The Anonymous Widower

Northern Powerhouse Rail – Significant Upgrades And Journey Time Improvements To The Hope Valley Route Between Manchester And Sheffield

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is significant upgrades and journey time improvements to the Hope Valley Line between Manchester and Sheffield.

I shall look at a few of the possibilities for the route.

Northern Powerhouse Rail’s Objective For The Route

Wikipedia, other sources and my calculations say this about the trains between Manchester and Sheffield.

  • The distance between the two stations is 42.6 miles
  • The current service takes 49 to 57 minutes and has a frequency of two trains per hour (tph)
  • This gives an average speed of 52.2 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 40 minutes and have a frequency of four tph.
  • This gives an average speed of 63.9 mph for the journey.

This last figure of 63.9 mph, indicates to me that a 100 mph train will be able to meet Northern Powerhouse Rail’s objective.

Current Trains On The Hope Valley Line

In July this year, I went along the Hope Valley Line between Manchester Piccadilly and Dore and Totley stations, which I wrote about in Along The Hope Valley Line – 13th July 2020.

My train was a pair of refurbished Class 150 trains.

These trains can handled the current timetable but they have an operating speed of only 75 mph.

Looking at Real Time Trains for last week, it now appears that Northern are using new three-car Class 195 trains.

These are much better.

  • They are 100 mph trains with much better acceleration.
  • The train was still running the timetable for the slower trains.

With thirteen stops, I suspect that these new trains could be under fifty minutes between Manchester and Sheffield.

Will The Hope Valley Line Be Electrified?

Consider.

  • Currently, the Hope Valley Line is electrified between Manchester Piccadilly and Hazel Grove stations.
  • In the future, the line is likely to be electrified between Sheffield and Dore & Totley stations, in conjunction with rebuilding the Midland Main Line, to the North of Clay Cross North junction for High Speed Two.
  • After the electrification at the Eastern end, just over thirty miles will be without electrification.
  • The Hope Valley Line has an operating speed of 90 mph.

This Hitachi infographic shows the specification of the Hitachi Regional Battery train.

As these are a 100 mph train with a range of 90 km or 56 miles on battery power, these trains could work Manchester and Sheffield in the required time of forty minutes. provided they could be charged at the Sheffield end of the route.

TransPennine’s Class 802 trains can be fitted with batteries to become Regional Battery Trains, so it would appear that TransPennine’s services on this route could go zero-carbon.

In addition Northern, who are the other passenger operator on the route are working with CAF on battery electric trains, as I wrote about in Northern’s Battery Plans,

I don’t believe there are pressing reasons to electrify the Hope Valley Line to allow passenger trains to meet Northern Powerhouse Rail’s objective.

Will Operating Speed On The Hope Valley Line Be Increased?

Under Plans in the Wikipedia entry for the Hope Valley Line, this is said.

Network Rail, in partnership with South Yorkshire ITA, will redouble the track between Dore Station Junction and Dore West Junction, at an estimated cost of £15 million. This costing is based on four additional vehicles in traffic to deliver the option, however, this will depend on vehicle allocation through the DfT rolling stock plan. This work will be programmed, subject to funding, in conjunction with signalling renewals in the Dore/Totley Tunnel area.

Other proposals include a 3,600 feet (1,100 m) loop in the Bamford area, in order to fit in an all-day (07:00–19:00) hourly Manchester–Sheffield via New Mills Central stopping service, by extending an existing Manchester–New Mills Central service. Planning permission for this was granted in February 2018, but delays mean that this will now not be completed until 2023.

These changes to allow three fast trains, a stopping train and freight trains each hour were also supported in a Transport for the North investment report in 2019, together with “further interventions” for the Northern Powerhouse Rail programme.

It would also probably be a good idea, to increase the operating speed of the line to 100 mph where possible.

Effect On Passenger Services

100 mph trains on a track with an operating speed of 100 mph, could show some impressive timings.

On the Great Eastern Main Line, which is a very busy 100 mph double-track railway, 100 mph trains, achieve a 77 mph average for 90 minutes over the 115 miles, between London Liverpool Street and Norwich with a single stop.

A one-stop Manchester and Sheffield service at this speed would take just 33.2 minutes.

The stopping trains would be more of a challenge to get under forty minutes, but at least if they were battery electric trains, they’d have the better acceleration and deceleration of the electric trains.

  • Fifty minutes would be a realistic time.
  • Ten minutes turnround time at each end, would be ideal for charging the batteries and give an efficient two hour round trip.

Efficient timetabling could create a very comprehensive service for the Hope Valley Line.

Freight Trains On The Hope Valley Line

Under Freight in the Wikipedia entry for the Hope Valley Line, this is said.

Over a million tons of cement a year is taken away by rail from Earle’s Sidings at Hope.

That is a very large number of freight trains, all of which are currently hauled by diesel locomotives.

  • Looking at Real Time Trains, there are nearly always two freight trains in every hour of the day.
  • If you look at the routes, they go to a myriad number of destinations.
  • Following the routes between Dore Junction and the quarries to the South of the Hope Valley Line, there are several tunnels.
  • There are numerous quarries in a cluster, all served by their own rail lines.

Electrifying the delivery of the cement and limestone from the quarries would be a large and very expensive operation.

This Google Map shows Earle’s Sidings at Hope.

Perhaps a half-way house solution would be to use diesel to haul trains between the quarries and Earle’s sidings, where the locomotive is changed for an electric one?

  • But that would then mean that all routes from between the Peak District quarries and their destinations would need to be fully-electrified.
  • It should be noted that that the problem of zero-carbon trains, also exists at port and rail freight interchanges, where safe operation with 25 KVAC overhead wires everywhere can be a nightmare.
  • Rail freight companies are unlikely to change their old diesel locomotives for new expensive electric locomotives, until all possible routes are fully electrified.
  • It is also a big problem, all over the world.

Perhaps, what is needed is a self-powered zero-carbon locomotive with sufficient power to haul the heaviest trains?

I believe such a locomotive is possible and in The Mathematics Of A Hydrogen-Powered Freight Locomotive, I explored the feasibility of such a locomotive, which was based on a Stadler Class 68 locomotive.

The zero-carbon locomotive, that is eventually developed, may be very different to my proposal, but the commercial opportunities for such a locomotive are so large, that I’m sure the world’s best locomotive designers are working on developing powerful locomotives for all applications.

Conclusion

Northern Powerhouse Rail’s ambition for Manchester and Sheffield via the Hope Valley Line is simply stated as four tph in forty minutes. But this may be something like.

  • Three fast tph in forty minutes.
  • One stopping tph in perhaps fifty minutes.
  • One freight tph in each direction to and from the quarries that lie to the South of the line.

I didn’t realise how close that the line is to that objective, once the following is done.

  • Introduce 100 mph passenger trains on the route.
  • Improve the track as has been planned for some years.

Note that all the passenger trains, that now run the route; Class 185, 195 and 802 trains, are all 100 mph trains, although they are diesel-powered.

With a length of just under 43 miles, the route is also ideal for battery electric trains to work the passenger services, be the trains be from Hitachi, CAF or another manufacturer, after High Speed Two electrifies the Midland Main Line to the North of Clay Cross North Junction, in preparation for high speed services between London and Sheffield.

I would recommend, that one of High Speed Two’s first Northern projects, should be to upgrade the Midland Main Line between Clay Cross North junction and Sheffield station to the standard that will be required for High Speed Two.

I would also recommend, that the Government sponsor the development of a hydrogen electric locomotive with this specification.

  • Ability to use 25 KVAC overhead or 750 VDC electrification
  • 110 mph operating speed on electrification.
  • Ability to use hydrogen.
  • 100 mph operating speed on hydrogen.
  • 200 mile range on hydrogen.

A locomotive with this specification would go a long way to decarbonise rail freight in the UK and would have a big worldwide market.

 

 

 

 

 

November 23, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , | 1 Comment

Along The Hope Valley Line – 13th July 2020

These pictures show my return trip between Manchester Piccadilly and Dore & Totley stations.

There are an assorted set of stations.

  • Some stations appear to have new platforms.
  • Marple station has a impressive step-free bridge.
  • Some stations may be Listed or should be.
  • There are walking routes from some stations.
  • Some stations need improvements to the access.

I also have some thoughts on the service.

The Class 150 Trains

The Class 150 trains have these characteristics.

  • Installed Power – 426 kW
  • Weight – 35.8 tonnes
  • Operating Speed – 75 mph.

This compares with these for a Class 195 train.

  • Installed Power – 780 kW
  • Weight – 40 tonnes
  • Operating Speed – 100 mph.
  • Acceleration – 0.83 m/sec/sec

Unfortunately, I can’t find the acceleration for a Class 150 train, but I suspect that it’s not as good as the Class 195 train.

  • I was in a Class 150 train, for both journeys.
  • IThe train was on time both ways.
  • The engine under my carriage wasn’t working that hard.
  • The train was trundling around at around 60 mph.
  • The operating speed of the line is 90 mph.

So I suspect, that a well-driven Class 195 train will shave a few minutes from the journey time.

Transport For The North’s Plan For Manchester And Sheffield

Transportbfor the North objective for Manchester Piccadilly and Sheffield stations can be summed up as follows.

Four tph in forty minutes.

As current trains take over anhour, it could be a tough ask!

The Timetable

The timetable isn’t very passenger-friendly with no easy-to-remember clock-face timetable.

This must be sorted.

Hopefully, it will increase the number of passengers riding on the route.

Battery Electric Trains

Consider.

  • Sheffield station will be electrified for High Speed Two.
  • It is likely that the route between Dore & Totley and Sheffield station will be electrified.
  • There is electrification at the Manchester end of the route.
  • The distance without electrification in the middle is probably about thirty-six miles.
  • Fifty-sixty miles seems a typical range quoted for a battery electric train by train manufacturers.

As electric trains generally accelerate faster than their diesel equivalent, these could run the route reliably and save time on the journey.

Conclusion

I’m coming round to the opinion, that Transport for the North’s objectives for the route can be met without electrification.

July 14, 2020 Posted by | Transport | , , , , , , , , , | 2 Comments

Minister Quotes Definitive Dates For Final Northern Pacer Withdrawals

The title of this post is the same as that of this article on Eail Magazine.

This is the introductory paragraph.

Class 142 Pacers are expected to be withdrawn by Northern by February 17 2020, with all the ‘144s’ out of service by May 17 2020, according to Rail Minister Chris Heaton-Harris.

This is a mess and a mess, where the main culprits are not those usually blamed by the unfortunate travellers; Northern Rail  and the Government.

  • Network Rail made a terrible hash of installing electrification, mainly it appears to some bad surveying, some bad management decisions and their hiring of Carillion.
  • CAF for the late delivery of Class 195 and Class 331 trains.
  • Porterbrook and their contractor for the late delivery of Class 769 trains.

There was a similar problem on the Gospel Oak to Barking Line as Bombardier were having problems with the computer systems on the Class 710 trains, which came into service several months after the electrification was finally complete.

So Bombardier put their hands up and paid for a free month’s travel on the line.

Surely, those that are responsible for the Pacers still being in service, should follow Bombardier’s  lead.

 

October 31, 2019 Posted by | Transport | , , , , , , , , | 5 Comments

Pacers To Continue Into 2020, Operators Confirm

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Operators have confirmed that their Pacer diesel multiple-units will remain in service into early 2020, in spite of previous announcements that the unpopular four-wheeled vehicles dating from the 1980s would be withdrawn before enhanced PRM accessibility requirements come into force on January 1 2020.

The article then summarises the situation in the three operators running Pacers.

Northern

Some Pacers used by Northern will continue in service into 2020, because of late delivery of new Class 195 diesel trains and Class 331 electric trains.

They are also still awaiting delivery of eight Class 769 trains, which are very late into service.

Great Western

Great Western has said, that some Pacers will continue in service around Exeter.

No reason is given, but it does appear that because of non-delivery of electrification to Oxford and the late arrival of Crossrail, Great Western they still need Class 165 and Class 166 trains to work services for London commuters.

They are also still awaiting delivery of nineteen Class 769 trains.

Transport For Wales

Transport for Wales are in the same position as Great Western, in that the Class 769 trains, they ordered have still not been delivered.

The Operator Will Get The Blame!

Obviously, the operator will get the blame, but I would argue that all three have at least tried hard to avoid this crisis, as they knew the Pacers would have to be on their way to the scrapyard at the end of 2019.

  • If CAF had delivered their trains for Northern on time, things would be much better in the North.
  • If Porterbrook and their engineers had delivered the Class 769 trains on time, all three operators would be in a better position.

Hopefully, in a few months, the new trains will have been delivered and the Class 769 trains will have been created and in service.

 

October 24, 2019 Posted by | Transport | , , , , , , , | Leave a comment

A Selection Of Train Noses

I have put together a selection of pictures of train noses.

They are in order of introduction into service.

Class 43 Locomotive

The nose of a Class 43 locomotive was designed by Sir Kenneth Grange.

Various articles on the Internet, say that he thought British Rail’s original design was ugly and that he used the wind tunnel at Imperial College to produce one of the world’s most recognised train noses.

  • He tipped the lab technician a fiver for help in using the tunnel
  • Pilkington came had developed large armoured glass windows, which allowed the locomotives window for two crew.
  • He suggested that British Rail removed the buffers. Did that improve the aerodynamics, with the chisel nose shown in the pictures?

The fiver must be one of the best spent, in the history of train design.

In How Much Power Is Needed To Run A Train At 125 mph?, I did a simple calculation using these assumptions.

  • To cruise at 125 mph needs both engines running flat out producing 3,400 kW.
  • Two locomotives and eight Mark 3 carriages are a ten-car InterCity 125 train.

This means that the train needs 2.83 kWh per vehicle mile.

Class 91 Locomotive

These pictures show the nose of a Class 91 locomotive.

Note, the Class 43 locomotive for comparison and that the Driving Van Trailers have an identical body shell.

It does seem to me, that looking closely at both locomotives and the driving van trailers, that the Class 43s  look to have a smoother and more aerodynamic shape.

Class 800/801/802 Train

These pictures show the nose of a Class 800 train.

In How Much Power Is Needed To Run A Train At 125 mph?, I did a simple calculation to find out the energy consumption of a Class 801 train.

I have found this on this page on the RailUKForums web site.

A 130m Electric IEP Unit on a journey from Kings Cross to Newcastle under the conditions defined in Annex B shall consume no more than 4600kWh.

This is a Class 801 train.

  • It has five cars.
  • Kings Cross to Newcastle is 268.6 miles.
  • Most of this journey will be at 125 mph.
  • The trains have regenerative braking.
  • I don’t know how many stops are included

This gives a usage figure of 3.42 kWh per vehicle mile.

It is a surprising answer, as it could be a higher energy consumption, than that of the InterCity 125.

I should say that I don’t fully trust my calculations, but I’m fairly sure that the energy use of both an Intercity 125 and a Class 801 train are in the region of 3 kWh per vehicle mile.

Class 717 Train

Aerodynamically, the Class 700, 707 and 717 trains have the same front.

But they do seem to be rather upright!

Class 710 Train

This group of pictures show a Class 710 train.

Could these Aventra trains have been designed around improved aerodynamics?

  • They certainly have a more-raked windscreen than the Class 717 train.
  • The cab may be narrower than the major part of the train.
  • The headlights and windscreen seem to be fared into the cab, just as Colin Chapman and other car designers would have done.
  • There seems to be sculpting of the side of the nose, to promote better laminar flow around the cab. Does this cut turbulence and the energy needed to power the train?
  • Bombardier make aircraft and must have some good aerodynamicists and access to wind tunnels big enough for a large scale model of an Aventra cab.

If you get up close to the cab, as I did at Gospel Oak station, it seems to me that Bombardier have taken great care to create a cab, that is a compromise between efficient aerodynamics and good visibility for the driver.

Class 345 Train

These pictures shows the cab of a Class 345 train.

The two Aventras seem to be very similar.

Class 195 And Class 331 Trains

CAF’s Class 195 and Class 331 trains appear to have identical noses.

They seem to be more upright than the Aventras.

Class 755 Train

Class 755 trains are Stadler’s 100 mph bi-mode trains.

It is surprising how they seem to follow similar designs to Bombardier’s Aventras.

  • The recessed windscreen.
  • The large air intake at the front.

I can’t wait to get a picture of a Class 755 train alongside one of Greater Anglia’s new Class 720 trains, which are Aventras.

 

 

 

 

 

October 14, 2019 Posted by | Transport | , , , , , , , , | 2 Comments

Tender Set To Be Issued For East West Rail Rolling Stock

The title of the this post is the same as that of this article on Rail Magazine.

Brief details of the fleet include.

  • Eleven trains.
  • Self-propelled.
  • Three cars.

Services are due to commence in 2024, serving Oxford, Aylesbury, Milton Keynes and Bedford.

Here are a few of my thoughts.

Are Three Car Trains Long Enough?

New train services in the UK, especially those on new or reopened routes, seem to suffer from London Overground Syndrome.

I define it as follows.

This benign disease, which is probably a modern version of the Victorian railway mania, was first identified in East London in 2011, when it was found that the newly-refurbished East London Line and North London Line were inadequate due to high passenger satisfaction and much increased usage. It has now spread across other parts of the capital, despite various eradication programs.

The Borders Railway certainly suffered and the London Overground is still adding extra services on the original routes.

Three-car trains may be enough for the initial service, but provision must be made  for running longer trains.

  • The trains that are purchased must be capable of lengthening.
  • Platforms must be built for longer trains.

So often we don’t future-proof new rail routes.

What Performance Is Needed?

I’ll ask this question first, as it may affect the choice of train.

The trains will certainly be at least capable of 100 mph operation.

But I wouldn’t be surprised if they were capable of 110 mph or even 125 mph, as this would surely make it easier for trains to go walkabout on the Great Western, Midland and West Coast Main Lines.

Faster East West trains might also get more services out of the fleet.

Appropriate acceleration and braking would be needed.

Conservative Or Innovative?

Will we get more of the same or will some of the responders to the tender offer trains based on innovative designs?

I would hope that as the line will eventually connect Oxford and Cambridge via Milton Keynes, the trains will take over the flavour of the route and be more innovative.

The Route

The eventual full route of the East West Rail Link will serve these sections.

  • Reading and Ocford – 25 miles – Partially-electrified
  • Oxford and Milton Keynes – 43 miles – Not electrified
  • Milton Keynes and Bedford – 20 miles – Partially-electrified
  • Bedford and Sandy – 10 miles – Not electrified
  • Sandy and Cambridge – 25 miles – Partially-electrified.

Note.

  1. The distances are approximate.
  2. With the exception of Oxford, all the major stations will be served by electric trains on other routes.

It is rather a mixture created out of existing and abandoned routes.

Could Battery Trains Run On The East West Rail Link?

Consider.

  • All the major stations except Oxford have electrification.
  • Sections of the route are electrified.
  • The route is not very challenging.
  • The longest section without electrification is around forty miles.

All this leads me to believe that a battery-electric train with a range of forty miles could handle the route, if there was the means to charge the train at Oxford.

Possibly the easiest way to achieve the charging station at Oxford station, would be to electrify between Didcot Junction and Oxford stations.

In How Much Power Is Needed To Run A Train At 125 mph?, I showed that to run at 125 mph, a train needs around three kWh per vehicle mile.

This would mean that to run between Oxford and Milron Keynes stations, would need a maximum power of around 40*3*3 kWh or 360 kWh.

This is only a 120 kWh battery in each car.

I am fairly certain, that a well-designed battery train could run on the East West Rail Link.

The Usual Suspects

There are several train companies, who could be offering existing trains or their developments.

Alstom

Alstom don’t have a current design of train for the UK, but they are heavily into the development of trains powered by hydrogen.

By 2024, I suspect they will be offering a purpose-built hydrogen-powered train for the UK.

Also, by that time, I think it will be likely, that many buses in cities will be powered by zero-carbon hydrogen and the availability of this fuel would be much better than it is today.

An East West Rail Link running hydrogen-powered trains would go a long way to answer the electrification lobby.

Bombardier

Bombardier are developing a 125 mph bi-mode Aventra with batteries, that they are proposing for various franchises in the UK, including the Midland Main Line.

I believe that by rearranging the components of this train, they could develop a train that would be very suitable for the East West Rail Link.

  • Three cars
  • At least 100 mph operating speed
  • In service by 2024 or earlier.

It could be a bi-mode train with batteries, or if battery and the associated charging technology has improved, it could be a battery-electric train.

The latter would certainly fulfil the flavour of the route.

Bombardier’s Aventra would also have the advantages of an electrical version and the ability to add more cars.

CAF

CAF have recently introduced the Class 195 traincaf in the UK.

But would a diesel train be acceptable on a flagship route?

On the other hand CAF have been delivering battery-powered trams for several years and I wouldn’t be surprised to see the company, offer an innovative battery-electric train for the East West Rail Link.

Hitachi

Hitachi don’t make self-powered trains in the UK.

But in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires, I wrote about the company’s plans to use batteries as range extenders on their Class 385 trains.

I suspect that by 2024, these trains will be running in Scotland and they will probably be high-quality reliable trains.

So could these trains be able to run between Reading and Cambridge using battery power, topped up at the various sections of electrification along the route.

Hitachi’s development regime is cautious, professional and well-funded, so I suspect they could offer a version of the Class 385 train, for delivery in 2024.

Hitachi would also have the advantages of an electrical version and the ability to add more cars.

Siemens

Siemens have a large number of modern electrical multiple units in the UK, but none are self-powered, except the diesel Class 185 train.

Siemens will have a factory in the UK to built London Underground trains by 2024.

But eleven trains could be an expensive order to fulfil, if it required a new self-powered train design.

Stadler

Stadler are an innovative company and their Class 755 train will shortly be starting passenger service in East Anglia.

  • It is three-cars, which is extendable if required.
  • It has a 100 mph operating speed.
  • It is a bi-mode; diesel and electric train.
  • Trains for Wales have ordered a diesel/electric/battery version.
  • There are rumours of hydrogen-powered versions.

Stadler could certainly deliver some of these trains by 2024.

Summing Up

I would suspect that the front runners are Bombardier, Hitachi and Stadler, with CAF in fourth place.

  • All could probably develop a zero-emission train for the route using battery technology.
  • Stadler will have trains in service this year, and I suspect Bombardier and Hitachi will be running trains by 2022.

I think we could be seeing some very good trains on the route.

 

 

 

 

July 13, 2019 Posted by | Transport | , , , , , , , , , , | 7 Comments

My First Ride In A Class 331 Train

After yesterday’s post; My First Ride In A Class 195 Train, today, I took a ride in that train’s electric sister; the Class 331 train, between Leeds and Doncaster stations.

These are some pictures.

These are my views on various aspects of the train.

Noise, Vibration And Harshness

The electric trains, I travel in most are London Overground’s and TfL Rail’s various classes; 315, 317, 345, 378 and 710.

These Class 331 trains seemed to have a smooth ride, but a noisier transmission compared to say the Class 378 train or the Class 710 train.

To check, the day after I rode the Class 331 train, I rode the Gospel Oak to Barking Line, sampling both Class 378 and Class 710 trains.

It was no surprise that noise levels in the Class 710 train were lowest, but the Class 331 train was noisier than the Class 378 train.

Interior Design

The interior design is the same as that of the Class 195 train and my same comments apply.

  • It is inferior to that of a Class 385 train.
  • The seats are not aligned with the windows.
  • There are lots of tables, which I like.

I also noted that the information display wasn’t working. Was this just teething troubles?

Entrance And Exit

As expected, this was the same as the Class 195 train.

Conclusion

The Class 331 train like its sibling; the Class 195 train, has a few design faults, that hopefully will be rectified in the next few months.

July 6, 2019 Posted by | Transport | , , , , | 1 Comment

My First Ride In A Class 195 Train

Today, I rode the ten o’clock Virgin to Manchester Piccadilly station.

I then waited for one of the new Class 195 trains going South to Manchester Aurport station.

These pictures show the Class 195 train.

These are my views on various aspects of the train.

Noise, Vibration And Harshness

The Class 195 train is a diesel multiple unit, with an MTU engine and a ZF Ecolife transmission.

Wikipedia describes the transmission as is a 6 speed transmission for city buses. It also lists these features.

  • Boosted operating economy, longer service life, and higher temperature resistance for operation with Euro 5 (1st generation) and Euro 6 (2nd generation) compatible engines.
  • An integral retarder,
  • Longer operational intervals between oil changes.
  • Higher torque capacity.

It looks like ZF have created a sophisticated and very efficient gearbox for diesel buses and trains.

During today, I rode also rode in Class 156 and Class 175 trains, that are also diesel powered.

I would put the noise, vibration and harshness of the diesel engine and the transmission of the Class 195 trains, as worse than that of the Class 175 train and better than than that of the Class 156 train.

I am surprised that the Class 195 train doesn’t use a hybrid electric transmission, which are starting to be developed by MTU and will be retrofitted into various diesel multiple units like Porterbrook’s Class 170 trains, as I talked about in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks.

I said this in the linked post.

As I understand it, the current hydraulic traction system will be replaced by an electric one with a battery, that will enable.

  • Regenerative braking using a battery.
  • Battery electric power in urban areas, stations and depots.
  • Lower noise levels
  • Lower maintenance costs.

This should also reduce diesel fuel consumption and carbon emissions.

As the Class 195 train has a similar electric cousin; the Class 331 train, I would have felt that it would be possible to fit the Class 195 trains with an MTU Hybrid PowerPack or similar.

This should reduce, what to me, are unacceptable noise levels.

As the MTU Hybrid PowerPack has been developed, at the same time as the Class 195 train, which uses a traditional MTU engine, I wouldn’t be surprised if the Class 195 train has been designed to be retrofitted with the more efficient MTU Hybrid PowerPack.

Interior Design

The designj of the interior is disappointing in some of the details and I would rate it inferior to the Class 385 trains, built for ScotRail by Hitachi.

The most annoying aspect is that the seats and windows are not aligned, as they are in Hitachi’s design.

This picture taken in a Chiltern Railways Mark 3 carriage, shows the alignment done in a better manner.

 

But I believe, that it can be done better still.

Entrance And Exit

As the pictures show, there is a big gap and a high step getting into the train. I know that the platform at Manchester Piccadilly is not easy, but the gap was still large on the straight platform at Manchester Airport.

With any new train, a passenger in a wheelchair, should be able to push themselves into and out of the train.

They certainly can’t in a Class 195 train.

Conclusion

I was rather disappointed with the Class 195 train.

Good points were the number of tables and build quality.

Bad points were the noise, vibration and harshness, execution of the interior design and entry and exit.

Compared to the Class 385 train, which I would score at 8/10, the Class 195 train, is no better than 6/10.

In some ways though, my biggest disappointment, is that they didn’t get the smaller points of the design right first time!

 

 

July 5, 2019 Posted by | Transport | , , , , , | 2 Comments

Japanese Car Rental Firms Discover New Trend Of Renting Vehicles For A Nap Or Quiet Lunch

The title of this post is the same as that of this story on The World News.

It was flagged up first on BBC Breakfast.

But is it any difference to my behaviour?

I generally get up, do all my daily chores and have a bath.

Then, I’ll go out about nine and take an Overground train or a bus to somewhere quiet for breakfast.

I will sometimes go as far as Richmond for breakfast in Leon.

And if the weather is hot like is it is now, I might even just sit on an air-conditioned train and read my paper or watch the news on my phone, stopping where I fancy for a coffee or a drink.

All I need to ensure, is that at some point, I stop off at a Marks and Spencer to get the food I need for supper.

Courtesy of my Freedom Pass, all this travel costs me a big fat zilch.

I call it Freedoming.

Today, though I’m roaming a bit further; Manchester. Hopefully, I’ll get a ride in one of the new Class 195 trains to Manchester Airport.

 

July 5, 2019 Posted by | Transport | , , , , , | 2 Comments

Comparing Class 195 And Class 769 Trains

This may seen a strange comparison to do.

  • In the blue corner is an upgraded forty-year-old four-car bi-mode Class 769 train from British Rail via Brush at Louthborough.
  • In the red corner is a new three-car diesel Class 195 train from CAF.

So how do they compare?

Seats

  • The Class 769 train shows 255 Standard Class and 12 First Seats in an example layout in the brochure.
  • The Class 195 train has 204 seats according to Wikipedia.

The seats per car in both trains are almost identical.

Diesel Power

  • The Class 769 train has two 390 kW diesel engines and electric transmission.
  • The Class 195 train has three 390 kW diesel engines and a ZF Ecolife six-speed transmission.

So it would appear that the Class 195 train is more powerful, but Class 769 train has an electric transmission, which doesn’t need to change gear.

I look forward to riding in both trains.

Operating Speed

  • The Class 769 train has a 100 mph operating speed on electricity and has been designed for 91 mph on diesel power.
  • The Class 195 train has a 100 mph operating speed.

The proof of the pudding will be in the timetables and journey times.

Conclusion

The two trains are fairly evenly matched for a lot of routes.

March 9, 2019 Posted by | Transport | , , | Leave a comment