trains?

In the two green corners of this ultra-heavyweight fight to provide electric trains for rail routes without electrification, there are two ROSCOs or rolling stock operating companies.

Eversholt Rail Group

Eversholt Rail Group‘s product is the Class 321 Hydrogen, which is an upgrade of a Class 321 train with batteries and hydrogen-power.

Porterbrook

Porterbrook‘s product is the Class 350 Battery/FLEX, which is an upgrade of a Class 350 train with batteries.

How Do The Two Trains Compare?

I will list various areas and features in alphabetical order.

Age

The Class 350 trains date from 2008-2009 and others were introduced to the UK rail network as early as 2004.

The Class 321 trains date from the 1990s, but that shouldn’t be too  much of a problem as they are based on the legendary Mark 3 Coach.

Scores: Porterbrook 4 – Eversholt 3

Batteries And Supercapacitors

This is an area, where the flow of development and innovation is very much in favour of both trains.

Currently, a 1000 kWh battery would weigh about a tonne. Expect the weight and volume to decrease substantially.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Electrification

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Rapid Charging System

I believe that a third-rail based rapid charging system can be developed for battery/electric trains and I wrote about this in Charging Battery/Electric Trains En-Route.

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Development And Engineering

Fitting batteries to rolling stock has now been done successfully several times and products are now appearing with 400 kWh and more energy storage either under the floor or on the roof of three and four-car electrical multiple units.

I feel that adding batteries, supercapacitors or a mixture of both to typical UK electric multiple units is now a well-defined process of engineering design and is likely to be achieved without too much heartache.

It should be noted, that the public test of the Class 379 BEMU train, was a rare rail project, where the serious issues found wouldn’t even fill a a thimble.

So I have no doubt that both trains will get their batteries sorted without too much trouble.

I do feel though, that adding hydrogen power to an existing UK train will be more difficult. It’s probably more a matter of space in the restricted UK loading gauge.

Scores: Porterbrook 5 – Eversholt 3

Electrification

Both types of train currently work on lines equipped with 25 KVAC overhead electrification, although other closely-related trains have the ability to work on 750 VDC third-rail electrification.

Both trains could be converted to work on both systems.

Scores: Porterbrook 5 – Eversholt 5

Interiors

The interior of both trains will need updating, as the interiors reflect the period, when the trains were designed and built.

Eversholt have already shown their hand with the Class 321 Renatus.

The interiors is a design and refurbishment issue, where train operating companies will order the trains and a complimentary interior they need, for the routes, where they intend to run the trains.

Scores: Porterbrook 5 – Eversholt 5

Operating Speed

Both trains in their current forms are 100 mph trains.

However some versions of the Class 350 trains have been upgraded to 110 mph, which allows them to work faster on busy main lines and not annoy 125 mph expresses.

I am pretty sure that all Class 350 trains can be 110 mph trains.

Scores: Porterbrook 5 – Eversholt 4

Public Perception

The public judge their trains mainly on the interiors and whether they are reliable and arrive on time.

I’ve talked to various people, who’ve used the two scheduled battery/electric services, that have run in the UK.

All reports were favourable and I heard no tales of difficulties.

In my two trips to Hamburg, I didn’t get a ride on the Coradia iLint hydrogen-powered train, but I did talk to passengers who had and their reactions were similar to those who travelled to and from Harwich in the UK.

I rode on the Harwich train myself and just like Vivarail’s Class 230 train, which I rode in Scotland, it was impressive.

I think we can say, that the concept and execution of battery/electric or hydrogen-powered trains in the UK, will be given a fair hearing by the general public.

Scores: Porterbrook 5 – Eversholt 5

Range Without Electrification

Alstom talk of ranges of hundreds of miles for hydrogen trains.and there is no reason to believe that the Class 321 Hydrogen trains will not be capable of this order of distance before refuelling.

Bombardier, Vivarail and others talk of battery ranges in the tens of miles before a recharge is needed.

The game-changer could be something like the technique for charging electric trains, I outlined in Charging Battery/Electric Trains En-Route.

This method could give battery trains a way of topping up the batteries at station stops.

Scores: Porterbrook 3 – Eversholt 5

Conclusion

The total scores are level at forty-seven.

All those, who say that I fiddled it, not to annoy anybody are wrong.

The level result surprised me!

I feel that it is going to be an interesting engineering, technical and commercial battle between the two ROSCOs, where the biggest winners could be the train operating companies and the general public.

I wouldn’t be surprised to see two fleets of superb trains.

 

November 4, 2018 Posted by | Transport | , , , , , , , , | 2 Comments

Could A Class 450 Battery/FLEX Train Be Used Between Waterloo And Exeter?

When I wrote Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, Issue 864 of Rail Magazine hadn’t been published. The magazine contained details of Vivarail’s proposed rapid charging facility, which I wrote about in Charging A Battery-Powered Class 230 Train.

Consequently, at the time, I came to the conclusion that a Class 450 train with a Battery/FLEX conversion, similar to Porterbrook’s one for a Class 350 train, couldn’t stretch between Waterloo and Exeter, as it was just too far.

But Vivarail’s proposed rapid charging facility could change everything!

The West of England Main Line is electrified as far as Basingstoke station, from where the route is worked excursively by diesel Class 159 trains.

Between Basingstoke and Exeter St. Davids stations, the trains make fourteen stops.

  • Most station stops,take up to a minute, but could take longer if say the train is busy or there’s a passenger in a wheelchair.
  • The train stops at Salisbury for four minutes, possibly to allow loading and unloading of catering trolleys.
  • The distances between stations range between a few and eighteen miles.
  • In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I said that if a 400 kWh battery were to be fitted to a Class 350/2 train, that this would give a range between twenty and fifty miles.
  • The Class 350 and South Western Railway’s Class 450 trains are the same basic Siemens Desiro train, although the Class 350 train uses 25 KVAC overhead electrification and the Class 450 train uses 750 VDC third-rail electrification.

It would appear that if the train could be charged at each station, it should be able to hop all the way between Basingstoke and Exeter St. Davids stations.

Using a traditional charger, where the train would have to be physically plugged into the charger, wouldn’t be possible in the short station stops on the route.

Even raising a pantograph to connect to a 25 KVAC overhead line would be slow and could distract the driver, whilst they were doing more important things.

But Vivarail’s proposed rapid charging facility, which I am sure is automatic would give the battery a top-up without any driver intervention.

 

The charging system would have a third rail on the opposite side of the track to the platform, as in this picture of Kidbrooke station.

The third-rail would be.

  • Short enough to be shielded by a train stopping on top.
  • Long enough to connect to at least two contact shoes on the train.
  • Automatically earthed, when no train is present and connected.

This would be the sequence, as a train stopped in a station.

  • The driver would stop the train at the defined place in the platform, as thousands of train drivers do all over the world, millions of times every day.
  • Once stopped, the contact shoes on the train would be in contact with the third rail, as they would be permanently down, as they are when running on third-rail electrification.
  • The charging system would detect the stationary train and that the train was connected, and switch on the power supply. to the third-rail.
  • Electricity would flow from the track to the batteries, just as if the train was on a standard third-rail electrified track.
  • If the battery should become full, the train’s system could stop the charging.
  • When passengers had finished leaving and joining the train and it was safe to do so, the driver would start the train and drive it to the next station.
  • When the charging system determined that the train was moving or that the contact shoe was no longer connected to the third-rail, it would immediately cut the power to the rail and connect it to earth.

It is a brilliant system; simple, efficient and fail-safe.

  • Regenerative braking will mean that stopping in the station will help to top-up the batteries.
  • The battery on the train is being charged, as long as it is stationary in the station.
  • Delays in the station have no effect on the charging, except to allow it for longer if the battery can accept more charge.
  • The driver concentrates on driving the train and doesn’t have to do anything to start and stop the charging.
  • The charging system never exposes a live rail to passengers and staff.

The charging system may also help recovery after an incident.

Suppose a fallen tree or a herd of cows has blocked the line and the electricity used to power the train’s systems has used a lot of battery power, so that when the train eventually gets to the next station, the battery needs a long charge before continuing.

The driver would just wait in the station, charging the battery, until there is enough energy to safely proceed.

A Look At The Mathematics

I shall now look at the mathematics of a leg between Basingstoke and Andover stations.

I will assume the following.

  • The train will leave the electrification at Basingstoke with a full battery, containing 400 kWh of electricity, as it will have been charged on the way from Waterloo.
  • The train is running at an operating speed of up to 90 mph between stations where possible, which means it has a kinetic energy of 47.1 kWh.
  • For each mile, the train consumes 8 kWh of electricity, to power the trains services and maintain the required speed.
  • Regenerative braking is eighty percent efficient.

As Basingstoke to Andover is eighteen miles, this means that energy consumption in the leg and the stop at Andover is as follows.

  • 144 kWh is used to power the train and maintain speed.
  • 9.42 kWh is lost in the braking and acceleration back to operating speed..

So the train will lose about 154 kWh on the eighteen mile leg.

I have built an Excel spreadsheet of the route and it looks that if a minimum of 100 kWh can be transferred to the train’s battery at each stop and the train uses no more than 8 kWh per mile, that it should be possible for the train to go from Basingstoke to Exeter on battery power.

Obviously, there are ways to make this journey more certain.

  • Reduce the train’s energy consumption for items like lighting and air-conditioning..
  • Improve the efficiency of regenerative braking.
  • Improve the charging systems, so more electricity is transferred in the short stops.
  • Improve the track, so that it is as smooth as possible with gentle curves.
  • Fit a larger battery.

It requires different teams of engineers to optimise their own area, so all contribute to a more energy-efficient system.

Would Battery Power Work If The Line Speed Was Increased to 100 mph?

I have done this calculation assuming an operating speed of 100 mph, rather than the current 90 mph determined in part by the maximum speed of the Class 159 trains and it appears to be still possible.

Could 100 kWh Be Transferred To The Train In The Short Stops?

In Station Dwell Times On The London Overground, I showed that the London Overground regularly has station stops of under thirty seconds.

Even to me, as an trained Electrical Engineer, 100 kWh does seem a lot of power to transfer to the train in a stop that is that short.

In the related post, I postulated that a thirty-second dwell time, means that the only way to connect the train to the rapid charging system is to use third-rail electrification, as this connects and disconnects automatically.

This was said about Vivarail’s charging system in Issue 864 of Rail Magazine.

The rapid charging concept consists of a shipping container of batteries that are trickle charged from a mains supply. When a Class 230 sits over the short sections of third-rail, electricity can be quickly transferred to the train’s batteries. When the train is away, the power rails are earthed to ensure they pose no risk The concept provides for charging a Class 230 as it pauses at a terminus before making its return journey.

The key is the battery-to-battery transfer of electricity, as batteries have a low impedance and are designed to supply high electrical currents for a short time, as when starting a massive diesel engine in a truck.

This page shows a 12v 250Ah battery available for just over three hundred pounds.

  • This battery alone has a capacity of 3 kWh.
  • It is 518mm x 273mm x 240mm.
  • It weighs 61 Kg.

You’d get a lot of these in a twenty-foot shipping container, which according to Wikipedia has a volume of 33.2 m³.

I estimate that a hundred of these batteries would fit easily into the container with all their control gear and electronics, which would mean a total capacity of 300 kWh.

Running my Excel spreadsheet with a 200 kWh transfer at each station, shows that the train can leave many stations with a full battery.

I have also run a more difficult scenario.

  • For each mile, the train consumes 10 kWh of electricity instead of 8 kWh, to power the trains services and maintain the required speed.
  • The rapid charging system can only transfer 80 kWh in thirty seconds.

The train still appears to get to its destination.

Obviously, Porterbrook, Siemens and Vivarail have better data than I have and will know what the actual performance of their trains and systems are.

How Much Power Can The Third-Rail Handle?

It should also be noted that a Class 450 train has eight x 250 kW traction motors, so the third-rail system of the train, must be capable of handling all of these at full power, when running on lines with third-rail electrification.

Would One Charging System Handle Both Tracks?

The route is double-track, with often platforms on either side of the tracs.

This Google Map shows Gillingham station, which appears to have a typical layout.

Note the three-car Class 159 train in the station.

If both tracks were to have a charging rail, I can’t see why one set of batteries shouldn’t be able to feed both tracks with separate control systems.

Although it does appear that several stations often use the same platforms for both directions.

Conclusion

This could be a very affordable way of electrifying a line with a lot of stations.

 

October 26, 2018 Posted by | Transport | , , , , , , , | 1 Comment