The Anonymous Widower

Vivarail Unveils Fast Charging System For Class 230 Battery Trains

The title of this post is the same as that of this article on Railway Technology.

A few points from the article.

  • Class 230 trains running on battery power have a range of sixty miles.
  • Fully charging the train takes seven minutes.
  • Short lengths of third and fourth-rail are used.
  • Power is provided from a battery bank, which is trickle charged.

I feel this paragraph describes the key feature.

The automatic technique utilises a carbon ceramic shoe, which is capable of withstanding the significant amount of heat generated during the process.

The article finishes with a quote from Vivarail CEO Adrian Shooter.

I know how important it is to the public and the industry as a whole to phase out diesel units and our battery train is paving the way for that to take place today not tomorrow.

Consider.

  • Alstom, Bombardier, Siemens and Stadler have built or are building third-rail powered trains for the UK.
  • Bombardier, Porterbrook and Stadler are developing battery-powered trains for the UK.
  • Trickle-charging of the secondary batteries could be performed by mains power or a local renewable source like wind or solar.
  • Control electronics can make this a very safe system, with low risk of anybody being hurt from the electrical systems.

I’ve said it before, but I think that Vivarail may have some very important technology here.

If I have a worry, it is that unscrupulous companies and countries will probably find a way round any patent.

 

March 20, 2019 Posted by | Transport | , , , | 3 Comments

Could Electric Trains Run On Long Scenic And Rural Routes?

In the UK we have some spectacular scenic rail routes and several long rural lines.

Basingstoke And Exeter

The West of England Main Line is an important rail route.

The section without electrification between Basingstoke and Exeter St. Davids stations has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirteen intermediate stations, where the expresses call.
  • The average distance between stations is around nine miles.
  • The longest stretch between stations is the sixteen miles between Basingstoke and Andover stations.
  • The average speed of trains on the line is around forty-four mph.

There is high quality 750 VDC third-rail electrification at the London end of the route.

Cumbrian Coast Line

The Cumbrian Coast Line  encircles the Lake District on the West.

The section without electrification between Carnforth and Carlisle stations has the following characteristics.

  • It is around a hundred and fourteen miles long.
  • There are twenty-nine intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Millom and Silecroft stations.
  • The average speed of trains on the line is around thirty-five mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Far North Line

The Far North Line is one of the most iconic rail routes in the UK.

The line has the following characteristics.

  • It is one-hundred-and-seventy-four miles long.
  • There are twenty-three intermediate stations.
  • The average distance between stations is around seven miles.
  • The longest stretch between stations is the thirteen miles between Georgemas Junction and Wick stations.
  • The average speed of trains on the line is around forty mph.

The line is without electrification and there is none nearby.

Glasgow To Oban

The West Highland Line is one of the most iconic rail routes in the UK.

The line is without electrification from Craigendoran Junction, which is two miles South of Helensburgh Upper station  and the section to the North of the junction, has the following characteristics.

  • It is seventy-eight miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around eight miles.
  • The longest stretch between stations is the twelve miles between Tyndrum Lower and Dalmally stations.
  • The average speed of trains on the line is around thirty-three mph.

From Glasgow Queen Street to Craigendoran Junction is electrified with 25 KVAC overhead wires.

Glasgow To Mallaig

This is a second branch of the West Highland Line, which runs between Crianlarich and Mallaig stations.

  • It is one hundred and five miles long.
  • There are eighteen intermediate stations.
  • The average distance between stations is around five miles.
  • The longest stretch between stations is the twelve miles between Bridge Of Orchy and Rannoch stations.
  • The average speed of trains on the line is around twenty-five mph.

Heart Of Wales Line

The Heart of Wales Line is one of the most iconic rail routes in the UK.

The line is without electrification and the section between Swansea and Shrewsbury stations, has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirty-one intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Shrewsbury and Church Stretton stations.
  • The average speed of trains on the line is just under forty mph.

There is also no electrification at either end of the line.

Settle And Carlisle

The Settle and Carlisle Line is one of the most iconic rail routes in the UK.

The section without electrification between Skipton and Carlisle stations has the following characteristics.

  • It is just over eighty miles long.
  • There are thirteen intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Gargrave and Hellifield stations.
  • The average speed of trains on the line is around forty mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Tyne Valley Line

The Tyne Valley Line is an important route between Carlisle and Newcastle stations.

The line is without electrification has the following characteristics.

  • It is just over sixty miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Carlisle and Haltwhistle stations.
  • The average speed of trains on the line is around mph.

There is also high standard 25 KVAC electrification at both ends of the line.

A Pattern Emerges

The routes seem to fit a pattern, with very similar characteristics.

Important Local Transport Links

All of these routes are probably important local transport links, that get children to school, many people to large towns for shopping and entertainment and passengers of all ages to see their friends and relatives.

Many would have been closed but for strong local opposition several decades ago.

Because of the overall rise in passengers in recent years, they are now relatively safe for a couple of decades.

Iconic Routes And Tourist Attractions

Several of these routes are some of the most iconic rail routes in the UK, Europe or even the world and are tourist attractions in their own right.

Some of these routes are also, very important in getting tourists to out-of-the-way-places.

Lots Of Stations Every Few Miles

The average distance between stations on all lines seems to be under ten miles in all cases.

This surprised me, but then all these lines were probably built over a hundred years ago to connect people to the expanding railway network.

The longest stretch between two stations appears to be sixteen miles.

Diesel Hauled

All trains seem to be powered by diesel.

This is surely very inappropriate considering that some of the routes go through some of our most peaceful and unspoilt countryside.

Inadequate Trains

Most services are run by trains, that are just too small.

I know to put a four-car train on, probably doubles the cost, but regularly as I explore these lines, I find that these two-car trains are crammed-full.

I once inadvertently took a two-car Class 150 train, that was on its way to Glastonbury for the Festival. There was no space for anything else and as I didn’t want to wait an hour for the next train, I just about got on.

Passengers need to be encouraged to take trains to rural events, rather than discouraged.

An Electric Train Service For Scenic And Rural Routes

What would be the characteristics of the ideal train for these routes?

A Four-Car Electric Train

Without doubt, the trains need to be four-car electric trains with the British Rail standard length of around eighty metres.

Dual Voltage

To broaden the applications, the trains should obviously be capable of running on both 25 KVAC overhead and 750 VDC third-rail electrification.

100 mph Capability

The trains should have at least a 100 mph capability, so they can run on main lines and not hold up other traffic.

No Large Scale Electrification

Unless there is another reason, like a freight terminal, quarry, mine or port, that needs the electrification, using these trains must be possible without any large scale electrification.

Battery, Diesel Or Hydrogen Power

Obviously, some form of power will be needed to power the trains.

Diesel is an obvious no-no but possibly could only be used in a small way as emergency power to get the trains to the next station, if the main power source failed.

I have not seen any calculations about the weight, size and power of hydrogen powered trains, although there have been some professional videos.

But what worries me about a hydrogen-powered train is that it still needs some sizeable batteries.

So do calculations indicate that a hydrogen-powered train is both a realisable train and that it can be produced at an acceptable cost?

Who knows? Until, I see the maths published in a respected publication, I will reserve my judgement.

Do Bombardier know anything?

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial Director and Global Head of Regional and Intercity.

This is a paragraph.

However, Mr McKeon said his view was that diesel engines ‘will be required for many years’ as other power sources do not yet have the required power or efficiency to support inter-city operation at high-speeds.

As Bombardier have recently launched the Talent 3 train with batteries that I wrote about in Bombardier Introduces Talent 3 Battery-Operated Train, I would suspect that if anybody knows the merits of hydrogen and battery power, it is Mr. McKeon.

So it looks like we’re left with battery power.

What could be a problem is that looking at all the example routes is that there is a need to be able to do station-to-station legs upwards of thirteen-sixteen miles.

So I will say that the train must be able to do twenty miles on battery power.

How Much Battery Capacity Should Be Provided On Each Train?

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

As it would be required that the train didn’t regularly run out of electricity, then I wouldn’t be surprised to see upwards of 800 kWh of battery installed in the train.

n an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So if we are aiming for a twenty mile range from a four-car train with an 800 kWh battery, this means that any energy consumption better than 10 kWh will achieve the required range.

Regular Charging At Each Station Stop

In the previous section, I showed that the proposed train with a full battery could handle a twenty mile leg between stations.

But surely, this means that at every stop, the electricity used on the previous leg must be replenished.

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of a four-car Class 350 train, with a full load of passengers, travelling at ninety mph, as 47.1 kWh.

So if the train is travelling at a line speed of ninety mph and it is fitted with regenerative braking with an efficiency of eighty percent, 9.4 kWh of energy will be needed for the train to regain line speed.

There will also be an energy consumption of between 3 kWh and 5 kWh per vehicle per mile.

For the proposed four-car train on a twenty mile trip, this will be between 240 and 400 kWh.

This will mean that between 240 and 400 kWh will need to be transferred to the train during a station stop, which will take one minute at most.

I covered en-route charging fully in Charging Battery/Electric Trains En-Route.

I came to this conclusion.

I believe it is possible to design a charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

This means that a substantial top up can be given to the train’s batteries at stations equipped with a fast charging system.

New Or Refurbished Trains?

New trains designed to meet the specification, could obviously be used.

But there are a several fleets of modern trains, which are due to be replaced. These trains will be looking for new homes and could be updated to the required battery/electric specification.

  • Greater Anglia – 30 x Class 379 trains.
  • Greater Anglia – 26 x Class 360 trains.
  • London North Western Railway – 77 x Class 350 trains.
  • TransPennine Express – 10 x Class 350 trains

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I describe Porterbrook’s plans to convert a number of Class 350 trains to battery/electric trains.

These Class 350 Battery/FLEX trains should meet the specification needed to serve the scenic and rural routes.

Conclusion

I am led to the conclusion, that it will be possible to design a battery/electric train and charging system, that could introduce electric trains to scenic and rural routes all over the UK, with the exception of Northern Ireland.

But even on the island of Ireland, for use both North and South of the border, new trains could be designed and built, that would work on similar principles.

I should also say, that Porterbrook with their Class 350 Battery/FLEX train seem to have specfied a train that is needed. Pair it with the right charging system and there will be few no-go areas in mainland UK.

November 2, 2018 Posted by | Transport | , , , , , , , , , , | 2 Comments

Charging Battery/Electric Trains En-Route

One big need with a battery/electric hybrid train, is the need to charge the batteries quickly at a station stop.

On my last trip to Sheffield, I timed the stops from brakes on to moving again of the Class 222 train.

Times in minutes:seconds were as follows.

  • Leicester 1:30
  • Louthborough 1:15
  • East Midlands Parkway 1:06
  • Long Eaton 1:08
  • Derby 1:22
  • Chesterfield 1:09

So it looks like there is only a minute to charge the batteries on a typical Inter-City service.

Would it be much longer on say a long rural service like Settle and Carlisle or Inverness to Wick?

I don’t think so!

So how could we top up the train in a station stop of less than a minute.

Plug The Train Into a Power Socket

This may work with electric cars, but if you think it would work with trains and charge them in a minute, then think again!

Using A Pantograph

This may seem to be the obvious way, but to raise the pantograph, get a reasonable charge into the train’s batteries and lower it again, is an awful lot of things to cram into a minute.

There’s also many things that can go wrong.

Vivarail’s Solution

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, Vivarail’s solution to charging a battery-powered Class 230 train is disclosed.

A prototype rapid charging facility at its Long Marston base would use short sections of third-rail to quickly recharge a Class 230’s batteries. He said that the third-rail shoegear fitted to the trains in their London Underground service could handle higher currents than simply plugging a cable into the train.

The rapid charging concept consists of a shipping container of batteries that are trickle charged from a mains supply. When a Class 230 sits over the short sections of third-rail, electricity can be quickly transferred to the train’s batteries. When the train is away, the power rails are earthed to ensure they pose no risk The concept provides for charging a Class 230 as it pauses at a terminus before making its return journey.

What surprises me, is the claim, that third-rail is such an effective way of charging the batteries.

But then a Class 92 locomotive has a power of 4,000 kW when running on 750 VDC third rail electrification, so it would appear third-rail systems can handle large amounts of power.

This would be the sequence, as a train performed a station stop.

  1. The driver would stop the train at the defined place in the platform, as thousands of train drivers do all over the world, millions of times every day.
  2. Once stopped, the contact shoes on the train would be in contact with the third rail, as they would be permanently down and ready to accept electricity at all times.
  3. The charging system would detect the stationary train and that the train was connected, and switch on the power supply. to the third-rail.
  4. Electricity would flow from the track to the batteries, just as if the train was on a standard third-rail electrified track.
  5. If the train’s battery should become full, the train’s system could stop the charging.
  6. When passengers had finished leaving and joining the train and it was safe to do so, the driver would start the train and drive it to the next station, after ascertaining, that there was enough power in the batteries.
  7. When the charging system determined that the train was moving or that the contact shoe was no longer connected to the third-rail, it would immediately cut the power to the rail and connect it to earth.

It is a brilliant system; simple, efficient and fail-safe.

  • Regenerative braking will mean that stopping in the station will help to top-up the batteries.
  • The battery on the train is being charged, as long as it is stationary in the station.
  • Delays in the station have no effect on the charging, except to allow it for longer if the battery can accept more charge.
  • The driver concentrates on driving the train and doesn’t have to do anything to start and stop the charging.
  • As there is no cable to disconnect or pantograph to lower, disconnection from the charging system is automatic and absolute, when the train leaves.
  • The charging system never exposes a live rail to passengers and staff.

As a Control and Electrical Engineer, I believe that developments of this system, could be able to put at least 200 kWh into the train’s batteries at each stop.

The system could also be independent of the driver, whose only actions would be to check on safety, that charging was proceeding as it should and that there was sufficient charge in the batteries before continuing.

Connection And Disconnection To The Third-Rail

These pictures taken at Blackfriars station, show how the ends of the third-rail is tapered, so that the shoe on the train connects and disconnects smoothly.

Note.

  1. The tapered ends of both rails on opposite side of the gaps.
  2. For safety, the electrified third-rail is on the other side of the track to the platform.
  3. One picture shows how yellow-painted wood is used for extra safety.

As a train is always on top of the third-rail, when the power to the rail is switched on in Vivarail’s charging system, I think that, the system should be very safe.

Battery-To-Battery Energy Transfer

Vivarail’s genius is to transfer the energy from trackside batteries to the batteries on the train. As batteries have a low impedance, large amounts of electricity can be passed quickly.

Batteries, Supercapacitors Or Both?

I believe that in a few years time for many applications, supercapacitors  will be a viable alternative to batteries.

Energy densities are improving in supercapacitors and they have a similar low impedance, which will enable fast transfer of electricity.

So I wouldn’t be surprised to supercapacitors used on trains or in charging systems.

It may be that a mix of supercapacitors and batteries is the optimal solution.

Installing A Vivarail-Style Charging System

Installation of a Vivarail-style charging system would require.

  • A length of third rail to be installed alongside the track or tracks in the station.
  • The containerised batteries and control system to be installed in a suitable place.
  • Electrical power to be connected to the batteries and control system.
  • Appropriate-cabling between the rail and the container.

The great advantage is that to install a charging system in a station would not require any of the complicated and expensive works, often needed to install 25 KVAC overhead electrification.

Supplying Electricity To A Vivarail-Style Charging System

The Rail Magazine article talks of trickle charging the track-side batteries, using mains electricity, but I suspect some of the most cost-effective systems would use solar, wind or water power, backed up by a mains supply.

In a remote station, installing a Vivarail-style charging system powered by a sustainable power might be an opportunity to install modern low-energy lights and other equipment at the station, powered from the charging system.

A Vivarail-Style Charging System Could Be Built With No Visual Intrusion

Another advantage of using Vivarail-style charging systems, is that there is less visual intrusion than traditional continuous 25 KVAC overhead electrification.

Some visual intrusion would be down to the shipping container used to house the batteries.

But if necessary, the batteries could be housed in a classic Victorian outhouse or a modern sympathetically-designed structure.

Would A Vivarail-Style Charging System Need To Be In A Station?

Many, but not all charging systems would be in stations.

However, there are some very convenient places for charging systems, that may not be in stations.

Trains going to Bedwyn station wait for several minutes  in a turnback siding to the West of the station, before returning to London. The route is not electrified and bi-mode Class 800 trains will be used on the route, because there is about thirteen miles between Bedwyn and Newbury without electrification.

If a Vivarail-style charging system were to be added to the turnback siding battery/electric trains could work the service to London. I’m sure Hitachi know how to convert a version of a Class 80x train to battery/electric operation.

There will be quite a few places, where for operational reasons, a charging system could or should be placed.

Would All Stations On A Route Need To Be fitted With A Vivarail-Style Charging System?

This would depend on the route and the need to run it reliably.

Detailed computer modelling would show, which stations wouldn’t need to be fitted with charging systems!

If a train was a limited-stop service or not required to stop at a particular station because of operational reasons or the timetable, the train would just pass through the station.

As it didn’t stop, it would not have caused the charging system to switch on power to the third-rail.

But if say due to delays caused by an incident meant a train was low on battery power, there is no reason, why the train can’t make a stop at any charging system to top-up the batteries.

Should The Driver Have Any Control?

Consider.

  • It may be extra safety is needed, so the driver could  give a signal to the charging system, that it is safe to start the charging process.
  • Similarly, the driver should be able to pause or stop the process at any time.

But the driver would mainly be monitoring an automatic process.

Would The Charging System Be Linked To The Signalling?

I think this could be likely, as this could add another level of safety.

Conclusion

I believe it is possible to design a safe charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

Surely, this method of electrification could be used to allow electric trains to run through environmentally-sensitive areas and World Heritage sites like Bath, the Lake District and the Forth Bridge,

November 2, 2018 Posted by | Transport | , , , , | 5 Comments

Could A 125 Mph Electric Train With Batteries Handle The Midland Main Line?

In Bombardier’s 125 Mph Electric Train With Batteries, I investigated a pure electric train based on Bombardier’s proposed 125 mph bi-mode Aventra with batteries.

It would have the following characteristics.

  • Electric power on both 25 KVAC overhead and 750 VDC third-rail.
  • Appropriately-sized batteries.
  • 125 mph running, where possible on electrification and/or battery power.
  • Regenerative braking using the batteries.
  • Low energy interiors and systems.

It would be a train with efficiency levels higher than any train seen before.

It would also be zero-carbon at the point of delivery.

An Example 125 mph Train

I will use the same size and specification of train, that I used in Bombardier’s 125 Mph Electric Train With Batteries.

  • The train is five cars, with say four motored cars.
  • The empty train weighs close to 180 tonnes.
  • There are 430 passengers, with an average weight of 90 Kg each, with baggage, bikes and buggies.
  • This gives a total train weight of 218.7 tonnes.
  • The train is travelling at 200 kph or 125 mph.

Travelling at 200 kph, the train has an energy of 94.9 kWh.

I will also assume.

  • The train uses 15 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is eighty percent efficient.

I will now do a few calculations.

Kettering To Leicester

Suppose one of the proposed trains was running between St. Pancras and Leicester.

  • I’m assuming there are no stops.
  • In a year or two, it should be able to run as far as Kettering using the new and improved 25 KVAC overhead electrification.
  • The train would leave the electrification at Kettering with a full charge in the batteries.
  • The train would also pass Kettering as close to the line speed as possible.
  • Hopefully, the twenty-nine miles without electrification between Kettering and Leicester will have been updated to have the highest possible line speed, with many sections capable of supporting 125 mph running.

I can do a rough-and-ready calculation, as to how much energy has been expended between Kettering and Leicester.

  • Twenty-nine miles at 15 kWh per mile is 435 kWh.
  • The train has a kinetic energy of 94.9 kWh at 125 mph and twenty percent will be lost in stopping at Leicester, which is 19 kWh.

This means that a battery of at least 454 kWh will be needed to propel the train to Leicester.

Kettering To Sheffield

If the train went all the way without stopping between Kettering and Sheffield, the energy used would be much higher.

One hundred-and-one miles at 15 kWh is 1515 kWh.

So given that the train will be slowing and accelerating, we’re probably talking of a battery capacity of around 2000 kWh.

In our five-car example train, this is 400 kWh per car.

Kettering To Sheffield With Stops

The previous calculation shows what can be achieved, but we need a practical train service.

When I last went to Sheffield, the train stopped at Leicester, Loughborough, East Midlands Parkway, Long Eaton, Derby and Chesterfield.

I have built an Excel spreadsheet, that models this route and it shows that if the train has a battery capacity of 2,000 kWh, the train will get to Sheffield with 371 kWh left in the battery.

  • Increase the efficiency of the regenerative braking and the energy left is 425 kWh.
  • Reduce the train’s energy consumption to 12 kWh per mile and the energy left is 674 kWh.
  • Do both and the energy left is 728 kWh.

The message is clear; train manufacturers and their suppliers should use all efforts to improve the efficiencies of trains and all of their components.

  • Aerodynamics
  • \Weight savings
  • Bogie dynamics
  • Traction motors
  • Battery capacity and energy density
  • Low energy lighting and air-conditioning

No idea however wacky should be discarded.

Network Rail also has a part to play.

  • The track should have as a high a line speed as is practical.
  • Signalling and timetabling should be designed to minimise interactions with other services.

Adding all these together, I believe that in a few years, we could see a train, that will consume 10 kWh per mile and have a regenerative braking efficiency of ninety-five percent.

If this can be achieved then the train will have 960 kWh in the batteries when it arrives in Sheffield.

Sheffield To Kettering

There is no helpful stretch of electrification at the Sheffield end of the route, so I will assume that there is a method of charging the batteries at Sheffield.

Unsurprisingly, as the train is running the same total distance and making the same number of stops, if the train starts with a full battery at Sheffield, it arrives at Kettering with the same amount of energy in the battery, as on the Northbound-run to Sheffield.

An Interim Conclusion

I am led to the interim conclusion, that given the continued upward curve of technology and engineering, that it will be possible to run 125 mph electric trains with an appropriately-sized battery.

How Much Battery Capacity Can Be Installed In A Train?

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

Consider.

  • Vivarail’s cars are 18.37 metres long.
  • Car length in a typical Aventra, like a Class 720 train, is 24 metres.
  • Aventras have been designed for batteries and supercapacitors, whereas the D78 trains, used as a base for the Class 230 train,were not.
  • Batteries and supercapacitors are getting better all the time.
  • Batteries and supercapacitors can probably be built to fit in unusually-shaped spaces.

I wouldn’t be surprised to see Aventras being able to take double the capacity of a Class 230 train under each car.

I wouldn’t rule out 2,000 kWh energy storage capacity on a five-car train, that was designed for batteries.

The actual size installed would depend on operator, weight, performance and cost.

My Excel spreadsheet shows that for reliable operation between Kettering and Sheffield, a battery of at least 1200 kWh is needed, with a very efficient train.

Charging Trains En-Route

I covered en-route charging fully in Charging Battery/Electric Trains En-Route.

I came to this conclusion.

I believe it is possible to design a charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

This means that a substantial top up can be given to the train’s batteries at stations equipped with a fast charging system.

An Astonishing Set Of Results

I use astonishing lightly, but I am very surprised.

I assumed the following.

  • The train uses 15 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is eighty percent efficient.
  • The train is fitted with 600 kWh of energy storage.
  • At each of the six stations up to 200 kWh of energy can be transferred to the train.

Going North the train arrives in Sheffield with 171 kWh in the energy storage.

Going South the train arrives at Kettering with 61 kWh in the energy storage.

Probably a bit tight for safety, but surprising nevertheless.

I then tried with the following.

  • The train uses 12 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is ninety percent efficient.
  • The train is fitted with 500 kWh of energy storage.
  • At each of the six stations up to 200 kWh of energy can be transferred to the train.

Going North the train arrives in Sheffield with 258 kWh in the energy storage.

Going South the train arrives at Kettering with 114 kWh in the energy storage.

It would appear that increasing the efficiency of the train gives a lot of the improvement.

Finally, I put everything, at what I feel are the most efficient settings.

  • The train uses 10 kWh per mile to maintain the required line speed and power the train’s systems.
  • Regenerative braking is ninety-five percent efficient.
  • The train is fitted with 500 kWh of energy storage.
  • At each of the six stations up to 200 kWh of energy can be transferred to the train.

Going North the train arrives in Sheffield with 325 kWh in the energy storage.

Going South the train arrives at Kettering with 210 kWh in the energy storage.

These sets of figures prove to me, that it is possible to design a 125 mph battery/electric hybrid train and a set of charging stations, that will make St. Pancras to Sheffield by electric train, a viable possibility without any more electrification.

Should The Train Be Fitted With A Means Of Charging The Batteries?

Why not?

Wires do go down and rest assured, a couple of battery/electric hybrids would get stuck!

So a small diesel or hydrogen generator to allow a train to limp a few miles might not be a bad idea.

Electrification Between Sheffield And Clay Cross On The Midland Main Line

In The UK’s New High Speed Line Being Built By Stealth, there is a sub-section with the same title as this sub-section.

This is the first part of that sub-section.

This article on Rail Technology Magazine is entitled Grayling Asks HS2 To Prepare For Electrification Of 25km Midland Main Line Route.

If this electrification happens on the Midland Main Line between Sheffield and Clay Cross, it will be another project in turning the line into a high speed route with a 200 kph operating speed, between London and Sheffield.

Currently, the electrified section of the line South of Bedford is being upgraded and the electrification and quadruple tracks are being extended to Glendon Junction, where the branch to Corby leaves the main line.

The proposed electrification will probably involve the following.

  • Upgrading the line to a higher speed of perhaps 225 kph, with provision to increase the speed of the line further.
  • Rebuilding of Chesterfield station in readiness for High Speed Two.
  • Full electrification between Sheffield and Clay Cross.

Clay Cross is significant, as it is where the Midland Main Line splits into two Southbound routes.

Note.

  1. Some of the tunnel portals in the Derwent Valley are Listed.
  2. Trying to electrify the line through the World Heritage Site will be a legal and engineering nightmare.
  3. Network Rail has spent or is spending £250million on upgrading the Erewash Valley Line.
  4. High Speed Two will reach The East Midlands Hub station in 2032.

When High Speed Two, is extended North from the East Midlands Hub station, it will take a route roughly following the M1. A spur will link High Speed Two to the Erewash Valley line in the Clay Cross area, to enable services to Chesterfield and Sheffield.

But until High Speed Two is built North of the East Midlands Hub station, the Erewash Valley Line looks from my helicopter to be capable of supporting 200 kph services.

If this electrification is performed, it will transform the prospects for battery/electric hybrid trains between London and Sheffield.

  • Trains will have to run fifteen miles less on battery power.
  • Trains will arrive in both St. Pancras and Sheffield with batteries that are at least three-quarters full.
  • Returning the trains will fill them up on the electrification at the end of the line.
  • There will probably not be a need for charging systems at St. Pancras, Chesterfield and Sheffield.

I also think, that as the train could arrive in Sheffield with a full battery, there is the possibility of extending services past Sheffield to Barnsley, Huddersfield and cLeeds, if the operator felt it was a worthwhile service.

Nottingham

Nottingham is just eight miles from East Midlands Parkway station, which is less distance than Derby.

So if the battery/electric hybrid trains can reach Derby from Kettering on Battery power, with some help from charging at Leicester and Loughborough, the trains can reach Nottingham, where charging would be installed.

Conclusion

From my calculations, I’m sure that an efficient battery/electric hybrid train can handle all current services on the Midland Main Line, with third-rail charging at intermediate stations.

I do think though, that if Sheffield to Clay Cross Junction is electrified in preparation for High Speed Two, that it makes the design easier and the economics a lot better.

It would also give Sheffield a genuine sub-two hour service to London, which would only get better.

 

 

November 1, 2018 Posted by | Transport | , , , , , , , , | Leave a comment

Station Dwell Times On The London Overground

This afternoon, I had to go to Walthamstow for lunch, so on the way out, I checked how long it was between brakes on at James Street station and the Class 315 train was moving again.

The dwell time was a very respectable thirty seconds, which is probably more down to the driver and the signalling, than the nearly-forty-year-old train.

Coming back, I took the Gospel Oak to Barking Line to Gospel Oak station..

The driver gave a display of precision driving a Class 172 train, with the intermediate stops, all taking thirty seconds or less.

From Gospel Oak, I switched to the North London Line and took a Class 378 train to Canonbury station, from where I walked home.

The dwell times on this line were more variable, with two times at thirty seconds or less, two at nearly two minutes and the rest in-between.

From these small number of observations, it would appear that the minimum dwell time on the London Overground is thirty seconds.

Various factors will determine the actual dwell time.

  • Trains must not leave early, as passengers don’t like this.
  • Trains must not leave, before the driver has ascertained it is safe to do so.
  • If a train arrives early, then the dwell time might be lengthened, even if the train leaves on time.
  • Large numbers of passengers or a passenger in a wheelchair, who needs a ramp will lengthen the dwell time.

I should say that today, the trains were not full and there were plenty of empty seats.

Conclusions

If trains and drivers can handle thirty second dwell times, then everything else associated with a station stop, must be capable of the same fast response.

This thirty-second dwell time may have repercussions for rapid charging of battery/electric trains, that I wrote about in Charging A Battery-Powered Class 230 Train.

I think there are three options for charging a train at a station stop.

Plug the Train Into A Power Socket

Can you plug you mobile phone into the mains, give it a reasonable charge and then disconnect it and store all leads in thirty seconds?

Use a Pantograph To Connect To 25 KVAC Overhead Electrification

Even if a driver or automation is very fast at raising and lowering the pantograph, I don’t believe that in a total time of thirty seconds, enough electricity can be passed to the train.

This method might work well in longer stop at a terminal station, but it is unlikely, it could be used successfully at an intermediate stop.

Use 750 VDC Third-Rail Electrification

750 VDC third-rail electrification has a very big advantage, in that, trains can connect and disconnect to the electrification automatically, without any driver intervention.

Look at this picture of a train going over a level-crossing.

The ends of the third-rails on either side or the crossing are sloped so that the contact shoes on the train can disconnect and connect smoothly.

As you have to design the system for a possible thirty-second stop and don’t have the time available for the first two options, I am fairly certain, that the only way a worthwhile amount of electricity can be transferred to the train’s battery, is to use some form of system based on tried-and-tested 750 VDC third rail electrification.

There may also be advantages in using a longer length of third-rail, so that the connection time is increased and more than one contact shoe can connect at the same time.

Automation would control the power to the third-rail, so that no live rail is exposed to passengers and staff.

After all a train on top, is a pretty comprehensive safety guard.

 

 

 

.

October 28, 2018 Posted by | Transport | , , , , | 1 Comment

Could A Class 450 Battery/FLEX Train Be Used Between Waterloo And Exeter?

When I wrote Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, Issue 864 of Rail Magazine hadn’t been published. The magazine contained details of Vivarail’s proposed rapid charging facility, which I wrote about in Charging A Battery-Powered Class 230 Train.

Consequently, at the time, I came to the conclusion that a Class 450 train with a Battery/FLEX conversion, similar to Porterbrook’s one for a Class 350 train, couldn’t stretch between Waterloo and Exeter, as it was just too far.

But Vivarail’s proposed rapid charging facility could change everything!

The West of England Main Line is electrified as far as Basingstoke station, from where the route is worked excursively by diesel Class 159 trains.

Between Basingstoke and Exeter St. Davids stations, the trains make fourteen stops.

  • Most station stops,take up to a minute, but could take longer if say the train is busy or there’s a passenger in a wheelchair.
  • The train stops at Salisbury for four minutes, possibly to allow loading and unloading of catering trolleys.
  • The distances between stations range between a few and eighteen miles.
  • In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I said that if a 400 kWh battery were to be fitted to a Class 350/2 train, that this would give a range between twenty and fifty miles.
  • The Class 350 and South Western Railway’s Class 450 trains are the same basic Siemens Desiro train, although the Class 350 train uses 25 KVAC overhead electrification and the Class 450 train uses 750 VDC third-rail electrification.

It would appear that if the train could be charged at each station, it should be able to hop all the way between Basingstoke and Exeter St. Davids stations.

Using a traditional charger, where the train would have to be physically plugged into the charger, wouldn’t be possible in the short station stops on the route.

Even raising a pantograph to connect to a 25 KVAC overhead line would be slow and could distract the driver, whilst they were doing more important things.

But Vivarail’s proposed rapid charging facility, which I am sure is automatic would give the battery a top-up without any driver intervention.

 

The charging system would have a third rail on the opposite side of the track to the platform, as in this picture of Kidbrooke station.

The third-rail would be.

  • Short enough to be shielded by a train stopping on top.
  • Long enough to connect to at least two contact shoes on the train.
  • Automatically earthed, when no train is present and connected.

This would be the sequence, as a train stopped in a station.

  • The driver would stop the train at the defined place in the platform, as thousands of train drivers do all over the world, millions of times every day.
  • Once stopped, the contact shoes on the train would be in contact with the third rail, as they would be permanently down, as they are when running on third-rail electrification.
  • The charging system would detect the stationary train and that the train was connected, and switch on the power supply. to the third-rail.
  • Electricity would flow from the track to the batteries, just as if the train was on a standard third-rail electrified track.
  • If the battery should become full, the train’s system could stop the charging.
  • When passengers had finished leaving and joining the train and it was safe to do so, the driver would start the train and drive it to the next station.
  • When the charging system determined that the train was moving or that the contact shoe was no longer connected to the third-rail, it would immediately cut the power to the rail and connect it to earth.

It is a brilliant system; simple, efficient and fail-safe.

  • Regenerative braking will mean that stopping in the station will help to top-up the batteries.
  • The battery on the train is being charged, as long as it is stationary in the station.
  • Delays in the station have no effect on the charging, except to allow it for longer if the battery can accept more charge.
  • The driver concentrates on driving the train and doesn’t have to do anything to start and stop the charging.
  • The charging system never exposes a live rail to passengers and staff.

The charging system may also help recovery after an incident.

Suppose a fallen tree or a herd of cows has blocked the line and the electricity used to power the train’s systems has used a lot of battery power, so that when the train eventually gets to the next station, the battery needs a long charge before continuing.

The driver would just wait in the station, charging the battery, until there is enough energy to safely proceed.

A Look At The Mathematics

I shall now look at the mathematics of a leg between Basingstoke and Andover stations.

I will assume the following.

  • The train will leave the electrification at Basingstoke with a full battery, containing 400 kWh of electricity, as it will have been charged on the way from Waterloo.
  • The train is running at an operating speed of up to 90 mph between stations where possible, which means it has a kinetic energy of 47.1 kWh.
  • For each mile, the train consumes 8 kWh of electricity, to power the trains services and maintain the required speed.
  • Regenerative braking is eighty percent efficient.

As Basingstoke to Andover is eighteen miles, this means that energy consumption in the leg and the stop at Andover is as follows.

  • 144 kWh is used to power the train and maintain speed.
  • 9.42 kWh is lost in the braking and acceleration back to operating speed..

So the train will lose about 154 kWh on the eighteen mile leg.

I have built an Excel spreadsheet of the route and it looks that if a minimum of 100 kWh can be transferred to the train’s battery at each stop and the train uses no more than 8 kWh per mile, that it should be possible for the train to go from Basingstoke to Exeter on battery power.

Obviously, there are ways to make this journey more certain.

  • Reduce the train’s energy consumption for items like lighting and air-conditioning..
  • Improve the efficiency of regenerative braking.
  • Improve the charging systems, so more electricity is transferred in the short stops.
  • Improve the track, so that it is as smooth as possible with gentle curves.
  • Fit a larger battery.

It requires different teams of engineers to optimise their own area, so all contribute to a more energy-efficient system.

Would Battery Power Work If The Line Speed Was Increased to 100 mph?

I have done this calculation assuming an operating speed of 100 mph, rather than the current 90 mph determined in part by the maximum speed of the Class 159 trains and it appears to be still possible.

Could 100 kWh Be Transferred To The Train In The Short Stops?

In Station Dwell Times On The London Overground, I showed that the London Overground regularly has station stops of under thirty seconds.

Even to me, as an trained Electrical Engineer, 100 kWh does seem a lot of power to transfer to the train in a stop that is that short.

In the related post, I postulated that a thirty-second dwell time, means that the only way to connect the train to the rapid charging system is to use third-rail electrification, as this connects and disconnects automatically.

This was said about Vivarail’s charging system in Issue 864 of Rail Magazine.

The rapid charging concept consists of a shipping container of batteries that are trickle charged from a mains supply. When a Class 230 sits over the short sections of third-rail, electricity can be quickly transferred to the train’s batteries. When the train is away, the power rails are earthed to ensure they pose no risk The concept provides for charging a Class 230 as it pauses at a terminus before making its return journey.

The key is the battery-to-battery transfer of electricity, as batteries have a low impedance and are designed to supply high electrical currents for a short time, as when starting a massive diesel engine in a truck.

This page shows a 12v 250Ah battery available for just over three hundred pounds.

  • This battery alone has a capacity of 3 kWh.
  • It is 518mm x 273mm x 240mm.
  • It weighs 61 Kg.

You’d get a lot of these in a twenty-foot shipping container, which according to Wikipedia has a volume of 33.2 m³.

I estimate that a hundred of these batteries would fit easily into the container with all their control gear and electronics, which would mean a total capacity of 300 kWh.

Running my Excel spreadsheet with a 200 kWh transfer at each station, shows that the train can leave many stations with a full battery.

I have also run a more difficult scenario.

  • For each mile, the train consumes 10 kWh of electricity instead of 8 kWh, to power the trains services and maintain the required speed.
  • The rapid charging system can only transfer 80 kWh in thirty seconds.

The train still appears to get to its destination.

Obviously, Porterbrook, Siemens and Vivarail have better data than I have and will know what the actual performance of their trains and systems are.

How Much Power Can The Third-Rail Handle?

It should also be noted that a Class 450 train has eight x 250 kW traction motors, so the third-rail system of the train, must be capable of handling all of these at full power, when running on lines with third-rail electrification.

Would One Charging System Handle Both Tracks?

The route is double-track, with often platforms on either side of the tracs.

This Google Map shows Gillingham station, which appears to have a typical layout.

Note the three-car Class 159 train in the station.

If both tracks were to have a charging rail, I can’t see why one set of batteries shouldn’t be able to feed both tracks with separate control systems.

Although it does appear that several stations often use the same platforms for both directions.

Conclusion

This could be a very affordable way of electrifying a line with a lot of stations.

 

October 26, 2018 Posted by | Transport | , , , , , , , | 1 Comment

Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion

The title of this post is the same as that of this article on Global Rail News.

This is the first paragraph.

Rolling stock leasing company Porterbrook is working on a prototype battery/electric bi-mode Class 350/2 to demonstrate the technology’s viability to train operators.

So why would you fit batteries to an electric train like a Class 350 train?

Range Extension

An appropriately-sized battery can be used to power the train on an extension or branch line without electrification.

The classic route in London is the Barking Riverside Extension of the Gospel Oak to Barking Line.

Until someone says otherwise, I believe this short route will be built without electrification and the Class 710 trains will run on this route using stored battery power.

In my article in Issue 856 of Rail Magazine, I said this.

London is also designing and building another rail line, which will be used only by Aventras – The Barking Riverside Extension of the Gospel Oak and Barking Line.

I have read all of the published Transport for London documents about this extension and although electric trains are mentioned, electrification is not!

The extension is only a mile of new track and trains could leave the electrified c2c line with full batteries.

It would not be difficult to go to Barking Riverside and back on stored power.

Benefits would include.

  • Less visual and audible intrusion of the new railway.
  • Simpler track and station design.
  • It might be easier to keep the railway at a safe distance from all the high voltage electricity lines in the area, that bring power to London.
  • A possibly safer and more reliable railway in extreme weather.
  • Costs would be saved.

No-one has told me, I’ve got it wrong.

Handling Regenerative Braking Energy

Normally, the energy generated by regenerative braking is returned through the overhead wires or third-rail  to power nearby trains.

This does save energy, but it does have drawbacks.

  • What happens if there are no nearby trains?
  • The transformers and systems that power the track are more complicated and more expensive.

As trains slow and accelerate continuously, would it not be better if regenerative energy could be used to accelerate the train back up to line speed?

The train would need an intelligent control system to decide whether to use power from the electrification or the batteries.

In my view, a battery on the train is the obvious way to  efficiently handle the energy from regenerative braking.

Handling Power Failures

Electrification failures do occur for a number of reasons.

If trains have an alternative power supply from a battery, then the driver can move the train to perhaps the next station, where the train can be safely evacuated.

I believe that Crossrail uses battery power for this purpose.

Electrically Dead Depots And Sidings

Depots and sidings can be dangerous places with electricity all over the place.

If trains can be moved using stored energy, then safer depots and sidings can be designed.

Remote Wake-Up

We’ve all got up early in the morning, to drive to work on a cold day.

One train driver told me, there was no worse start to the day, than picking up the first train from sidings in the snow.

I discuss, remote wake-up fully in Do Bombardier Aventras Have Remote Wake-Up?.

I suspect to do this reliably needs a battery of a certain size.

How Big Should The Batteries Be?

It is my belief, that the batteries on an electric train, must be big enough to handle the energy generated if a full-loaded train stops from maximum speed.

If we take the Class 350/2 train, as owned by Porterbrook, Wikipedia gives this information.

  • Maximum Speed – 100 mph
  • Train Weight – 175.5 tonnes
  • Capacity – Around 380 passengers

If I assume each passenger weighs 90 Kg with baggage, bikes and buggies, the train weight is 209.7 tonnes.

This could be a bit high, but if you’ve been on one of TransPennine’s Class 350 trains, you might think it a bit low.

Using Omni’s Kinetic Energy Calculator, I get the following kinetic energies at various speeds.

  • 60 mph – 20.9 kWh
  • 70 mph – 28.5 kWh
  • 80 mph – 37.2 kWh
  • 90 mph – 47.1 kWh
  • 100 mph – 58.2 kWh
  • 110 mph – 70.4 kWh
  • 120 mph  83.6 kWh

I have added the unrealistic 120 mph figure, to show how the amount of energy rises with the square of the speed.

As it would be advantageous for trains to run at 110 mph, the batteries must always have the capacity to handle at least 70.4 kWh, so perhaps 100 kWh would be a good minimum size.

How Much Battery Capacity Could Be Fitted Under A Train?

Wikipedia doesn’t give the formation of a Class 350 train, but it does give that of the similar third-rail version of the train; the Class 450 train.

  • DMSO(A)
  • TCO
  • TSO
  • DMSO(B)

Which is two identical Driver Motor Cars with two Trailer Cars in the middle. Looking at a Class 350 train in Euston, they appear to have a similar formation.

This page on the Vivarail web site is entitled Battery Train Update.

This is a paragraph.

Battery trains are not new but battery technology is – and Vivarail is leading the way in new and innovative ways to bring them into service. 230002 has a total of 4 battery rafts each with a capacity of 106 kWh and requires an 8 minute charge at each end of the journey. With a 10 minute charge this range is extended to 50 miles and battery technology is developing all the time so these distances will increase.

So it looks like Vivarail manage to put 212 kWh under each car of their two-car train.

This article on the Railway Gazette is entitled Battery-Powered Desiro ML Cityjet Eco Unveiled.

This is an edited version of the first two paragraphs.

An electric multiple-unit equipped with a prototype electric-battery hybrid drive system designed to enable through running onto non-electrified lines was unveiled by Siemens and Austrian Federal Railways in Wien on September 10.

The Desiro ML Cityjet Eco has been produced using a series-built version of the Desiro ML EMUs which Siemens is supplying to ÖBB. The middle car has been equipped with three battery containers with lithium-titanate batteries offering a total capacity of 528 kWh.

Although this train is designed for a different loading gauge, it is another Siemens product and they manage to fit 528 kWh in, on top or under one car.

I think, it would be reasonable to assume that around 400 kWh of batteries could be fitted under a Class 350 train.

These pictures show a Class 350 train at Euston.

Note that the trailer car with the pantograph has less free space underneath. I would assume that is because the transformer and other electrical gubbins are underneath the car to increase passenger space.

I’m certain there is space under a Class 350 train to fit an appropriate amount of storage.

What Battery Range Could Be Expected?

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So how far would a four-car Class 350 train go with a fully-charged 400 kWh battery?

  • 5 kWh per vehicle mile – 20 miles
  • 4 kWh per vehicle mile – 25 miles
  • 3 kWh per vehicle mile – 33.3 miles
  • 2 kWh per vehicle mile – 50 miles

Obviously, this is a very crude estimate, but it does show that the train could have a useful range on battery power.

But the following would increase the range of the train.

  • A low energy interior.
  • An increased battery capacity.
  • Two cars in the four-car train are trailers, so should have more space underneath.
  • Routes for battery trains could be reprofiled with gentle curves and gradients.
  • Terminal platforms could be fitted with charging stations.

In Did Adrian Shooter Let The Cat Out Of The Bag?, Mr Shooter talked about a range of forty miles at sixty mph for the battery version of a Class 230 train.

That distance, would open up a surprising number of routes for battery trains.

Should A Small Diesel Generator Be Fitted?

It is worth noting that Transport for Wales has ordered two battery trains.

  • Vivarail Class 230 trains for North Wales.
  • Stadler Flirts for South Wales

Both trains have diesel engines, that can be used to back-up battery power.

In addition the Class 801 train has a diesel generator to rescue the electric train, when the power fails.

Are Hitachi, Stadler and Vivarail just being safe or do their figures show that a diesel engine is absolutely necessary? After all, the diesel generator can be easily removed, if it’s never used.

I think if it was easy, whilst the new battery-powered train was being tested and on probation, I’d fit a small diesel generator.

Remote Battery Charging

Most of the charging would be done, whilst running on electrified lines, which could be either 25 KVAC overhead or 750 VDC third-rail.

But the trains would be ideal for the sort of charging system, that I wrote about in Is This The Solution To A Charging Station For Battery Trains?.

To use this Opbrid system, all the train needs is the ability to connect through a 25 KVAC pantograph, which the train already has.

As there is a lot of interest in battery trains throughout Europe, I suspect that a charging station will be a standard piece of equipment, that can be easily installed in a terminal platform or a turnback siding.

We could see important towns and cities like Barrow-in-Furness, Blackburn, Chester, Dundee, Harrogate, Huddersfield, Hull, Middlesbrough, Perth and Sheffield, which are within battery range of the electrified network, being served by electric trains , without the disruption of installing electrification.

An Updated Interior

The Class 350 trains were ordered around 2000 and don’t have the features that passengers expect, as these pictures show.

An update would probably include.

  • LED lighting.
  • Low-energy air-conditioning.
  • Wi-fi
  • Power sockets
  • USB sockets.

Other features would be cosmetic like new seat covers and flooring.

But overall, a better interior will surely reduce the energy needs of a train.

What Would Be The Maximum Speed?

The current maximum speed of Porterbrook’s Class 350/2 trains is 100 mph, but all other variants of the train are capable of 110 mph.

Under Description in the Wikipedia entry for the Class 350 train, this is said.

The top speed of the fleet was originally 100 mph (160 km/h), but all 350/1s were modified to allow 110 mph (180 km/h) running from December 2012, in order to make better use of paths on the busy West Coast Main Line.

So would the conversion to battery power, also include an uprating to 110 mph?

It would definitely be a prudent move, so as to make better use of paths on busy main lines.

Where Would These Trains Run?

I feel that Porterbrook will produce a four-car train with these characteristics.

  • 110 mph operating speed.
  • Forty or perhaps a fifty mile range on batteries.
  • Quality interior.
  • The ability to use a charging station in a terminal platform.

The Global Rail News article says this about possible use of the trains.

Engineers at Porterbrook have run models on a variety of routes, including the Windermere branch line and the West Coast main line, and believe a battery/electric bi-mode, known as a 350/2 Battery/FLEX, could offer various performance benefits.

The Windermere to Manchester Airport service would seem to be an ideal route  for the Class 350/2 Battery/FLEX trains.

  • Only ten miles are not electrified.
  • The trains could easily work the return trip on the Windermere Branch Line on battery power.
  • There would be no need for any charging station at Windermere station.
  • Much of the route is on the West Coast Main Line, where a 110 mph electric train would fit in better than a 100 mph diesel train.
  • As the trains would need a refurbishment, some could be fitted with an interior, suitable for airport travellers.
  • The trains would fit the ethos and environment of the Lake District.

As the route will soon be run by Class 769 trains, I suspect there would need to be no modifications to the tracks, stations and signalling, as both trains are bi-modes, based on four-car electric trains.

I have other thoughts about, where Class 350/2 Battery/FLEX trains could be used.

Interchangability With Class 769 Trains

Both the Class 350/2 Battery/FLEX and Class 769 trains are trains owned by Porterbrook.

They are also surprisingly similar in their size, performance and capabilities.

  • Both are four-car trains around eighty metres long.
  • Both can work on 25 KVAC overhead electrification and both could be modified to work on 750 VDC third-rail electrification.
  • Both are 100 mph trains, although it may be possible to uprate the Class 350/2 Battery/FLEX to 110 mph working.
  • Both trains can be fitted with modern interiors giving operators, passengers and staff what they need or want.
  • Many routes for bi-mode trains could be worked by either train.

There will be a few differences.

  • The Class 350/2 Battery/FLEX train is a pure electric train and more environmentally-friendly.
  • The Class 350/2 Battery/FLEX train could fit in better on a busy main line.
  • The Class 769 train will probably have a longer range away from electrification.
  • The Class 350/2 Battery/FLEX train is twenty years younger.

I think that this similarity will be used to advantage by Porterbrook and the train operating companies.

  • A Class 350/2 Battery/FLEX train would be an ideal replacement for a Class 769 train, when the latter needs replacing.
  • A Class 769 train could replace a Class 350/2 Battery/FLEX train, if say the latter was being serviced or repaired or perhaps the charging station at one terminus was out of action.
  • A Class 769 train could be used for route-proving for both trains.

Porterbrook wins every way, as they own both trains.

But I can also see a time, when the Class 769 trains become a reserve fleet to be used, when a train operating company is in urgent need of more capacity.

Around Electrified Conurbations

The UK has several conurbations with a lot of electrification.

  • Birmingham-Coventry-Wolverhampton
  • Edinburgh-Glasgow-Stirling
  • Leeds-Bradford-Doncaster-York
  • Liverpool-Manchester-Preston-Blackpool
  • London

Cambridge, Cardiff, Reading and Newcastle could also become major electrified hubs.

I suspect there will be a lot of routes for which these trains would be eminently suitable.

This is a selection of the easy routes, where there is electrification at one end of the route and a charging station could be added at the other, if required.

  • Doncaster to Hull
  • Dunblane to Perth
  • Glasgow Central To East Kilbride
  • Leeds to York
  • London Bridge to Uckfield
  • Manchester to Buxton
  • Manchester to Chester
  • Manchester to Clitheroe
  • Preston to Barrow-in-Furness
  • Preston to Blackpool South
  • Preston to Colne

In total, there must be at least twenty of these routes in the UK.

Trains Across The North Of England

It should be noted that Leeds to Stalybridge is about thirty-five miles by rail and both ends of the route are electrified.

So could these trains have sufficient battery capacity to enable Northern to run fast electric services between Blackpool, Chester, Liverpool, Manchester, Manchester Airport and Preston in the West to Hull, Leeds and York in the East?

If the Class 350/2 Battery/FLEX train has sufficient battery capacity and the speed limits on various sections of the East West routes are increased from some of their miserable levels, I believe that a much better service could be provided.

At over seventy miles long, the Settle-Carlisle Line, is probably too long for battery operation, especially as the route is not electrified between Skipton and Carlisle, which is nearly ninety miles.

The same probably applies to the Tyne Valley Line, which has just over sixty miles without electrification.

But it is called the Tyne Valley Line for a good reason, it runs alongside the River Tyne for a long way and looks to be not very challenging.

I wouldn’t rule out, that in a few years time, the route is run by a battery hybrid train, like the Class 350 Battery/FLEX.

The secondary route between Leeds and Lancashire is the Calder Valley Line via Hebden Bridge, which is not electrified between Preston and Bradford, which is a distance of fifty-three miles.

Electrification of this route and especially between Burnley and Bradford would be extremely challenging due to mthe numerous bridges and the terrain, with the added complication of the Grade II Listed Hebden Bridge station.

It would be pushing it, but I believe the Class 350 Battery/Flex train could handle it.

There is a plan to reconnect Skipton in Yorkshire to Colne in Lancashire to create another route across the Pennines.

The trains would need to travel the forty-two miles between Preston and Skipton using battery power, but it would create a valuable route at an affordable cost, if no electrification was used.

What would improve the running of the routes via Hebden Bridge and Colne, would be to electrify the route between Preston and Blackburn, which would reduce the distance to be run on battery power by twelve miles.

The Hope Valley Line runs between Sheffield and Manchester Piccadilly and is forty-two miles long without electrification.

This route certainly needs a modern four-car train and I believe that the Class 350 Battery/FLEX train could handle it.

But it would need a charging station at Sheffield.

On this rough and ready analysis, it looks like the three Southern routes and a new one via Colne could be handled successfully by a Class 350 Battery/FLEX.

Summing up the gaps West of Leeds we get.

  • Bradford and Manchester Victoria via Hebden Bridge – 40 miles
  • Sheffield and Manchester Piccadilly via Hope Valley Line – 42 miles
  • Stalybridge and Leeds via Hudderfield – 35 miles
  • Preston and Skipton via Colne – 42 miles

If the Class 350 Battery/FLEX train can do around fifty miles on battery power, which I suspect is a feasible distance, then these trains could give Northern an electric stopping service on all their routes across the Pennines.

In my view the system could be improved by the following projects.

  • Electrify between Preston and Blackburn and possibly Burnley Manchester Road.
  • Electrify between Manchester Victoria and Todmorden.
  • Renew the crap electrification between Manchester Piccadilly and Glossop, with an extension for a few miles along the Hope Valley Line to perhaps New Mills Central and Rose Hill Marple.
  • Tidy up the electrification between Leeds and Bradford and extend it to the Northbound East Coast Main Line.

But the most important thing to do, is to increase the line speed on the routes across the Pennines.

Greater Anglia and Network Rail are talking about ninety minutes for the 114 miles between London and Norwich, which is an average speed of 76 mph.

Liverpool Lime Street to York is about the same distance and TransPennine take around 110 minutes for the journey, which is an average speed of around 60 mph.

  • Both journeys have a few stops.
  • Both routes are or will be run by 100 mph trains.
  • The East Anglian route is electrified, but trans-Pennine is not.

The big difference between the routes, is that large sections of the East Anglian route can be run at 100 mph, whereas much of the Trans-Pennine route is restricted to far lower speeds, by the challenging route

Sort it!

Electric traction will make a difference to the acceleration, but it doesn’t matter if they get their power from overhead wires or batteries!

Putting up overhead wires on the current route will be throwing good money after bad, unless the track is fixed first.

Liverpool Lime Street to York should be ninety minutes in a Class 350 Battery/FLEX.

The Scottish Breakout

Finally, the electrification in the Scottish Central Belt is on track and the Scots are seeing the benefit of modern electric trains.

Trains like the Class 350 Battery/FLEX could be the key to extending Scotland’s growing network of electric trains.

In A Railway That Needs Electric Trains But Doesn’t Need Full Electrification, I described how the 11.5 mile service between Glasgow Central and East Kilbride station could be run by an electric train using batteries, which would be charged using the 25 KVAC overhead wires at the Glasgow end of the route.

If the Class 350 Bettery/FLEX train existed, they could work this route, as soon as drivers and other staff had been trained.

With a forty mile range on batteries, trains could reach from the electric core to many places, like Dumbarton, Perth and possibly Dundee.

It should be noted that Dundee is just under fifty miles from Dunblane, where the current electrification will end, so with a charging station in one of the bay platforms at Dundee, a Class 350 Battery/FLEX should be able to bridge the gap.

They could even probably handle the current Borders Railway, with a charging station at Tweedbank.

Scotland would not need to acquire a fleet of Class 350 Battery/FLEX, as they already have a fleet of Class 380 trains, which I am certain could be re-engineered in the same way to become battery/electric trains.

ScotRail may need a few more electric trains, but they could always keep the Class 365 trains, that have been used as cover for the much-delayed Class 385 trains.

South Western Railway

South Western Railway don’t have any obvious needs for a train like a Class 350 Battery/FLEX train.

But consider.

  • They do have 127 Class 450 trains, which are the third-rail version of the Class 350 train, so could probably be converted into a Class 450 Battery/FLEX.
  • They have ten Class 158 and thirty Class 159 diesel trains, some of which work partially-electrified routes.
  • British Rail-era third-rail systems have their deficiencies in places.
  • There are proposals and some plans to reopen branch lines to the West of Basingstoke and Southampton.
  • The Class 450 trains could be converted to dual-voltage operation, as they have a pantograph well.

So perhaps a few Class 450 Battery/FLEX trains could be a useful possibility.

  • Basingstoke to Salisbury is thirty-six miles and with a charging station at Salisbury, an electric service between Waterloo and Salisbury could be run.
  • Salisbury to Southampton Central is twenty-five miles.
  • Waterloo to Corfe Castle and Swanage, if it was decided to run this Saturday service, more frequently.

I also suspect that a Class 450 Battery/FLEX would give South Western Railway several operational and energy-efficiency advantages, which could lead to financial advantages.

I doubt though that the trains would have the capability to reach Exeter, as that is just too far.

These trains would also be ideal for the for the following services, run by other operators.

  • London Bridge to Uckfield.
  • The Marshlink Line.
  • Reading to Gatwick, where they would replace the proposed Class 769 trains.

Converting these three lines to electric traction, would remove the final diesel passenger services from Kent and Sussex.

Other Routes

Use your imagination!

Conclusion

Porterbrook have just dropped an enormous flower-smelling bomb, into the electrification and train replacement plans of UK railways.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

October 18, 2018 Posted by | Transport | , , , , , | 9 Comments

Is This The Solution To A Charging Station For Battery Trains?

This page on the Opbrid web site has a main title of Automatic High Power Charging for Buses, Trucks, and Trains.

It also has a subtitle of Furrer+Frey Opbrid Charging Stations for Battery Trains.

Furrer + Frey are a Swiss railway engineering company, that design and build railway electrification systems.

The web page gives this introduction.

Since 2009, Furrer+Frey has developed a multi-modal ultra high power charging station for battery-powered vehicles that is already radically changing the way traction power is delivered to road and rail vehicles. In particular, the Furrer+Frey Railbaar system targets existing low traffic diesel traction routes as well as new light rail and tram projects. The technology applies to battery powered trams and trains (Railbaar), buses (Busbaar) and trucks (Trukbaar) with a design rooted in proven Swiss electric rail technology already successfully deployed by Furrer+Frey across Europe and the world.

The web page has an interesting image for a Swiss company.

Shown is a Class 379 train, at a station, which I’m pretty sure is Cambridge.

Liverpool Street to Cambridge is a fully-electrified route, so why would a charging station be needed on this service?

I can’t think of a reason.

So I suspect, it’s just that to illustrate the web page, they needed to use a train that had the capability of running under battery power, which the Class 379 did in the BEMU trial of 2015.

It could also be that Furrer + Frey are working with Bombardier and it’s a Bombardier library picture.

But then Furrer + Frey probably work with all the major train manufacturers.

And as Bombardier have just released a new battery train, that I wrote about in Bombardier Introduces Talent 3 Battery-Operated Train, it would be logical that the two companies are working together, as battery trains will surely need charging in stations to develop longer routes.

Note the blue box in the middle of the picture. It says.

Download White Paper On 25 Kv Train Charging

If you download the white paper, you will find a very comprehensive and detailed description of how battery trains could be charged in stations. This is the introductory paragraph.

Battery-powered trains are rapidly becoming the vehicle of choice for the replacement of diesel
trains on non-electrified rail lines. Often there is not enough traffic on these lines to justify the expense of erecting overhead line equipment (OLE) along the track. In many cases, the train runs under OLE for part of its route where the battery train can charge via its pantograph. However, sometimes additional charging is required. While it is possible to erect additional kilometers of OLE for charging, it is more cost effective to charge the train via pantograph while stopped at a station using a very short length of overhead conductor rail and a 25 kV power supply.

I will now try to explain the solution.

The white paper gives this physical description of the solution.

The physical structure of the charging station is quite simple.

It consists of a short length of overhead conductor rail, approximately 20 m to 200 m in length. This length depends on the type, length, and number of battery trains that will be charging at one time. The conductor rail is supported by normal trackside posts and high voltage insulators. Insulated cables lead from the power supply to the conductor rail, with the return path from the running
rails. Furrer+Frey makes 25 kV and 15 kV overhead conductor rail systems that are ideal for this
purpose.

The design seems to use readily available components.

What Is Overhead Conductor Rail?

This picture, that I took on the Thameslink platforms at St. Pancras station, shows the overhead conductor rail, used to power the trains.

 

St. Pancras is one of the best places to see overhead conductor rail in London, although overhead conductor rail will be used by Crossrail in the tunnels.

How Would Overhead Conductor Rail Be Used To Charge A Train’s Batteries?

A short length of such a rail, would be mounted above the track in the station, so that it could be accessed by the train’s pantograph.

The rail would be positioned so that it was exactly over the train track, at the height required by the train.

What Voltage Would Be Used?

The normal overhead voltage in the UK, is 25 KVAC. There is no reason to believe that any other voltage would be used.

The overhead conductor rail/pantograph combination has a lot of advantages and benefits.

The Overhead Conductor Rail Is Standard

The overhead conductor rail is a standard Furrer + Frey product and it can be supported in any of the appropriate ways the company has used around the world.

This picture shows conductor rail fixed to the wall in Berlin HBf station.

Or it could be fixed to gantries like these at Gospel Oak station, which carry normal overhead wiring.

 

Note that gantries come in all shapes and sizes.

The Overhead Conductor Rail Can Be Any Convenient Length

There is probably a minimum length, as although drivers can stop the trains very precisely, a few extra metres will give a margin of error.

But there is no reason why at a through platform on a line served by battery trains, couldn’t have an overhead rail, that was as long as the platform.

The Train Pantograph Is Standard

The pantograph on the train, that collects the current from the overhead conductor rail can be an almost standard unit, as it will be doing  the same job as it does on electrified sections of the route.

The white paper goes into this in detail.

As in the UK, our overhead line voltage is 25 Kv, the train can receive 1 MW with a current of 40 A, which is probably low enough to be below the limit of the conductor rail/pantograph combination. This would allow around 80 kWh to be transferred to the train in a five minute charge.

Could Trains Use Two Pantographs To Charge Batteries?

The white paper says that the system could handle more than one train, if the overhead conductor rail was long enough.

Bombardier’s Class 345 trains are effectively two half-trains, which each have their own pantograph.

So could a train use both pantographs to charge the batteries?

A Sophisticated Pantograph Control System Could Be Used

The train would probably have a sophisticated control system to automatically raise and lower the pantograph, so as to maximise the charge, whilst the train was in the station.

The System Should Be Safe

The overhead conductor rail would be no closer to passengers and staff, than overhead wires and conductor rail are at any other station platform in the UK.

I also suspect, that the power to the overhead conductor rail would only be switched on, if a train was being charged.

Standard Solutions Could Be Developed

One application of battery trains is to use them on a branch without electrification from an electrified line to a simple station in a town, housing or commercial development or airport..

The terminal stations would be very simple and surprisingly similar.

  • One platform.
  • An overhead conductor rail on gantries, a wall or some other simple support.
  • A power supply for the overhead conductor rail.

A station building,, shelters and information displays could be added to the solution or designed specifically for the location.

Solutions for a wide range of countries would only differ in a few areas.

  • The height of the platform.
  • The gauge of the track.
  • The overhead conductor rail voltage.

But I do believe that in this example of a standard system, there will be surprising commonality across the world.

As the white paper identifies, there is at least one tricky problem.

The High Voltage Power Supply

Providing high-quality, reliable high-voltage supplies may not always be that easy in some areas, so innovative electrical solutions will certainly be needed.

One solution suggested in the white paper involves using energy storage and then creating the 25 KVAC to power the overhead conductor rail.

I like this solution, as there are many applications, where these forms of independent power supplies are needed to power industrial premises, villages and equipment like flood pumps, often in remote locations. They could also incorporate a wind turbine or solar panels.

Someone will develop these systems and providing 15 or25 KVAC will be just another application.

Conclusion

I will add the conclusion from the white paper, as it says it all.

Battery trains are now available to replace diesel
trains on existing non-electrified tracks. They can
be charged using AC 25 kV 50 Hz or AC 15 kV 16,7
Hz either while running under catenary or when at
a standstill at a station using a short length of
overhead conductor rail and an appropriate power
supply. Standstill charging avoids the need to
build long stretches of catenary along a track
thereby saving money, and allowing the electrification
of track previously thought to be uneconomic
to electrify. Battery trains also enable the
use of renewable energy sources. Moving towards
green energy sources reduces harmful emissions
and noise which positively impacts climate change
and improves health

I am sure, we’ll see a lot of uses of this simple and efficient method of charging battery trains.

 

 

 

September 14, 2018 Posted by | Transport | , , , | 4 Comments

Could Third-Rail Tram-Trains Work The Epsom Downs Branch?

The Epsom Downs Branch is a single-track branch line from Sutton to Epsom Downs station.

Currently, it has a service to Victoria of around two trains per hour (tph), but it doesn’t seem to generate much business.

In 2015-16, Epsom Downs station had 112,000 passengers, whereas Sutton station had 7,111,000.

As the three stations on the branch are all single-platform stations with few facilities, can it be viable to run Class 377 and Class 455 trains on the branch?

When the London Tramlink arrives in Sutton, I wonder if the branch would be more suited to be running by trams.

But as the line is electrified with the standard 750 VDC third-rail system, is it one of those places, that could it be served by a third-rail tram-train, as I proposed in The Third-Rail Tram-Train?

I think the answer is in the affirmative.

Consider.

  • The tram service could terminate at the proposed Streatham Common Interchange station.
  • It takes less than ten minutes to go between Sutton and Epsom Downs
  • In the Peak or when more capacity is needed, Class 377 trains could still run the service.
  • The tram-trains could provide a step-free service.

Running the service with tram-trains, would give one big advantage; the ability to run a service to the Royal Marsden Hospital, which according to this document from the hospital is not the best, when it comes to public transport.

A  single-track branch from the Epsom Downs Branch could start South of Belmont station and tram-trains running on batteries could serve both the Royal Marsden Hospital and the Institute of Cancer Research.

This Google Map shows Belmont station and the hospital.

Note.

  • The rail line from Belmont station to Epsom Downs station running down the West side of the map.
  • There are two prisons in the South East corner of the map.
  • The road from Belmont to the Hospital may only be half a mile, but it is up a steep hill.
  • Why is every train arriving at Belmont station, not met by a shuttle bus to the Royal Marsden Hospital?
  • There is one train per hour through Belmont station in both directions.

A silent battery tram-train  without any overhead wires, climbing up on the railway line and then turning East across Banstead Common calling at the prisons en route to the Hospital, might be acceptable to the Planning Authorities. It would surely be less intrusive than some of cars and vans, I saw rushing through the Downs.

I would think that the hospital needs a frequency of four trains per hour to Sutton, in addition to the current sewrvices between Sutton and Epsom Downs.

A charging station, like a Railbaar, at the end of the short branch might be needed, to make sure that the gradients were conquered.

These pictures show Belmont station and the walk to the Royal Marsden Hospital.

Knowing, what I now know of the Royal Masrsden Hospital, it wouldn’t be my choice of hospital.

I don’t think, I’vw seen a hospital with such terrible access by public transport!

 

 

April 16, 2017 Posted by | Transport | , , , , , , | 2 Comments

The Third-Rail Tram-Train

I’ve never seen anybody propose a third-rail powered tram-train, but that is probably because everybody has assumed quite rightly, that you couldn’t power a tram by using third-rail electrification. It’s just too dangerous! But is it so dangerous on a segreated track?

In February 2016 I wrote Brummies Go For Battery Trams and it is now ienvisaged that Midland Metro‘s trams will be running services under battery power in 2019.

Battery power is used for trams in several places around Europe and the rest of the World and is becoming a proven technology. Is there any reason why a battery tram-train, can’t be powered by third-rail electrification, when it is running as a train?

The Class 399 Tram-Train

The Class 399 tram-train is under test in Sheffield, to prove that it can run passenger services in the UK.

These tram-trains can handle either 25 KVAC or 750 VDC from overhead wiring. I also think, they are also clever enough to work out what voltage they are getting and configure themselves accordingly.

Since, I originally wrote this post, KeolisAmey Wales  have ordered thirty-six tram-trains from the same Citylink family as the Class 399 trains.

Stadler, whose Valemcia factory built the Class 399 tram-trains, will also be building trains for Merseyrail’s network, which will run using 750 VDC third-rail electrification.

Would it be reasonable to assume, that Stadler will be able to design an appropriate pick-up shoe for the Class 399 tram-train, so that it can run on a 750 VDC third-rail network?

Batteries

A battery system would also be needed, but I believe that this will be generally offered by all tram and tram-train manufacturers, as trams and tram-trains will be running increasingly in heritage or sensitive areas.

Charging The Batteries

Batteries would normally be charged, when the tram-train is running on an electrified line, under power from the third-rail system.

The MetroCentro in Seville, works without catenary and has a fast charging system  at the two end stops.

There is no reason to believe that a Class 399 tram-train with batteries, couldn’t work with a fast charging station like a Railbaar.

Tram-Trains For The South Wales Metro

Since, I originally wrote this post, KeolisAmey Wales  have ordered thirty-six tram-trains from the same Citylink family as the Class 399 trains, for running on the South Wales Metro.

These tram-trains will be fitted with batteries.

Would A Third-Rail Tram-Train Have A Pantograph?

This would be a matter for the operator.

But there is one UK tram network; the London Tramlink in Croydon, which is surrounded by an extensive third-rail electrified network.

The ability to run on both types of 750 VDC systems might be an asset and enable new services to be created without any extra electrification, by using a small amount of battery power to change from one system to another.

Changing Between Third-Rail And Overhead Electrification

This map from carto.metro.free.fr shows the track layout at Mitcham Junction station.

Suppose a link were to be provided, so that tram-trains could come from the South, pass through Mitcham Junction station and then cross over to the tram tracks for Wimbledon.

These pictures show the area.

As the link would have no electrification, the power changeover would be as follows.

  • Arrive in Mitcham Junction station, using third-rail power.
  • Raise and isolate the third-rail shoe.
  • Switch to battery power.
  • Proceed using the link to Mitcham tram stop.
  • Raise the pantograph and switch to overhead power.

A reversed procedure would be used in the opposite direction.

Range On Third-Rail Power

The range of a Class 399 tram-train running on third-rail power, would be more limited by the train-tram’s speed of 100 kph and interaction with other services, rather than any electrification issues.

The range will probably be the same as the German cousins of the Class 399 tram-trains on the Karlsruhe Stadtbahn. These trams run on both 750 VDC and 15 KVAC, to places up to fifty kilometres from the Centre of Karlsruhe.

As a simple example, a third-rail tram-train running on the London Tramlink, could certainly use third-rail lines to access Gatwick Airport.

Range On Battery Power

In Out Of The Mouths Of Brummies, which describes an interview with those involved in the Midland Metro battery train project, I published this quote about battery trams.

Since then there has been lots of work and we’re now comfortable that battery technology has advanced sufficiently for it to be viable.

Under test conditions with plain straight track a tram could travel 20 km catenary-free. In practice, this would be rather less for a fully laden tram ascending the 9% gradient on Penfold Street. The longest catenary-free run we’ve envisaged is around 2 km, and we’re comfortable we can achieve that.

I think until Birmingham proves otherwise, 2 km. would be a sensible range for a tram or tram-train running on a full battery.

Compatibility Issues With Other Rail Vehicles And Platforms

This to me is a matter of design, but after the Sheffield tram-train trial and the analysis of platform solutions in Europe, I suspect that we’ll come up with a solution that works.

I think it is true to say, that many of our trains are badly matched to the platforms, but as this picture of a Class 378 train on the London Overground shows, the gap is becoming easier to mind.

I think too, we have an advantage over Europe, in that our loading gauge is smaller and our trains are closer in size to a modern tram or tram-train.

We are also good at innovative access solutions, as this picture from Canonbury station shows.

We may have a problem with using double-deck trains, but I believe that good design can minimise the problems of good access to both trains and tram-trains at the same platform.

Applications

The applications will be limited by battery range and by the gradients of the line.

In Southampton – A City Built For Cars, I describe how if they built their proposed Solent Metro around third-rail tram-train technology, they could transform the city.

In Could Beckenham Junction To Birkbeck Be Run Using Third-Rail Tram-Trains?, I show how third-rail tram train-technology , could be used to create more capacity at Beckenham Junction station.

In Could Third-Rail Tram-Trains Be Used To Increase Services In South London?, I show how third-rail tram-train technology, could be used to expand the London Tramlink.

In Could Third-Rail Tram-Trains Work The Epsom Downs Branch?, I show how third-rail tram-train technology, could serve the Royal Marsden Hospital.

In The Cranleigh Line, I suggest that third-rail tram-train technology could be used on this route.

Conclusion

Technically, I feel that a Class 399 tram-train capable of running on third-rail electrified lines is possible.

But it would have to run on battery power or 750 VDC overhead, when running as a tram.

 

 

April 14, 2017 Posted by | Transport | , , , , , , | 4 Comments