The Anonymous Widower

Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion

The title of this post is the same as that of this article on Global Rail News.

This is the first paragraph.

Rolling stock leasing company Porterbrook is working on a prototype battery/electric bi-mode Class 350/2 to demonstrate the technology’s viability to train operators.

So why would you fit batteries to an electric train like a Class 350 train?

Range Extension

An appropriately-sized battery can be used to power the train on an extension or branch line without electrification.

The classic route in London is the Barking Riverside Extension of the Gospel Oak to Barking Line.

Until someone says otherwise, I believe this short route will be built without electrification and the Class 710 trains will run on this route using stored battery power.

In my article in Issue 856 of Rail Magazine, I said this.

London is also designing and building another rail line, which will be used only by Aventras – The Barking Riverside Extension of the Gospel Oak and Barking Line.

I have read all of the published Transport for London documents about this extension and although electric trains are mentioned, electrification is not!

The extension is only a mile of new track and trains could leave the electrified c2c line with full batteries.

It would not be difficult to go to Barking Riverside and back on stored power.

Benefits would include.

  • Less visual and audible intrusion of the new railway.
  • Simpler track and station design.
  • It might be easier to keep the railway at a safe distance from all the high voltage electricity lines in the area, that bring power to London.
  • A possibly safer and more reliable railway in extreme weather.
  • Costs would be saved.

No-one has told me, I’ve got it wrong.

Handling Regenerative Braking Energy

Normally, the energy generated by regenerative braking is returned through the overhead wires or third-rail  to power nearby trains.

This does save energy, but it does have drawbacks.

  • What happens if there are no nearby trains?
  • The transformers and systems that power the track are more complicated and more expensive.

As trains slow and accelerate continuously, would it not be better if regenerative energy could be used to accelerate the train back up to line speed?

The train would need an intelligent control system to decide whether to use power from the electrification or the batteries.

In my view, a battery on the train is the obvious way to  efficiently handle the energy from regenerative braking.

Handling Power Failures

Electrification failures do occur for a number of reasons.

If trains have an alternative power supply from a battery, then the driver can move the train to perhaps the next station, where the train can be safely evacuated.

I believe that Crossrail uses battery power for this purpose.

Electrically Dead Depots And Sidings

Depots and sidings can be dangerous places with electricity all over the place.

If trains can be moved using stored energy, then safer depots and sidings can be designed.

Remote Wake-Up

We’ve all got up early in the morning, to drive to work on a cold day.

One train driver told me, there was no worse start to the day, than picking up the first train from sidings in the snow.

I discuss, remote wake-up fully in Do Bombardier Aventras Have Remote Wake-Up?.

I suspect to do this reliably needs a battery of a certain size.

How Big Should The Batteries Be?

It is my belief, that the batteries on an electric train, must be big enough to handle the energy generated if a full-loaded train stops from maximum speed.

If we take the Class 350/2 train, as owned by Porterbrook, Wikipedia gives this information.

  • Maximum Speed – 100 mph
  • Train Weight – 175.5 tonnes
  • Capacity – Around 380 passengers

If I assume each passenger weighs 90 Kg with baggage, bikes and buggies, the train weight is 209.7 tonnes.

This could be a bit high, but if you’ve been on one of TransPennine’s Class 350 trains, you might think it a bit low.

Using Omni’s Kinetic Energy Calculator, I get the following kinetic energies at various speeds.

  • 60 mph – 20.9 kWh
  • 70 mph – 28.5 kWh
  • 80 mph – 37.2 kWh
  • 90 mph – 47.1 kWh
  • 100 mph – 58.2 kWh
  • 110 mph – 70.4 kWh
  • 120 mph  83.6 kWh

I have added the unrealistic 120 mph figure, to show how the amount of energy rises with the square of the speed.

As it would be advantageous for trains to run at 110 mph, the batteries must always have the capacity to handle at least 70.4 kWh, so perhaps 100 kWh would be a good minimum size.

How Much Battery Capacity Could Be Fitted Under A Train?

Wikipedia doesn’t give the formation of a Class 350 train, but it does give that of the similar third-rail version of the train; the Class 450 train.

  • DMSO(A)
  • TCO
  • TSO
  • DMSO(B)

Which is two identical Driver Motor Cars with two Trailer Cars in the middle. Looking at a Class 350 train in Euston, they appear to have a similar formation.

This page on the Vivarail web site is entitled Battery Train Update.

This is a paragraph.

Battery trains are not new but battery technology is – and Vivarail is leading the way in new and innovative ways to bring them into service. 230002 has a total of 4 battery rafts each with a capacity of 106 kWh and requires an 8 minute charge at each end of the journey. With a 10 minute charge this range is extended to 50 miles and battery technology is developing all the time so these distances will increase.

So it looks like Vivarail manage to put 212 kWh under each car of their two-car train.

This article on the Railway Gazette is entitled Battery-Powered Desiro ML Cityjet Eco Unveiled.

This is an edited version of the first two paragraphs.

An electric multiple-unit equipped with a prototype electric-battery hybrid drive system designed to enable through running onto non-electrified lines was unveiled by Siemens and Austrian Federal Railways in Wien on September 10.

The Desiro ML Cityjet Eco has been produced using a series-built version of the Desiro ML EMUs which Siemens is supplying to ÖBB. The middle car has been equipped with three battery containers with lithium-titanate batteries offering a total capacity of 528 kWh.

Although this train is designed for a different loading gauge, it is another Siemens product and they manage to fit 528 kWh in, on top or under one car.

I think, it would be reasonable to assume that around 400 kWh of batteries could be fitted under a Class 350 train.

These pictures show a Class 350 train at Euston.

Note that the trailer car with the pantograph has less free space underneath. I would assume that is because the transformer and other electrical gubbins are underneath the car to increase passenger space.

I’m certain there is space under a Class 350 train to fit an appropriate amount of storage.

What Battery Range Could Be Expected?

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So how far would a four-car Class 350 train go with a fully-charged 400 kWh battery?

  • 5 kWh per vehicle mile – 20 miles
  • 4 kWh per vehicle mile – 25 miles
  • 3 kWh per vehicle mile – 33.3 miles
  • 2 kWh per vehicle mile – 50 miles

Obviously, this is a very crude estimate, but it does show that the train could have a useful range on battery power.

But the following would increase the range of the train.

  • A low energy interior.
  • An increased battery capacity.
  • Two cars in the four-car train are trailers, so should have more space underneath.
  • Routes for battery trains could be reprofiled with gentle curves and gradients.
  • Terminal platforms could be fitted with charging stations.

In Did Adrian Shooter Let The Cat Out Of The Bag?, Mr Shooter talked about a range of forty miles at sixty mph for the battery version of a Class 230 train.

That distance, would open up a surprising number of routes for battery trains.

Should A Small Diesel Generator Be Fitted?

It is worth noting that Transport for Wales has ordered two battery trains.

  • Vivarail Class 230 trains for North Wales.
  • Stadler Flirts for South Wales

Both trains have diesel engines, that can be used to back-up battery power.

In addition the Class 801 train has a diesel generator to rescue the electric train, when the power fails.

Are Hitachi, Stadler and Vivarail just being safe or do their figures show that a diesel engine is absolutely necessary? After all, the diesel generator can be easily removed, if it’s never used.

I think if it was easy, whilst the new battery-powered train was being tested and on probation, I’d fit a small diesel generator.

Remote Battery Charging

Most of the charging would be done, whilst running on electrified lines, which could be either 25 KVAC overhead or 750 VDC third-rail.

But the trains would be ideal for the sort of charging system, that I wrote about in Is This The Solution To A Charging Station For Battery Trains?.

To use this Opbrid system, all the train needs is the ability to connect through a 25 KVAC pantograph, which the train already has.

As there is a lot of interest in battery trains throughout Europe, I suspect that a charging station will be a standard piece of equipment, that can be easily installed in a terminal platform or a turnback siding.

We could see important towns and cities like Barrow-in-Furness, Blackburn, Chester, Dundee, Harrogate, Huddersfield, Hull, Middlesbrough, Perth and Sheffield, which are within battery range of the electrified network, being served by electric trains , without the disruption of installing electrification.

An Updated Interior

The Class 350 trains were ordered around 2000 and don’t have the features that passengers expect, as these pictures show.

An update would probably include.

  • LED lighting.
  • Low-energy air-conditioning.
  • Wi-fi
  • Power sockets
  • USB sockets.

Other features would be cosmetic like new seat covers and flooring.

But overall, a better interior will surely reduce the energy needs of a train.

What Would Be The Maximum Speed?

The current maximum speed of Porterbrook’s Class 350/2 trains is 100 mph, but all other variants of the train are capable of 110 mph.

Under Description in the Wikipedia entry for the Class 350 train, this is said.

The top speed of the fleet was originally 100 mph (160 km/h), but all 350/1s were modified to allow 110 mph (180 km/h) running from December 2012, in order to make better use of paths on the busy West Coast Main Line.

So would the conversion to battery power, also include an uprating to 110 mph?

It would definitely be a prudent move, so as to make better use of paths on busy main lines.

Where Would These Trains Run?

I feel that Porterbrook will produce a four-car train with these characteristics.

  • 110 mph operating speed.
  • Forty or perhaps a fifty mile range on batteries.
  • Quality interior.
  • The ability to use a charging station in a terminal platform.

The Global Rail News article says this about possible use of the trains.

Engineers at Porterbrook have run models on a variety of routes, including the Windermere branch line and the West Coast main line, and believe a battery/electric bi-mode, known as a 350/2 Battery/FLEX, could offer various performance benefits.

The Windermere to Manchester Airport service would seem to be an ideal route  for the Class 350/2 Battery/FLEX trains.

  • Only ten miles are not electrified.
  • The trains could easily work the return trip on the Windermere Branch Line on battery power.
  • There would be no need for any charging station at Windermere station.
  • Much of the route is on the West Coast Main Line, where a 110 mph electric train would fit in better than a 100 mph diesel train.
  • As the trains would need a refurbishment, some could be fitted with an interior, suitable for airport travellers.
  • The trains would fit the ethos and environment of the Lake District.

As the route will soon be run by Class 769 trains, I suspect there would need to be no modifications to the tracks, stations and signalling, as both trains are bi-modes, based on four-car electric trains.

I have other thoughts about, where Class 350/2 Battery/FLEX trains could be used.

Interchangability With Class 769 Trains

Both the Class 350/2 Battery/FLEX and Class 769 trains are trains owned by Porterbrook.

They are also surprisingly similar in their size, performance and capabilities.

  • Both are four-car trains around eighty metres long.
  • Both can work on 25 KVAC overhead electrification and both could be modified to work on 750 VDC third-rail electrification.
  • Both are 100 mph trains, although it may be possible to uprate the Class 350/2 Battery/FLEX to 110 mph working.
  • Both trains can be fitted with modern interiors giving operators, passengers and staff what they need or want.
  • Many routes for bi-mode trains could be worked by either train.

There will be a few differences.

  • The Class 350/2 Battery/FLEX train is a pure electric train and more environmentally-friendly.
  • The Class 350/2 Battery/FLEX train could fit in better on a busy main line.
  • The Class 769 train will probably have a longer range away from electrification.
  • The Class 350/2 Battery/FLEX train is twenty years younger.

I think that this similarity will be used to advantage by Porterbrook and the train operating companies.

  • A Class 350/2 Battery/FLEX train would be an ideal replacement for a Class 769 train, when the latter needs replacing.
  • A Class 769 train could replace a Class 350/2 Battery/FLEX train, if say the latter was being serviced or repaired or perhaps the charging station at one terminus was out of action.
  • A Class 769 train could be used for route-proving for both trains.

Porterbrook wins every way, as they own both trains.

But I can also see a time, when the Class 769 trains become a reserve fleet to be used, when a train operating company is in urgent need of more capacity.

Around Electrified Conurbations

The UK has several conurbations with a lot of electrification.

  • Birmingham-Coventry-Wolverhampton
  • Edinburgh-Glasgow-Stirling
  • Leeds-Bradford-Doncaster-York
  • Liverpool-Manchester-Preston-Blackpool
  • London

Cambridge, Cardiff, Reading and Newcastle could also become major electrified hubs.

I suspect there will be a lot of routes for which these trains would be eminently suitable.

This is a selection of the easy routes, where there is electrification at one end of the route and a charging station could be added at the other, if required.

  • Doncaster to Hull
  • Dunblane to Perth
  • Glasgow Central To East Kilbride
  • Leeds to York
  • London Bridge to Uckfield
  • Manchester to Buxton
  • Manchester to Chester
  • Manchester to Clitheroe
  • Preston to Barrow-in-Furness
  • Preston to Blackpool South
  • Preston to Colne

In total, there must be at least twenty of these routes in the UK.

Trains Across The North Of England

It should be noted that Leeds to Stalybridge is about thirty-five miles by rail and both ends of the route are electrified.

So could these trains have sufficient battery capacity to enable Northern to run fast electric services between Blackpool, Chester, Liverpool, Manchester, Manchester Airport and Preston in the West to Hull, Leeds and York in the East?

If the Class 350/2 Battery/FLEX train has sufficient battery capacity and the speed limits on various sections of the East West routes are increased from some of their miserable levels, I believe that a much better service could be provided.

At over seventy miles long, the Settle-Carlisle Line, is probably too long for battery operation, especially as the route is not electrified between Skipton and Carlisle, which is nearly ninety miles.

The same probably applies to the Tyne Valley Line, which has just over sixty miles without electrification.

But it is called the Tyne Valley Line for a good reason, it runs alongside the River Tyne for a long way and looks to be not very challenging.

I wouldn’t rule out, that in a few years time, the route is run by a battery hybrid train, like the Class 350 Battery/FLEX.

The secondary route between Leeds and Lancashire is the Calder Valley Line via Hebden Bridge, which is not electrified between Preston and Bradford, which is a distance of fifty-three miles.

Electrification of this route and especially between Burnley and Bradford would be extremely challenging due to mthe numerous bridges and the terrain, with the added complication of the Grade II Listed Hebden Bridge station.

It would be pushing it, but I believe the Class 350 Battery/Flex train could handle it.

There is a plan to reconnect Skipton in Yorkshire to Colne in Lancashire to create another route across the Pennines.

The trains would need to travel the forty-two miles between Preston and Skipton using battery power, but it would create a valuable route at an affordable cost, if no electrification was used.

What would improve the running of the routes via Hebden Bridge and Colne, would be to electrify the route between Preston and Blackburn, which would reduce the distance to be run on battery power by twelve miles.

The Hope Valley Line runs between Sheffield and Manchester Piccadilly and is forty-two miles long without electrification.

This route certainly needs a modern four-car train and I believe that the Class 350 Battery/FLEX train could handle it.

But it would need a charging station at Sheffield.

On this rough and ready analysis, it looks like the three Southern routes and a new one via Colne could be handled successfully by a Class 350 Battery/FLEX.

Summing up the gaps West of Leeds we get.

  • Bradford and Manchester Victoria via Hebden Bridge – 40 miles
  • Sheffield and Manchester Piccadilly via Hope Valley Line – 42 miles
  • Stalybridge and Leeds via Hudderfield – 35 miles
  • Preston and Skipton via Colne – 42 miles

If the Class 350 Battery/FLEX train can do around fifty miles on battery power, which I suspect is a feasible distance, then these trains could give Northern an electric stopping service on all their routes across the Pennines.

In my view the system could be improved by the following projects.

  • Electrify between Preston and Blackburn and possibly Burnley Manchester Road.
  • Electrify between Manchester Victoria and Todmorden.
  • Renew the crap electrification between Manchester Piccadilly and Glossop, with an extension for a few miles along the Hope Valley Line to perhaps New Mills Central and Rose Hill Marple.
  • Tidy up the electrification between Leeds and Bradford and extend it to the Northbound East Coast Main Line.

But the most important thing to do, is to increase the line speed on the routes across the Pennines.

Greater Anglia and Network Rail are talking about ninety minutes for the 114 miles between London and Norwich, which is an average speed of 76 mph.

Liverpool Lime Street to York is about the same distance and TransPennine take around 110 minutes for the journey, which is an average speed of around 60 mph.

  • Both journeys have a few stops.
  • Both routes are or will be run by 100 mph trains.
  • The East Anglian route is electrified, but trans-Pennine is not.

The big difference between the routes, is that large sections of the East Anglian route can be run at 100 mph, whereas much of the Trans-Pennine route is restricted to far lower speeds, by the challenging route

Sort it!

Electric traction will make a difference to the acceleration, but it doesn’t matter if they get their power from overhead wires or batteries!

Putting up overhead wires on the current route will be throwing good money after bad, unless the track is fixed first.

Liverpool Lime Street to York should be ninety minutes in a Class 350 Battery/FLEX.

The Scottish Breakout

Finally, the electrification in the Scottish Central Belt is on track and the Scots are seeing the benefit of modern electric trains.

Trains like the Class 350 Battery/FLEX could be the key to extending Scotland’s growing network of electric trains.

In A Railway That Needs Electric Trains But Doesn’t Need Full Electrification, I described how the 11.5 mile service between Glasgow Central and East Kilbride station could be run by an electric train using batteries, which would be charged using the 25 KVAC overhead wires at the Glasgow end of the route.

If the Class 350 Bettery/FLEX train existed, they could work this route, as soon as drivers and other staff had been trained.

With a forty mile range on batteries, trains could reach from the electric core to many places, like Dumbarton, Perth and possibly Dundee.

It should be noted that Dundee is just under fifty miles from Dunblane, where the current electrification will end, so with a charging station in one of the bay platforms at Dundee, a Class 350 Battery/FLEX should be able to bridge the gap.

They could even probably handle the current Borders Railway, with a charging station at Tweedbank.

Scotland would not need to acquire a fleet of Class 350 Battery/FLEX, as they already have a fleet of Class 380 trains, which I am certain could be re-engineered in the same way to become battery/electric trains.

ScotRail may need a few more electric trains, but they could always keep the Class 365 trains, that have been used as cover for the much-delayed Class 385 trains.

South Western Railway

South Western Railway don’t have any obvious needs for a train like a Class 350 Battery/FLEX train.

But consider.

  • They do have 127 Class 450 trains, which are the third-rail version of the Class 350 train, so could probably be converted into a Class 450 Battery/FLEX.
  • They have ten Class 158 and thirty Class 159 diesel trains, some of which work partially-electrified routes.
  • British Rail-era third-rail systems have their deficiencies in places.
  • There are proposals and some plans to reopen branch lines to the West of Basingstoke and Southampton.
  • The Class 450 trains could be converted to dual-voltage operation, as they have a pantograph well.

So perhaps a few Class 450 Battery/FLEX trains could be a useful possibility.

  • Basingstoke to Salisbury is thirty-six miles and with a charging station at Salisbury, an electric service between Waterloo and Salisbury could be run.
  • Salisbury to Southampton Central is twenty-five miles.
  • Waterloo to Corfe Castle and Swanage, if it was decided to run this Saturday service, more frequently.

I also suspect that a Class 450 Battery/FLEX would give South Western Railway several operational and energy-efficiency advantages, which could lead to financial advantages.

I doubt though that the trains would have the capability to reach Exeter, as that is just too far.

These trains would also be ideal for the for the following services, run by other operators.

  • London Bridge to Uckfield.
  • The Marshlink Line.
  • Reading to Gatwick, where they would replace the proposed Class 769 trains.

Converting these three lines to electric traction, would remove the final diesel passenger services from Kent and Sussex.

Other Routes

Use your imagination!

Conclusion

Porterbrook have just dropped an enormous flower-smelling bomb, into the electrification and train replacement plans of UK railways.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

October 18, 2018 - Posted by | Travel | , , , , ,

8 Comments »

  1. Wow, you certainly like to pack lots of information into your posts. Do you have lists of which trains run on which routes, or does it all come from a large database in your head?!

    I could do with a map showing which lines are currently electrified and which not. I tried to find one a while back but failed. Do you know of one?

    Another point with battery hybrids is that they potentially open up various other routes not used at present. I see 769s very much as a stopgap until battery/H technology is more advanced.

    Comment by Peter Robins | October 21, 2018 | Reply

  2. I have the following sources.

    1. European Railway Atlas by M G Ball, which shows all lines and their electrification.

    2. Wikipedia for each train operating company, trains and routes is fairly correct.

    I very much see the 769s as roue-provers for the Class 350 Battery/FLEX. Lets say a train company feels they have a route for a battery train, they can test it with a 769 hired from someone like DRS.

    In fact, I think DRS will acquire a few 769s, as they fit the companies business model and must be cheaper and more comfortable than a 68 locomotive and some old Mark 2 coaches

    Comment by AnonW | October 21, 2018 | Reply

  3. […] Porterbrook Class 350/2 Battery/FLEX, that I wrote about in Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion. […]

    Pingback by Flirt Akku Battery Multiple-Unit Unveiled « The Anonymous Widower | October 26, 2018 | Reply

  4. “Where Would These Trains Run?”
    One of my suggestions would be the Liverpool – Manchester line via CLC(Warrington) route. Has Electrification at both ends, Liverpool Lime street to Liverpool South Parkway and Trafford Park to Manchester Deansgate/Oxford rd/Piccadilly/Airport/Stockport/Hazel Grove, with about 30 miles not electrified between South Parkway and Trafford Park.
    Plus it the 230 002can be fitted with 4 106kWh ina two car train, I don’t see why this could not be done for the 4 car 350/2’s which would ram up to a capacity of 848kWh.
    This would also up the distance the could travel:
    5 kWh per vehicle mile – 40 miles
    4 kWh per vehicle mile – 50 miles
    3 kWh per vehicle mile – 66.6 miles
    2 kWh per vehicle mile – 100 miles

    Comment by Daniel Altmann | October 26, 2018 | Reply

  5. You certainly get the idea.

    Remember too, that battery energy density will get higher in the next five years or so.

    There are also a lot of these Desiro City trains that can be converted and they can run on third-rail too!

    I look forward to the day, when South Western Railway introduce a 100 mph battery-electric service between Waterloo and Exeter!

    Comment by AnonW | October 26, 2018 | Reply

  6. […] I wrote Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, Issue 864 of Rail Magazine hadn’t been published. The magazine contained details of […]

    Pingback by Could A Class 450 Battery/FLEX Train Be Used Between Waterloo And Exeter? « The Anonymous Widower | November 1, 2018 | Reply

  7. […] In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of a four-car Class 350 train, with a full load of passengers, travelling at ninety mph, as 47.1 kWh. […]

    Pingback by Could Electric Trains Run On Long Scenic And Rural Routes? « The Anonymous Widower | November 2, 2018 | Reply

  8. […] In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of one of these trains at various speeds. […]

    Pingback by Thoughts On A Battery/Electric Train With Batteries And Capacitors « The Anonymous Widower | November 11, 2018 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.