The Anonymous Widower

Crossrail Trains Cleared To Use The Heathrow Tunnel

This title of this post, is the same as that of this article on Ian Visits.

These are the first four paragraphs.

Last month, a significant achievement took place on the Crossrail project, which is far more important than the headlines make it seem to be.

At a basic level, the Office of Rail Regulation approved the use of the new Class 345 trains that will be used on the Elizabeth line to carry passengers into the Heathrow tunnels.

The practical implication being that TfL Rail will in the next few weeks be able to run from Paddington to Heathrow direct, as they were supposed to start doing back in May 2018.

The delay has been caused by the bane and saviour of modern railways, the signalling system.

Ian then goes on to give a full and understandable explanation of the complex nature of modern rail signalling.

Ian finishes by giving a detailed description of the Class 345 trainsAuto-Reverse feature.

Around half of westbound trains will terminate at Paddington, but to head back eastwards, once all the passengers are off, they carry on westwards to Westbourne Park, then return back to Paddington on the eastbound line.

Normally that means the train driver would drive to Westbourne Park, stop, walk through the train to the other end, then drive back. But with “auto-reverse”, as soon as the train leaves Paddington, the driver switches to automatic and starts walking through the train to the other end. By the time the train arrives at Westbourne Park sidings, the driver will be sitting in the drivers cab at the other end of the train ready to head back into Central London.

I feel we need more automation on trains.

Possible Uses Of Automation

These are some possibilities.

Reversing In Services

Several services, require the driver to change ends and then drive the train from the other end, when calling at a station.

  • Some Nottingham and Skegness services, reverse in Grantham station.
  • Maidenhead and Marlow services, reverse in Bourne End station.
  • Norwich and Sheringham services, reverse in Cromer station.

I could envisage an automatic system, that took the train from A to B to C etc. under the control of the driver.

  • They might just touch a screen or button to move to the next station, as drivers have done on the Victoria Line.
  • Both cabs would have a remote video screen showing the view from the other end of the train.
  • The driver could drive the train from either cab.
  • Arriving at a station, the automation would stop the train in the correct position.
  • As on a Victoria Line train, the driver would monitor the system at all times and take control and drive manually, if required.
  • The driver might also have a sophisticated remote control, so that if he needed to walk through the train to change cabs, he would still be in full control.

The guard might also have a remote control, for use in the very rare case of driver incapacitation, where he would need to halt the train.

Shuttle Services

There are services in the UK, where a single train shuttles between two stations.

  • Brockenhurst and Limington Pier – 11 minutes
  • Grove Park and Bromley North stations –  5 mins
  • St. Erth and St. Ives stations – 10 mins
  • Slough and Windsor & Eton Central – 6 mins
  • Sudbury and Marks Tey – 19 mins
  • Twyford and Henley stations – 12 mins
  • Watford Junction and St. Albans Abbey – 16 minutes

Note.

  1. The time shown is the time for a single journey.
  2. All these services use a single train, where the driver changes ends before each journey.
  3. The  services use a dedicated platform at both terminals.
  4. There is a dedicated track between the terminals.
  5. Some of these services may need a more frequent service.

If the driver doesn’t change ends, would the time saved allow more trains per hour (tph)?

I think the following improvements are possible.

  • Grove Park and Bromley North – three tph to four
  • Slough and Windsor & Eton Central – three tph to four
  • Watford Junction and St. Albans Abbey – If the journey time could be reduced to fourteen minutes or less, there is a chance that the service could be doubled to two tph.

It looks that if the driver change ends, then it appears the following frequencies are possible, with these journey times.

  • Less than six-and-a-half minutes – four tph
  • Less than nine minutes – three tph
  • Less than fourteen minutes – two tph

I do wonder if an automated shuttle on the Abbey Line could run at the required two tph, with only minimal infrastructure works.

 

 

June 2, 2020 Posted by | Transport | , , , , | 5 Comments

An Automated Shuttle Train On The Slough-Windsor & Eton Line

The Slough-Windsor & Eton Line has the following features.

  • It is 2.5 miles long.
  • It is single-track.
  • It is not electrified
  • Trains on the route are two- or three-car diesel trains.
  • There is a single platform station at either end with no intermediate stations.
  • The service frequency is three tph.
  • Trains take six minutes to go between the two terminals.

The service on this line, can get exceedingly full and needs greater capacity.

To run the ideal four tph, trains would need do a round trip between Slough and Windsor & Eton Central in fifteen minutes.

If we assume that the two end stops take a total of three minutes, then that leaves just twelve minutes to cover the five miles of the round trip.

This is an average speed of 25 mph.

As with the Greenford Branch, I think that an appropriate train would be able to run an automated shuttle, with a frequency of four tph.

The train (or tram-train) would have the following features.

  • It would be battery-powered
  • It would have an operating speed of perhaps fifty mph.
  • It would have fast acceleration and deceleration.
  • It would have three- or four-cars.

The only infrastructure works that would be needed, would be to provide a fast charging station at Slough station.

February 19, 2019 Posted by | Energy Storage, Transport | , , , | 1 Comment