The Anonymous Widower

Battery Electrostars And The Uckfield Branch

In Rounding Up The Class 170 Trains, I said this, which is based on a quote from an article in the October 2019 Edition of Modern Railways.

Are Battery Electrostars On The Way?

The article finishes with this paragraph about the Class 171 trains, that will come from Govia Thameslink Railway (GTR) and be converted back to Class 170 trains.

GTR currently uses the ‘171s’ on the non-electrified Marshlink and Uckfield lines, and the release of these sets to EMR is contingent on their replacement with converted Electrostar EMUs with bi-mode battery capability, removing these diesel islands of operation from the otherwise all-electric GTR fleet.

So are these battery Electrostars finally on their way?

The article got several comments, which said that some five-car Electrostars were to be converted and they would probably be Class 376 trains, that would be used.

The comments also said that Network Rail were working on using short lengths of third-rail to charge the train batteries.

That sounds like Vivarail’s system to me, that I wrote about in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Southern’s Current Diesel Fleet

I will start by looking at Southern’s current diesel fleet that works London Bridge and Uckfield stations and the Marshlink Line.

Currently, Southern has a diesel fleet of Class 171 trains.

  • 12 x two-car trains
  • 8 x four-car trains.

According to Modern Railways, the following trains will transfer to EMR Regional in September 2021.

  • 10 x two car
  • 6 x three-car, which will be created by moving a few cars in the four-car trains.

It looks as if after the transfer Southern will be left with eight driver-cars and ten intermediate cars.

This would give them four four-car trains and two spare intermediate cars. I’m sure that someone will have a need for the intermediate cars to lengthen a two-car Class 170 train because of capacity issues.

The Marshlink Line Service

The service on the Marshlink Line is an hourly service between Ashford International and Eastbourne stations.

  • It is run by Class 171 diesel trains.
  • Trains were four-cars most times I’ve used it.
  • Journey times are around one hour and twenty-minutes.
  • A round trip takes three hours.
  • It would appear that three four-car trains are needed to run the service.

So if there is a spare train, four trains would be ideal, After all the transfers, this is the remaining number of Class 171 trains, that would be left with Southern.

If they wanyted to get rid of the diesel trains, then they could replace the trains on the Marshlink Line with four four-car battery bi-mode Electrostars!

Network Rail’s Plan For The Uckfield Branch

This document on the Network Rail web site from 2016, is entitled Delivering A Better Railway
For A Better Britain – Route Specifications 2016 – South East.

In the document, this is said about the the route between Hurst Green and Uckfield.

The key issue presently is overcrowding on the shorter length services that operate on the route during and close to the peak hours. As the route is operated by Class 171 diesel units, there is only a small fleet available to the TOC to deploy on the route. As a result some peak and shoulder peak services are not able to operate at the maximum length the route is capable of (8-car).

Electrification schemes in the North West will displace rolling stock to strengthen existing peak services to 8-car and eventually of 10-car operation during CP5, so associated platform lengthening is currently being developed, this will also be compatible with 12-car 20m vehicle trains.

Electrification is still an aspiration for this route or use of battery-powered trains (currently under development) if they are deemed successful.

Signalling is controlled by Oxted Signal Box but during CP5 this will be transferred to Three Bridges ROC.

The key point is that the platforms have been lengthened for 240-metre long trains, which will also allow ten-car Class 171 trains, which have 23 metre vehicles.

The Uckfield Branch Service

The service on the Uckfield Branch is an hourly service between London Bridge and Uckfield stations.

  • It is currently run by Class 171 diesel trains.
  • The platforms on the route can accept ten-car trains with 23 m vehicles or twelve-car trains with 20 metre vehicles.
  • A round trip takes three hours.
  • It would appear that three ten- or twelve-car trains are needed to run the service.

So if we add in a spare and perhaps an extra train for the rush hour, it would appear that around half-a-dozen ten- or twelve-car battery bi-mode trains will be needed for the service.

  • As a ten-car train would be two five-car trains, twelve five-car trains would be needed.
  • As a twelve-car train would be three four-car trains, eighteen four-car trains would be needed.

Interestingly, Southern have three trains that could be candidates for conversion to battery bi-modes in their fleet.

  • One hundred and fifty-two four-car Class 377 trains.
  • Thirty-four five car Class 377 trains.
  • Twenty-nine four-car Class 387 trains.

All trains were built for longer commuter journeys,

Which Electrostars Will Be Converted To Battery Operation For The Uckfield Service?

Obviously, the trains must be four- or five-cars and suitable for conversion to battery bi-mode trains, but I feel they must have other features.

  • Toilets
  • First Class seats.
  • Plenty of tables.
  • Wi-fi and plug sockets.
  • Comfortable interiors.
  • End gangways, to ensure staff and passengers can move around the train if required.

I’ll now look at the various fleets of Electrostars.

Class 357 Trains

The Class 357 trains can probably be discounted, as I suspect c2c need them and they are not third rail.

Class 375 Trains

The Class 375 trains can probably be discounted, as I suspect Southeastern need them.

But if the new Southeastern franchise should decide on a complete fleet replacement, as the trains are dual-voltage, they might be very useful if fitted with a battery capability.

Class 376 Trains

The Class 376 trains can probably be discounted, as I suspect Southeastern need them.

The trains are also third-rail only and lack toilets, so would probably need a rebuilt interior.

Class 377 Trains

The Class 377 trains are a possibility as Soiuthern has a large fleet of both four- and five-car trains.

But they would be losing the Class 171 trains, so would probably need to bring in some new trains to have a large enough fleet.

Class 378 Trains

The Class 378 trains can probably be discounted, as London Overground need them.

Class 379 Trains

The Class 379 trains are surely a possibility, as Greater Anglia will be releasing them before the end of 2020.

Consider.

  • There have no new home to go to.
  • I am suspicious that that NXEA overpaid for these trains and Macquarie are sitting on a very good deal, that will cost Grester Anglia a lot to cancel!
  • They appeared to me to be a shoe-in for Corby services, so perhaps they lost out to the Class 360 trains on cost.
  • They are only 100 mph trains, whereas others are 110 mph trains.
  • They would need to be fitted with third-rail shoes.
  • The trains are coming up to nine years old and probably need a refresh.
  • They have an interior aimed at airport passengers.

If I was Macquarie, I’d convert these into go-anywhere battery bi-modes for use in small fleets by operators.

But, Porterbrook’s battery-bi-mode conversion of a Class 350 train may be available at a lower price.

Class 387 Trains

The Class 387 trains are surely a serious possibility, for the following reasons.

  • Govia already has fifty-six of these trains on lease and in service.
  • c2c has six trains, that could come off lease in 2021.
  • The trains are dual voltage
  • The trains are 110 mph trains.
  • They can run as twelve-car walk-through trains.
  • Many of the trains are leased from Porterbrook.

I’ve felt for some time, that these trains would make excellent battery bi-modes.

But they are a good fit for Southern, as surely one could be scrounged from their Great Northern fleet to create a prototype for test.

I would feel that having the required number of trains for the Uckfield Branch can be achieved by September 2021, when the Class 171 trains will be sent to the Midlands.

There is also a backstop, in that there are nineteen Class 365 trains in store, which were replaced by Class 387 trains on Great Northern services. If there is a shortage of Class 387 trains during the conversion, surely some of these Class 365 trains could stand in, just as they did successfully in Scotland recently.

My Choice

I would convert Class 387 trains.

  • There are quite a few Class 387 trains, that could be converted.
  • Southern already have fifty-six Class 387 trains.
  • There are enough to convert eighteen for Uckfield and four for the Marshlink
  • It could be possible to deliver the full fleet before the Class 171 trains leave.
  • If during conversion of the trains, they are short of stock, Southern can hire in some Class 365 trains.

It looks to be a low-risk project.

It will also have collateral benefits.

  • The hourly London Bridge and Uckfield service will be raised to maximum capacity without any new infrastructure, except the trains and a number of battery chargers.
  • Diesel will be eliminated in London Bridge station making the station electric trains only.
  • Diesel will be eliminated between London Bridge and Uckfield stations.
  • Efficient regenerative braking to battery would be available on the complete route.
  • A ten-car diesel service between East Croydon and London Bridge will be replaced by a twelve-car electric service. stations.

In addition, if the diesel trains on the Marshlink Line were to be replaced by battery bi-modes, Southern would be a diesel-free franchise.

What About New Trains?

It’s all about the money and whether the new trains could be delivered in time.

I would suspect that Bombardier, CAF, Stadler and others are making competitive proposals to Southern, but would they be more affordable and timely, than a conversion of Class 387 trains?

But could they be as competitive if Bombadier and Porterbrook co-operated to convert some of Porterbrook’s Class 387 trains, that are already leased to Great Northern?

You don’t usually move house if you need a new boiler, you replace the boiler!

What About Hydrogen Trains?

The Alstom Breeze based on a Class 321 train is scheduled to first come into service in 2022. This is too late, as the Class 171 trains are scheduled to leave in September 2021.

Hydrogen trains would need a hydrogen filling station.

Kinetic Energy Of Class 387 Trains

I will calculate the kinetic energy of a four-car Class 387 train.

I will assume the following.

  • Empty train weight – 174.81 tonnes – Read from the side of the train.
  • Seats – 223
  • Standees – 60 – Estimated from the seats/standing ratio of a Class 720 train.
  • Total passengers – 283
  • Each passenger weighs 90 Kg, with baggage, bikes and buggies.
  • This gives a passenger weight of 25.47 tonnes and a train weight of 200.28 tonnes

Using Omni’s Kinetic Energy calculator, gives the following kinetic energies.

  • 40 mph – 8.89 kWh
  • 50 mph – 13.9 kWh
  • 60 mph – 20.0 kWh
  • 70 mph – 27.2 kWh
  • 80 mph – 35.6 kWh
  • 90 mph – 45.0 kWh
  • 100 mph – 55.6 kWh
  • 110 mph – 67.3 kWh

These figures are for a full train, but even so many will think they are low, when you think that 60 kWh batteries are used in hybrid buses.

A Trip To Uckfield

I took a trip to Uckfield today and these are my observations.

  • The maximum operating speed of the train was no more than 70 mph.
  • For much of the journey the train trundled along at around 40-50 mph.
  • The route is reasonably flat with only gentle gradients.
  • I hardly noticed the diesel engine under the floor of my car.
  • Obviously in the Peak, the engines will have to work harder.

It was a very good demonstration of five Turbostars working in unison.

I can understand why East Midlands Railway are using Class 170 trains, as their standard train for EMR Regional.

Modelling the Route

I have built a mathematical model of the route between Hurst Green and Uckfield using Excel.

Input parameters are.

  • Cruise Energy Consumption in kWh per vehicle mile. I assumed 3 kWh per vehicle mile
  • Cruise Kinetic Energy in kWh. I assumed a 70 mph cruise and used 20 kWh
  • Regeneration Energy Loss as a ratio. I assumed 0.15.

These parameters showed that a battery of between 290 kWh and 350 kWh would be needed, that was full at Hurst Green and was recharged at Uckfield.

Note that Vivarail are talking about putting 424 kWh under a three-car Class 230 train.

This page on the Vivarail web site is entitled Battery Train Update.

This is a paragraph.

Battery trains are not new but battery technology is – and Vivarail is leading the way in new and innovative ways to bring them into service. 230002 has a total of 4 battery rafts each with a capacity of 106 kWh and requires an 8 minute charge at each end of the journey. With a 10 minute charge this range is extended to 50 miles and battery technology is developing all the time so these distances will increase.

So it looks like Vivarail manage to put 212 kWh under each car of their two-car train.

I don’t think putting 350 kWh of batteries under a four-car Class 387 train would be impossible.

I have also created an Excel model for the second route between Ashford and Ore stations.

This shows that a battery of about 300 kWh on the train should cover the route.

It might appear strange that the longer Marshlink route needs a smaller battery, but this is because it leaves both ends of the route with a full battery.

These two links give access to the two Excel models that I have used. Feel free to  access and criticise them.

AshfordOre

HurstGreenUckfield

It does appear, that on both these routes, if a train starts with full batteries, the energy in the battery is reduced in these ways as it travels along the route.

  • There is an energy use to power the train along the line which is proportional to the vehicle-miles.
  • Energy is needed to accelerate the train to line speed after each stop.
  • Energy is needed to operate stop-related functions like opening and closing the doors.

But there will also be energy recovered from regenerative braking from line speed, although this won’t cover the subsequent acceleration.

I suspect with better understanding and better data, Bombardier can create a simple formula for battery size needed based on the following.

  • The length of the route.
  • The number of stations.
  • The line speed
  • The gradient and speed profile of the route
  • The kinetic energy of the train at various loadings and speeds
  • The amount of energy needed for each vehicle mile
  • The efficiency of the regenerative braking

It is not the most difficult of calculations and I was doing lots of them in the 1960s and early 1970s.

Charging The Train At Uckfield

This picture shows the long platform at Uckfield station.

The platform has been built to accept a twelve-car electric train and if traditional third rail electrification were to be installed, this could be used to charge the batteries.

I would use a Vivarail-style system, which I described fully in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

As trains take a few minutes at Uckfield to turnback, I’m sure enough time can be arranged in the timetable to charge the batteries with enough power to get back to the electrification at Hurst Green.

The train would switch the charging system on and off by automatically connecting and disconnecting.

 

 

 

September 30, 2019 Posted by | Transport | , , , , , , , , , | 15 Comments

West Ealing Station – 2nd September 2019

These pictures show West Ealing station.

Some observations.

The Big Hole

A big hole is being dug on the North side of the station.

  • This is the side where the entrance will be giving access from the road at the side of the station.
  • There are no stairs or lift tower on this side.
  • There looks to be foundations in the hole!

Could these support the stairs and lift and the entrance on this side of the station? I suspect the answer is an affirmative!

Bay Platform 5 Electrification

Platform 5 is not electrified, but two gantries are at the Western end of the platform and these could easily be fitted with wires.

Perhaps at the Eastern end, the wires will be fixed to the station building, as they have been at Abbey Wood station.

An electrified bay platform would be ideal for charging a battery-electric train, that was working the Greenford Branch.

  • In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that to overcome air resistance and keep a high speed train at 125 mph needs around three k|Wh per vehicle mile.
  • I know that, trains on the Greenford Branch will be going a lot slower than 125 mph, so I will treat the three kWh figure as a maximum value.
  • The maximum size of train will be two cars.
  • The Greenford Branch is two-and-a-half miles long, so a round trip is five miles.

\Multiplying all the numbers together gives a maximum energy requirement for the cruise of thirty kWh.

I think that it should be possible to design a two-car battery-electric train with sufficient range to handle the Greenford Branch.

In Will The Class 230 Trains Be Coming Home?, I speculated that the Greenford Branch could be run by a small fleet of Class 230 trains.

Could this be right? Probably not!

But!

  • The diesel version is already in service at Bedford.
  • They are the right loading gauge and weight.
  • Two cars would be an ideal length.
  • They could have upwards of two hundred kWh of energy storage.
  • They can be fitted with a pantograph for charging or a Vivarail fast charger could be used.in one or both stations.

If the battery version were to be thought too risky, the diesel version, as at Bedford could be used.

Judging by their performance at Bedford, they would probably do a quality job.

 

September 2, 2019 Posted by | Transport | , , , | Leave a comment

Vivarail Wins Environment Award For Class 230 Train

The title of this post, is the same as that of this article on Rail Advent.

This is the first two paragraphs.

Vivarail has announced that they have won the Environment award for their Class 230 battery train and fast charge system.

The awards are one of the industry’s top events.

The article also says this about the Class 230 trains.

  • 60 miles range between charges
  • 10 minute recharge time
  • And can be fitted with range extenders (such as pantograph, genset or fuel cells)

Trains are getting more like houses.

After one useful life, someone comes along and gives them trains a makeover and they have a second useful life.

July 4, 2019 Posted by | Transport | , , , | Leave a comment

Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires

The title of this post is the same as that of this article on Rail Engineer.

This is the first paragraph.

Hitachi are in discussions with the Scottish Government to run a Class 385 variant with underfloor batteries that could either be charged whilst under the wires or whilst stationary at the end of the route.

The article makes these points, about adding batteries to Class 385 trains.

  • It would be straightforward to add batteries to give a range of twenty miles on batteries.
  • Sixty miles would be possible but more difficult.
  • Experience gained with the DENCHA trains in Japan would be used.

The article concludes with this paragraph.

Hitachi’s proposal to operate battery trains in Scotland is at an early stage. However, with their use being recommended by the rail decarbonisation task force and the Scottish Government about to pass new climate change legislation, it may not be long before battery trains are operating in Scotland.

I think it should be noted that Hitachi’s order book is rather thin these days and it appears that innovative technology will sell new trains.

Alstom, Bombardier, CAF, Siemens, Stadler and Vivarail have all designed, demonstrated or sold trains, where batteries are used improve efficiency or extend range.

As Scotland has several routes, where battery trains could provide a service, perhaps Hitachi thought it was time to do some marketing, to make sure that they got any orders for battery trains.

Scotrail would probably prefer to have a battery train similar to their largest fleet of electric trains.

Electric Trains On The West Highland Line Between Glasgow And Mallaig/Oban

This might be considered as difficult as putting a London bus on the Moon.

But consider.

  • The West Highland Line is electrified as far as Helenburgh Central station.
  • Electrification to Helensburgh Upper station would probably not be a difficult project for Network Rail in Scotland.
  • Heleburgh Upper to Mallaig is just under 140 miles.
  • Hellensuburgh Upper to Oban is around 80 miles.
  • Crianlarich station, where the two routes divide is forty miles from Helesburgh Upper.
  • Fort William station is around halfway between Mallaig and Crianlarich.
  • Trains take several minutes to reverse at Fort William.

Vivarail have developed fast charging for battery trains, that I wrote about in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

If Hitachi can develop a Class 385 train with batteries, that has a range of perhaps sixty miles on a full battery, then I believe it would be possible to run an electric train service between Glasgow and Oban and Mallaig.

  • Charging stations would need to be able to fully charge the batteries in perhaps six minutes.
  • Trains would leave Hellensburgh Upper with a full battery and charging stations at Crianlarich and Fort William would top up the batteries.
  • The longest stretch is between Crianlarich and Fort William and it would probably need an additional charging station at perhaps Tulluch.

What would battery-electric trains to Oban and Mallaig do for tourism in the area?

Hitachi would have one of the most scenic and iconic test tracks in the world!

 

 

April 2, 2019 Posted by | Transport | , , , , , | 9 Comments

Vivarail Unveils Fast Charging System For Class 230 Battery Trains

The title of this post is the same as that of this article on Railway Technology.

A few points from the article.

  • Class 230 trains running on battery power have a range of sixty miles.
  • Fully charging the train takes seven minutes.
  • Short lengths of third and fourth-rail are used.
  • Power is provided from a battery bank, which is trickle charged.

I feel this paragraph describes the key feature.

The automatic technique utilises a carbon ceramic shoe, which is capable of withstanding the significant amount of heat generated during the process.

The article finishes with a quote from Vivarail CEO Adrian Shooter.

I know how important it is to the public and the industry as a whole to phase out diesel units and our battery train is paving the way for that to take place today not tomorrow.

Consider.

  • Alstom, Bombardier, Siemens and Stadler have built or are building third-rail powered trains for the UK.
  • Bombardier, Porterbrook and Stadler are developing battery-powered trains for the UK.
  • Trickle-charging of the secondary batteries could be performed by mains power or a local renewable source like wind or solar.
  • Control electronics can make this a very safe system, with low risk of anybody being hurt from the electrical systems.

I’ve said it before, but I think that Vivarail may have some very important technology here.

If I have a worry, it is that unscrupulous companies and countries will probably find a way round any patent.

 

March 20, 2019 Posted by | Transport | , , , | 6 Comments

How Do Porterbrook’s Battery/FLEX Trains Compare With Eversholt’s Hydrogen-Powered Trains?

In the two green corners of this ultra-heavyweight fight to provide electric trains for rail routes without electrification, there are two ROSCOs or rolling stock operating companies.

Eversholt Rail Group

Eversholt Rail Group‘s product is the Class 321 Hydrogen, which is an upgrade of a Class 321 train with batteries and hydrogen-power.

Porterbrook

Porterbrook‘s product is the Class 350 Battery/FLEX, which is an upgrade of a Class 350 train with batteries.

How Do The Two Trains Compare?

I will list various areas and features in alphabetical order.

Age

The Class 350 trains date from 2008-2009 and others were introduced to the UK rail network as early as 2004.

The Class 321 trains date from the 1990s, but that shouldn’t be too  much of a problem as they are based on the legendary Mark 3 Coach.

Scores: Porterbrook 4 – Eversholt 3

Batteries And Supercapacitors

This is an area, where the flow of development and innovation is very much in favour of both trains.

Currently, a 1000 kWh battery would weigh about a tonne. Expect the weight and volume to decrease substantially.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Electrification

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Rapid Charging System

I believe that a third-rail based rapid charging system can be developed for battery/electric trains and I wrote about this in Charging Battery/Electric Trains En-Route.

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Development And Engineering

Fitting batteries to rolling stock has now been done successfully several times and products are now appearing with 400 kWh and more energy storage either under the floor or on the roof of three and four-car electrical multiple units.

I feel that adding batteries, supercapacitors or a mixture of both to typical UK electric multiple units is now a well-defined process of engineering design and is likely to be achieved without too much heartache.

It should be noted, that the public test of the Class 379 BEMU train, was a rare rail project, where the serious issues found wouldn’t even fill a a thimble.

So I have no doubt that both trains will get their batteries sorted without too much trouble.

I do feel though, that adding hydrogen power to an existing UK train will be more difficult. It’s probably more a matter of space in the restricted UK loading gauge.

Scores: Porterbrook 5 – Eversholt 3

Electrification

Both types of train currently work on lines equipped with 25 KVAC overhead electrification, although other closely-related trains have the ability to work on 750 VDC third-rail electrification.

Both trains could be converted to work on both systems.

Scores: Porterbrook 5 – Eversholt 5

Interiors

The interior of both trains will need updating, as the interiors reflect the period, when the trains were designed and built.

Eversholt have already shown their hand with the Class 321 Renatus.

The interiors is a design and refurbishment issue, where train operating companies will order the trains and a complimentary interior they need, for the routes, where they intend to run the trains.

Scores: Porterbrook 5 – Eversholt 5

Operating Speed

Both trains in their current forms are 100 mph trains.

However some versions of the Class 350 trains have been upgraded to 110 mph, which allows them to work faster on busy main lines and not annoy 125 mph expresses.

I am pretty sure that all Class 350 trains can be 110 mph trains.

Scores: Porterbrook 5 – Eversholt 4

Public Perception

The public judge their trains mainly on the interiors and whether they are reliable and arrive on time.

I’ve talked to various people, who’ve used the two scheduled battery/electric services, that have run in the UK.

All reports were favourable and I heard no tales of difficulties.

In my two trips to Hamburg, I didn’t get a ride on the Coradia iLint hydrogen-powered train, but I did talk to passengers who had and their reactions were similar to those who travelled to and from Harwich in the UK.

I rode on the Harwich train myself and just like Vivarail’s Class 230 train, which I rode in Scotland, it was impressive.

I think we can say, that the concept and execution of battery/electric or hydrogen-powered trains in the UK, will be given a fair hearing by the general public.

Scores: Porterbrook 5 – Eversholt 5

Range Without Electrification

Alstom talk of ranges of hundreds of miles for hydrogen trains.and there is no reason to believe that the Class 321 Hydrogen trains will not be capable of this order of distance before refuelling.

Bombardier, Vivarail and others talk of battery ranges in the tens of miles before a recharge is needed.

The game-changer could be something like the technique for charging electric trains, I outlined in Charging Battery/Electric Trains En-Route.

This method could give battery trains a way of topping up the batteries at station stops.

Scores: Porterbrook 3 – Eversholt 5

Conclusion

The total scores are level at forty-seven.

All those, who say that I fiddled it, not to annoy anybody are wrong.

The level result surprised me!

I feel that it is going to be an interesting engineering, technical and commercial battle between the two ROSCOs, where the biggest winners could be the train operating companies and the general public.

I wouldn’t be surprised to see two fleets of superb trains.

 

November 4, 2018 Posted by | Transport | , , , , , , , , | 2 Comments

Could Electric Trains Run On Long Scenic And Rural Routes?

In the UK we have some spectacular scenic rail routes and several long rural lines.

Basingstoke And Exeter

The West of England Main Line is an important rail route.

The section without electrification between Basingstoke and Exeter St. Davids stations has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirteen intermediate stations, where the expresses call.
  • The average distance between stations is around nine miles.
  • The longest stretch between stations is the sixteen miles between Basingstoke and Andover stations.
  • The average speed of trains on the line is around forty-four mph.

There is high quality 750 VDC third-rail electrification at the London end of the route.

Cumbrian Coast Line

The Cumbrian Coast Line  encircles the Lake District on the West.

The section without electrification between Carnforth and Carlisle stations has the following characteristics.

  • It is around a hundred and fourteen miles long.
  • There are twenty-nine intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Millom and Silecroft stations.
  • The average speed of trains on the line is around thirty-five mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Far North Line

The Far North Line is one of the most iconic rail routes in the UK.

The line has the following characteristics.

  • It is one-hundred-and-seventy-four miles long.
  • There are twenty-three intermediate stations.
  • The average distance between stations is around seven miles.
  • The longest stretch between stations is the thirteen miles between Georgemas Junction and Wick stations.
  • The average speed of trains on the line is around forty mph.

The line is without electrification and there is none nearby.

Glasgow To Oban

The West Highland Line is one of the most iconic rail routes in the UK.

The line is without electrification from Craigendoran Junction, which is two miles South of Helensburgh Upper station  and the section to the North of the junction, has the following characteristics.

  • It is seventy-eight miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around eight miles.
  • The longest stretch between stations is the twelve miles between Tyndrum Lower and Dalmally stations.
  • The average speed of trains on the line is around thirty-three mph.

From Glasgow Queen Street to Craigendoran Junction is electrified with 25 KVAC overhead wires.

Glasgow To Mallaig

This is a second branch of the West Highland Line, which runs between Crianlarich and Mallaig stations.

  • It is one hundred and five miles long.
  • There are eighteen intermediate stations.
  • The average distance between stations is around five miles.
  • The longest stretch between stations is the twelve miles between Bridge Of Orchy and Rannoch stations.
  • The average speed of trains on the line is around twenty-five mph.

Heart Of Wales Line

The Heart of Wales Line is one of the most iconic rail routes in the UK.

The line is without electrification and the section between Swansea and Shrewsbury stations, has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirty-one intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Shrewsbury and Church Stretton stations.
  • The average speed of trains on the line is just under forty mph.

There is also no electrification at either end of the line.

Settle And Carlisle

The Settle and Carlisle Line is one of the most iconic rail routes in the UK.

The section without electrification between Skipton and Carlisle stations has the following characteristics.

  • It is just over eighty miles long.
  • There are thirteen intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Gargrave and Hellifield stations.
  • The average speed of trains on the line is around forty mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Tyne Valley Line

The Tyne Valley Line is an important route between Carlisle and Newcastle stations.

The line is without electrification has the following characteristics.

  • It is just over sixty miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Carlisle and Haltwhistle stations.
  • The average speed of trains on the line is around mph.

There is also high standard 25 KVAC electrification at both ends of the line.

A Pattern Emerges

The routes seem to fit a pattern, with very similar characteristics.

Important Local Transport Links

All of these routes are probably important local transport links, that get children to school, many people to large towns for shopping and entertainment and passengers of all ages to see their friends and relatives.

Many would have been closed but for strong local opposition several decades ago.

Because of the overall rise in passengers in recent years, they are now relatively safe for a couple of decades.

Iconic Routes And Tourist Attractions

Several of these routes are some of the most iconic rail routes in the UK, Europe or even the world and are tourist attractions in their own right.

Some of these routes are also, very important in getting tourists to out-of-the-way-places.

Lots Of Stations Every Few Miles

The average distance between stations on all lines seems to be under ten miles in all cases.

This surprised me, but then all these lines were probably built over a hundred years ago to connect people to the expanding railway network.

The longest stretch between two stations appears to be sixteen miles.

Diesel Hauled

All trains seem to be powered by diesel.

This is surely very inappropriate considering that some of the routes go through some of our most peaceful and unspoilt countryside.

Inadequate Trains

Most services are run by trains, that are just too small.

I know to put a four-car train on, probably doubles the cost, but regularly as I explore these lines, I find that these two-car trains are crammed-full.

I once inadvertently took a two-car Class 150 train, that was on its way to Glastonbury for the Festival. There was no space for anything else and as I didn’t want to wait an hour for the next train, I just about got on.

Passengers need to be encouraged to take trains to rural events, rather than discouraged.

An Electric Train Service For Scenic And Rural Routes

What would be the characteristics of the ideal train for these routes?

A Four-Car Electric Train

Without doubt, the trains need to be four-car electric trains with the British Rail standard length of around eighty metres.

Dual Voltage

To broaden the applications, the trains should obviously be capable of running on both 25 KVAC overhead and 750 VDC third-rail electrification.

100 mph Capability

The trains should have at least a 100 mph capability, so they can run on main lines and not hold up other traffic.

No Large Scale Electrification

Unless there is another reason, like a freight terminal, quarry, mine or port, that needs the electrification, using these trains must be possible without any large scale electrification.

Battery, Diesel Or Hydrogen Power

Obviously, some form of power will be needed to power the trains.

Diesel is an obvious no-no but possibly could only be used in a small way as emergency power to get the trains to the next station, if the main power source failed.

I have not seen any calculations about the weight, size and power of hydrogen powered trains, although there have been some professional videos.

But what worries me about a hydrogen-powered train is that it still needs some sizeable batteries.

So do calculations indicate that a hydrogen-powered train is both a realisable train and that it can be produced at an acceptable cost?

Who knows? Until, I see the maths published in a respected publication, I will reserve my judgement.

Do Bombardier know anything?

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial Director and Global Head of Regional and Intercity.

This is a paragraph.

However, Mr McKeon said his view was that diesel engines ‘will be required for many years’ as other power sources do not yet have the required power or efficiency to support inter-city operation at high-speeds.

As Bombardier have recently launched the Talent 3 train with batteries that I wrote about in Bombardier Introduces Talent 3 Battery-Operated Train, I would suspect that if anybody knows the merits of hydrogen and battery power, it is Mr. McKeon.

So it looks like we’re left with battery power.

What could be a problem is that looking at all the example routes is that there is a need to be able to do station-to-station legs upwards of thirteen-sixteen miles.

So I will say that the train must be able to do twenty miles on battery power.

How Much Battery Capacity Should Be Provided On Each Train?

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

As it would be required that the train didn’t regularly run out of electricity, then I wouldn’t be surprised to see upwards of 800 kWh of battery installed in the train.

n an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So if we are aiming for a twenty mile range from a four-car train with an 800 kWh battery, this means that any energy consumption better than 10 kWh will achieve the required range.

Regular Charging At Each Station Stop

In the previous section, I showed that the proposed train with a full battery could handle a twenty mile leg between stations.

But surely, this means that at every stop, the electricity used on the previous leg must be replenished.

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of a four-car Class 350 train, with a full load of passengers, travelling at ninety mph, as 47.1 kWh.

So if the train is travelling at a line speed of ninety mph and it is fitted with regenerative braking with an efficiency of eighty percent, 9.4 kWh of energy will be needed for the train to regain line speed.

There will also be an energy consumption of between 3 kWh and 5 kWh per vehicle per mile.

For the proposed four-car train on a twenty mile trip, this will be between 240 and 400 kWh.

This will mean that between 240 and 400 kWh will need to be transferred to the train during a station stop, which will take one minute at most.

I covered en-route charging fully in Charging Battery/Electric Trains En-Route.

I came to this conclusion.

I believe it is possible to design a charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

This means that a substantial top up can be given to the train’s batteries at stations equipped with a fast charging system.

New Or Refurbished Trains?

New trains designed to meet the specification, could obviously be used.

But there are a several fleets of modern trains, which are due to be replaced. These trains will be looking for new homes and could be updated to the required battery/electric specification.

  • Greater Anglia – 30 x Class 379 trains.
  • Greater Anglia – 26 x Class 360 trains.
  • London North Western Railway – 77 x Class 350 trains.
  • TransPennine Express – 10 x Class 350 trains

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I describe Porterbrook’s plans to convert a number of Class 350 trains to battery/electric trains.

These Class 350 Battery/FLEX trains should meet the specification needed to serve the scenic and rural routes.

Conclusion

I am led to the conclusion, that it will be possible to design a battery/electric train and charging system, that could introduce electric trains to scenic and rural routes all over the UK, with the exception of Northern Ireland.

But even on the island of Ireland, for use both North and South of the border, new trains could be designed and built, that would work on similar principles.

I should also say, that Porterbrook with their Class 350 Battery/FLEX train seem to have specfied a train that is needed. Pair it with the right charging system and there will be few no-go areas in mainland UK.

November 2, 2018 Posted by | Transport | , , , , , , , , , , | 2 Comments

Charging Battery/Electric Trains En-Route

One big need with a battery/electric hybrid train, is the need to charge the batteries quickly at a station stop.

On my last trip to Sheffield, I timed the stops from brakes on to moving again of the Class 222 train.

Times in minutes:seconds were as follows.

  • Leicester 1:30
  • Louthborough 1:15
  • East Midlands Parkway 1:06
  • Long Eaton 1:08
  • Derby 1:22
  • Chesterfield 1:09

So it looks like there is only a minute to charge the batteries on a typical Inter-City service.

Would it be much longer on say a long rural service like Settle and Carlisle or Inverness to Wick?

I don’t think so!

So how could we top up the train in a station stop of less than a minute.

Plug The Train Into a Power Socket

This may work with electric cars, but if you think it would work with trains and charge them in a minute, then think again!

Using A Pantograph

This may seem to be the obvious way, but to raise the pantograph, get a reasonable charge into the train’s batteries and lower it again, is an awful lot of things to cram into a minute.

There’s also many things that can go wrong.

Vivarail’s Solution

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, Vivarail’s solution to charging a battery-powered Class 230 train is disclosed.

A prototype rapid charging facility at its Long Marston base would use short sections of third-rail to quickly recharge a Class 230’s batteries. He said that the third-rail shoegear fitted to the trains in their London Underground service could handle higher currents than simply plugging a cable into the train.

The rapid charging concept consists of a shipping container of batteries that are trickle charged from a mains supply. When a Class 230 sits over the short sections of third-rail, electricity can be quickly transferred to the train’s batteries. When the train is away, the power rails are earthed to ensure they pose no risk The concept provides for charging a Class 230 as it pauses at a terminus before making its return journey.

What surprises me, is the claim, that third-rail is such an effective way of charging the batteries.

But then a Class 92 locomotive has a power of 4,000 kW when running on 750 VDC third rail electrification, so it would appear third-rail systems can handle large amounts of power.

This would be the sequence, as a train performed a station stop.

  1. The driver would stop the train at the defined place in the platform, as thousands of train drivers do all over the world, millions of times every day.
  2. Once stopped, the contact shoes on the train would be in contact with the third rail, as they would be permanently down and ready to accept electricity at all times.
  3. The charging system would detect the stationary train and that the train was connected, and switch on the power supply. to the third-rail.
  4. Electricity would flow from the track to the batteries, just as if the train was on a standard third-rail electrified track.
  5. If the train’s battery should become full, the train’s system could stop the charging.
  6. When passengers had finished leaving and joining the train and it was safe to do so, the driver would start the train and drive it to the next station, after ascertaining, that there was enough power in the batteries.
  7. When the charging system determined that the train was moving or that the contact shoe was no longer connected to the third-rail, it would immediately cut the power to the rail and connect it to earth.

It is a brilliant system; simple, efficient and fail-safe.

  • Regenerative braking will mean that stopping in the station will help to top-up the batteries.
  • The battery on the train is being charged, as long as it is stationary in the station.
  • Delays in the station have no effect on the charging, except to allow it for longer if the battery can accept more charge.
  • The driver concentrates on driving the train and doesn’t have to do anything to start and stop the charging.
  • As there is no cable to disconnect or pantograph to lower, disconnection from the charging system is automatic and absolute, when the train leaves.
  • The charging system never exposes a live rail to passengers and staff.

As a Control and Electrical Engineer, I believe that developments of this system, could be able to put at least 200 kWh into the train’s batteries at each stop.

The system could also be independent of the driver, whose only actions would be to check on safety, that charging was proceeding as it should and that there was sufficient charge in the batteries before continuing.

Connection And Disconnection To The Third-Rail

These pictures taken at Blackfriars station, show how the ends of the third-rail is tapered, so that the shoe on the train connects and disconnects smoothly.

Note.

  1. The tapered ends of both rails on opposite side of the gaps.
  2. For safety, the electrified third-rail is on the other side of the track to the platform.
  3. One picture shows how yellow-painted wood is used for extra safety.

As a train is always on top of the third-rail, when the power to the rail is switched on in Vivarail’s charging system, I think that, the system should be very safe.

Battery-To-Battery Energy Transfer

Vivarail’s genius is to transfer the energy from trackside batteries to the batteries on the train. As batteries have a low impedance, large amounts of electricity can be passed quickly.

Batteries, Supercapacitors Or Both?

I believe that in a few years time for many applications, supercapacitors  will be a viable alternative to batteries.

Energy densities are improving in supercapacitors and they have a similar low impedance, which will enable fast transfer of electricity.

So I wouldn’t be surprised to supercapacitors used on trains or in charging systems.

It may be that a mix of supercapacitors and batteries is the optimal solution.

Installing A Vivarail-Style Charging System

Installation of a Vivarail-style charging system would require.

  • A length of third rail to be installed alongside the track or tracks in the station.
  • The containerised batteries and control system to be installed in a suitable place.
  • Electrical power to be connected to the batteries and control system.
  • Appropriate-cabling between the rail and the container.

The great advantage is that to install a charging system in a station would not require any of the complicated and expensive works, often needed to install 25 KVAC overhead electrification.

Supplying Electricity To A Vivarail-Style Charging System

The Rail Magazine article talks of trickle charging the track-side batteries, using mains electricity, but I suspect some of the most cost-effective systems would use solar, wind or water power, backed up by a mains supply.

In a remote station, installing a Vivarail-style charging system powered by a sustainable power might be an opportunity to install modern low-energy lights and other equipment at the station, powered from the charging system.

A Vivarail-Style Charging System Could Be Built With No Visual Intrusion

Another advantage of using Vivarail-style charging systems, is that there is less visual intrusion than traditional continuous 25 KVAC overhead electrification.

Some visual intrusion would be down to the shipping container used to house the batteries.

But if necessary, the batteries could be housed in a classic Victorian outhouse or a modern sympathetically-designed structure.

Would A Vivarail-Style Charging System Need To Be In A Station?

Many, but not all charging systems would be in stations.

However, there are some very convenient places for charging systems, that may not be in stations.

Trains going to Bedwyn station wait for several minutes  in a turnback siding to the West of the station, before returning to London. The route is not electrified and bi-mode Class 800 trains will be used on the route, because there is about thirteen miles between Bedwyn and Newbury without electrification.

If a Vivarail-style charging system were to be added to the turnback siding battery/electric trains could work the service to London. I’m sure Hitachi know how to convert a version of a Class 80x train to battery/electric operation.

There will be quite a few places, where for operational reasons, a charging system could or should be placed.

Would All Stations On A Route Need To Be fitted With A Vivarail-Style Charging System?

This would depend on the route and the need to run it reliably.

Detailed computer modelling would show, which stations wouldn’t need to be fitted with charging systems!

If a train was a limited-stop service or not required to stop at a particular station because of operational reasons or the timetable, the train would just pass through the station.

As it didn’t stop, it would not have caused the charging system to switch on power to the third-rail.

But if say due to delays caused by an incident meant a train was low on battery power, there is no reason, why the train can’t make a stop at any charging system to top-up the batteries.

Should The Driver Have Any Control?

Consider.

  • It may be extra safety is needed, so the driver could  give a signal to the charging system, that it is safe to start the charging process.
  • Similarly, the driver should be able to pause or stop the process at any time.

But the driver would mainly be monitoring an automatic process.

Would The Charging System Be Linked To The Signalling?

I think this could be likely, as this could add another level of safety.

Conclusion

I believe it is possible to design a safe charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

Surely, this method of electrification could be used to allow electric trains to run through environmentally-sensitive areas and World Heritage sites like Bath, the Lake District and the Forth Bridge,

November 2, 2018 Posted by | Transport | , , , , | 5 Comments

Could A 125 Mph Electric Train With Batteries Handle The Midland Main Line?

In Bombardier’s 125 Mph Electric Train With Batteries, I investigated a pure electric train based on Bombardier’s proposed 125 mph bi-mode Aventra with batteries.

It would have the following characteristics.

  • Electric power on both 25 KVAC overhead and 750 VDC third-rail.
  • Appropriately-sized batteries.
  • 125 mph running, where possible on electrification and/or battery power.
  • Regenerative braking using the batteries.
  • Low energy interiors and systems.

It would be a train with efficiency levels higher than any train seen before.

It would also be zero-carbon at the point of delivery.

An Example 125 mph Train

I will use the same size and specification of train, that I used in Bombardier’s 125 Mph Electric Train With Batteries.

  • The train is five cars, with say four motored cars.
  • The empty train weighs close to 180 tonnes.
  • There are 430 passengers, with an average weight of 90 Kg each, with baggage, bikes and buggies.
  • This gives a total train weight of 218.7 tonnes.
  • The train is travelling at 200 kph or 125 mph.

Travelling at 200 kph, the train has an energy of 94.9 kWh.

I will also assume.

  • The train uses 15 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is eighty percent efficient.

I will now do a few calculations.

Kettering To Leicester

Suppose one of the proposed trains was running between St. Pancras and Leicester.

  • I’m assuming there are no stops.
  • In a year or two, it should be able to run as far as Kettering using the new and improved 25 KVAC overhead electrification.
  • The train would leave the electrification at Kettering with a full charge in the batteries.
  • The train would also pass Kettering as close to the line speed as possible.
  • Hopefully, the twenty-nine miles without electrification between Kettering and Leicester will have been updated to have the highest possible line speed, with many sections capable of supporting 125 mph running.

I can do a rough-and-ready calculation, as to how much energy has been expended between Kettering and Leicester.

  • Twenty-nine miles at 15 kWh per mile is 435 kWh.
  • The train has a kinetic energy of 94.9 kWh at 125 mph and twenty percent will be lost in stopping at Leicester, which is 19 kWh.

This means that a battery of at least 454 kWh will be needed to propel the train to Leicester.

Kettering To Sheffield

If the train went all the way without stopping between Kettering and Sheffield, the energy used would be much higher.

One hundred-and-one miles at 15 kWh is 1515 kWh.

So given that the train will be slowing and accelerating, we’re probably talking of a battery capacity of around 2000 kWh.

In our five-car example train, this is 400 kWh per car.

Kettering To Sheffield With Stops

The previous calculation shows what can be achieved, but we need a practical train service.

When I last went to Sheffield, the train stopped at Leicester, Loughborough, East Midlands Parkway, Long Eaton, Derby and Chesterfield.

I have built an Excel spreadsheet, that models this route and it shows that if the train has a battery capacity of 2,000 kWh, the train will get to Sheffield with 371 kWh left in the battery.

  • Increase the efficiency of the regenerative braking and the energy left is 425 kWh.
  • Reduce the train’s energy consumption to 12 kWh per mile and the energy left is 674 kWh.
  • Do both and the energy left is 728 kWh.

The message is clear; train manufacturers and their suppliers should use all efforts to improve the efficiencies of trains and all of their components.

  • Aerodynamics
  • \Weight savings
  • Bogie dynamics
  • Traction motors
  • Battery capacity and energy density
  • Low energy lighting and air-conditioning

No idea however wacky should be discarded.

Network Rail also has a part to play.

  • The track should have as a high a line speed as is practical.
  • Signalling and timetabling should be designed to minimise interactions with other services.

Adding all these together, I believe that in a few years, we could see a train, that will consume 10 kWh per mile and have a regenerative braking efficiency of ninety-five percent.

If this can be achieved then the train will have 960 kWh in the batteries when it arrives in Sheffield.

Sheffield To Kettering

There is no helpful stretch of electrification at the Sheffield end of the route, so I will assume that there is a method of charging the batteries at Sheffield.

Unsurprisingly, as the train is running the same total distance and making the same number of stops, if the train starts with a full battery at Sheffield, it arrives at Kettering with the same amount of energy in the battery, as on the Northbound-run to Sheffield.

An Interim Conclusion

I am led to the interim conclusion, that given the continued upward curve of technology and engineering, that it will be possible to run 125 mph electric trains with an appropriately-sized battery.

How Much Battery Capacity Can Be Installed In A Train?

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

Consider.

  • Vivarail’s cars are 18.37 metres long.
  • Car length in a typical Aventra, like a Class 720 train, is 24 metres.
  • Aventras have been designed for batteries and supercapacitors, whereas the D78 trains, used as a base for the Class 230 train,were not.
  • Batteries and supercapacitors are getting better all the time.
  • Batteries and supercapacitors can probably be built to fit in unusually-shaped spaces.

I wouldn’t be surprised to see Aventras being able to take double the capacity of a Class 230 train under each car.

I wouldn’t rule out 2,000 kWh energy storage capacity on a five-car train, that was designed for batteries.

The actual size installed would depend on operator, weight, performance and cost.

My Excel spreadsheet shows that for reliable operation between Kettering and Sheffield, a battery of at least 1200 kWh is needed, with a very efficient train.

Charging Trains En-Route

I covered en-route charging fully in Charging Battery/Electric Trains En-Route.

I came to this conclusion.

I believe it is possible to design a charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

This means that a substantial top up can be given to the train’s batteries at stations equipped with a fast charging system.

An Astonishing Set Of Results

I use astonishing lightly, but I am very surprised.

I assumed the following.

  • The train uses 15 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is eighty percent efficient.
  • The train is fitted with 600 kWh of energy storage.
  • At each of the six stations up to 200 kWh of energy can be transferred to the train.

Going North the train arrives in Sheffield with 171 kWh in the energy storage.

Going South the train arrives at Kettering with 61 kWh in the energy storage.

Probably a bit tight for safety, but surprising nevertheless.

I then tried with the following.

  • The train uses 12 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is ninety percent efficient.
  • The train is fitted with 500 kWh of energy storage.
  • At each of the six stations up to 200 kWh of energy can be transferred to the train.

Going North the train arrives in Sheffield with 258 kWh in the energy storage.

Going South the train arrives at Kettering with 114 kWh in the energy storage.

It would appear that increasing the efficiency of the train gives a lot of the improvement.

Finally, I put everything, at what I feel are the most efficient settings.

  • The train uses 10 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is ninety-five percent efficient.
  • The train is fitted with 500 kWh of energy storage.
  • At each of the six stations up to 200 kWh of energy can be transferred to the train.

Going North the train arrives in Sheffield with 325 kWh in the energy storage.

Going South the train arrives at Kettering with 210 kWh in the energy storage.

These sets of figures prove to me, that it is possible to design a 125 mph battery/electric hybrid train and a set of charging stations, that will make St. Pancras to Sheffield by electric train, a viable possibility without any more electrification.

Should The Train Be Fitted With A Means Of Charging The Batteries?

Why not?

Wires do go down and rest assured, a couple of battery/electric hybrids would get stuck!

So a small diesel or hydrogen generator to allow a train to limp a few miles might not be a bad idea.

Electrification Between Sheffield And Clay Cross On The Midland Main Line

In The UK’s New High Speed Line Being Built By Stealth, there is a sub-section with the same title as this sub-section.

This is the first part of that sub-section.

This article on Rail Technology Magazine is entitled Grayling Asks HS2 To Prepare For Electrification Of 25km Midland Main Line Route.

If this electrification happens on the Midland Main Line between Sheffield and Clay Cross, it will be another project in turning the line into a high speed route with a 200 kph operating speed, between London and Sheffield.

Currently, the electrified section of the line South of Bedford is being upgraded and the electrification and quadruple tracks are being extended to Glendon Junction, where the branch to Corby leaves the main line.

The proposed electrification will probably involve the following.

  • Upgrading the line to a higher speed of perhaps 225 kph, with provision to increase the speed of the line further.
  • Rebuilding of Chesterfield station in readiness for High Speed Two.
  • Full electrification between Sheffield and Clay Cross.

Clay Cross is significant, as it is where the Midland Main Line splits into two Southbound routes.

Note.

  1. Some of the tunnel portals in the Derwent Valley are Listed.
  2. Trying to electrify the line through the World Heritage Site will be a legal and engineering nightmare.
  3. Network Rail has spent or is spending £250million on upgrading the Erewash Valley Line.
  4. High Speed Two will reach The East Midlands Hub station in 2032.

When High Speed Two, is extended North from the East Midlands Hub station, it will take a route roughly following the M1. A spur will link High Speed Two to the Erewash Valley line in the Clay Cross area, to enable services to Chesterfield and Sheffield.

But until High Speed Two is built North of the East Midlands Hub station, the Erewash Valley Line looks from my helicopter to be capable of supporting 200 kph services.

If this electrification is performed, it will transform the prospects for battery/electric hybrid trains between London and Sheffield.

  • Trains will have to run fifteen miles less on battery power.
  • Trains will arrive in both St. Pancras and Sheffield with batteries that are at least three-quarters full.
  • Returning the trains will fill them up on the electrification at the end of the line.
  • There will probably not be a need for charging systems at St. Pancras, Chesterfield and Sheffield.

I also think, that as the train could arrive in Sheffield with a full battery, there is the possibility of extending services past Sheffield to Barnsley, Huddersfield and cLeeds, if the operator felt it was a worthwhile service.

Nottingham

Nottingham is just eight miles from East Midlands Parkway station, which is less distance than Derby.

So if the battery/electric hybrid trains can reach Derby from Kettering on Battery power, with some help from charging at Leicester and Loughborough, the trains can reach Nottingham, where charging would be installed.

Conclusion

From my calculations, I’m sure that an efficient battery/electric hybrid train can handle all current services on the Midland Main Line, with third-rail charging at intermediate stations.

I do think though, that if Sheffield to Clay Cross Junction is electrified in preparation for High Speed Two, that it makes the design easier and the economics a lot better.

It would also give Sheffield a genuine sub-two hour service to London, which would only get better.

 

 

November 1, 2018 Posted by | Transport | , , , , , , , , | Leave a comment

Station Dwell Times On The London Overground

This afternoon, I had to go to Walthamstow for lunch, so on the way out, I checked how long it was between brakes on at James Street station and the Class 315 train was moving again.

The dwell time was a very respectable thirty seconds, which is probably more down to the driver and the signalling, than the nearly-forty-year-old train.

Coming back, I took the Gospel Oak to Barking Line to Gospel Oak station..

The driver gave a display of precision driving a Class 172 train, with the intermediate stops, all taking thirty seconds or less.

From Gospel Oak, I switched to the North London Line and took a Class 378 train to Canonbury station, from where I walked home.

The dwell times on this line were more variable, with two times at thirty seconds or less, two at nearly two minutes and the rest in-between.

From these small number of observations, it would appear that the minimum dwell time on the London Overground is thirty seconds.

Various factors will determine the actual dwell time.

  • Trains must not leave early, as passengers don’t like this.
  • Trains must not leave, before the driver has ascertained it is safe to do so.
  • If a train arrives early, then the dwell time might be lengthened, even if the train leaves on time.
  • Large numbers of passengers or a passenger in a wheelchair, who needs a ramp will lengthen the dwell time.

I should say that today, the trains were not full and there were plenty of empty seats.

Conclusions

If trains and drivers can handle thirty second dwell times, then everything else associated with a station stop, must be capable of the same fast response.

This thirty-second dwell time may have repercussions for rapid charging of battery/electric trains, that I wrote about in Charging A Battery-Powered Class 230 Train.

I think there are three options for charging a train at a station stop.

Plug the Train Into A Power Socket

Can you plug you mobile phone into the mains, give it a reasonable charge and then disconnect it and store all leads in thirty seconds?

Use a Pantograph To Connect To 25 KVAC Overhead Electrification

Even if a driver or automation is very fast at raising and lowering the pantograph, I don’t believe that in a total time of thirty seconds, enough electricity can be passed to the train.

This method might work well in longer stop at a terminal station, but it is unlikely, it could be used successfully at an intermediate stop.

Use 750 VDC Third-Rail Electrification

750 VDC third-rail electrification has a very big advantage, in that, trains can connect and disconnect to the electrification automatically, without any driver intervention.

Look at this picture of a train going over a level-crossing.

The ends of the third-rails on either side or the crossing are sloped so that the contact shoes on the train can disconnect and connect smoothly.

As you have to design the system for a possible thirty-second stop and don’t have the time available for the first two options, I am fairly certain, that the only way a worthwhile amount of electricity can be transferred to the train’s battery, is to use some form of system based on tried-and-tested 750 VDC third rail electrification.

There may also be advantages in using a longer length of third-rail, so that the connection time is increased and more than one contact shoe can connect at the same time.

Automation would control the power to the third-rail, so that no live rail is exposed to passengers and staff.

After all a train on top, is a pretty comprehensive safety guard.

 

 

 

.

October 28, 2018 Posted by | Transport | , , , , | 1 Comment