The Anonymous Widower

Using Hitachi ABB Power Grids Technology At Uckfield Station

This post describes how the ABB Power Grids technology could be used to allow battery-electric trains to run between London Bridge and Uckfield stations.

The London Bridge And Uckfield Route

The London Bridge And Uckfield route has these characteristics.

  • It is forty-six miles long
  • The Southern section between Heald Green junction and Uckfield station is 24.7 miles and is not electrified.
  • A service takes approximately eighty minutes.
  • Trains run at a frequency of one train per hour (tph)
  • The route has been upgraded to be able to handle twelve car trains.
  • The route is currently run by Class 171 diesel trains.
  • Govia Thameslink Railway is the operator.

It looks to me if you assume a ten minute turnround, then that gives a three-hour round trip.

This would mean the following.

  • Trains would have ten minutes charging time at Uckfield.
  • If twelve car trains were running on the branch then nine four-car trains would be required for an hourly service.
  • Two tph would require twice as many trains.

It looks to me, that Network Rail have arranged the route and the timetables for a fleet of battery-electric trains.

The Battery-Electric Trains

There have been several hints in the rail media, that battery-electric Bombardier Electrostars will be used for the London Bridge and Uckfield route.

I wrote Battery Electrostars And The Uckfield Branch in September 2019.

  • In the related post I suggested Class 377, Class 379 or Class 387 trains.
  • All are four-car Bombardier Electrostars.
  • All are 100 or 110 mph trains.
  • The Class 387 trains are already dual voltage, but I suspect all trains could be converted to third-rail or dual-voltage.
  • My choice would be Class 379 trains, as they are being made redundant by Greater Anglia and thirty quality trains are looking for a new home.

But all three types would be acceptable and Govia Thameslink Railway has both of the other types in its extensive fleet.

Charging The Battery-Electric Trains

This picture shows the single twelve-car platform at Uckfield station.

There would appear to be plenty of space on the side away from the platform.

There would appear to be two main methods of charging the trains.

A Length Of 750 VDC Third-Rail Electrification On The Side Away From The Platform

  • The electrification would be long enough to charge a twelve-car train.
  • It could even be made very safe, if an interlock were to be provided, that ensured that the third-rail were only to be live, when a train was in the station that needed charging.

This would be possible, but I suspect the Anti-Third-Rail Electrification Mafia will get this simple method stopped.

A Length Of 25 KVAC Overhead Electrification Powered By One Of Hitachi ABB Power Grids Containised Power Systems

The electrification would be long enough to charge a twelve-car train.

The driver or an automated system would raise the pantographs after the train stopped in the station.

Interlocks could be provided to increase safety.

The overhead electrification would be powered by one or more of Hitachi ABB Power Grids’s containerised power systems

Lightweight catenary could be used to reduce visual intrusion.

The curved beam at the top of this overhead electrification gantry is laminated wood.

Because of the higher voltage used, I suspect that the Hitachi ABB Power Grids could charge a twelve-car train in under ten minutes.

 

July 9, 2021 Posted by | Transport | , , , , , , , , | Leave a comment

Charging The Batteries On An Intercity Tri-Mode Battery Train

There are several ways the batteries on an Intercity Tri-Mode Battery Train could be charged.

  • On an electrified main line like the Great Western or East Coast Main Lines, the electrification can be used in normal electrified running.
  • A short length of electrification at the terminal or through stations can be used.
  • The diesel engines could be used, at stations, where this is acceptable.

Alternatively, a custom design of charger can be used like Vivarail’s  Fast Charge system.

In Vivarail’s Plans For Zero-Emission Trains, I said this.

Vivarail Now Has Permission To Charge Any Train

Mr. Shooter said this about Vivarail’s Fast Charge system.

The system has now been given preliminary approval to be installed as the UK’s standard charging system for any make of train.

I may have got the word’s slightly wrong, but I believe the overall message is correct.

In the November 2020 Edition of Modern Railways, there is a transcript of what Mr. Shooter said.

‘Network Rail has granted interim approval for the fast charge system and wants it to be the UK’s standard battery charging system’ says Mr. Shooter. ‘We believe it could have worldwide implications.’

I hope Mr. Shooter knows some affordable lawyers, as in my experience, those working in IPR are not cheap.

I think it’s very likely, that Vivarail’s Fast Charge system could be installed at terminals to charge Hitachi’s Intercity Tri-Mode Battery Trains.

    • The Fast Charge systems can be powered by renewable energy.
    • The trains would need to be fitted with third rail shoes modified to accept the high currents involved.
    • They can also be installed at intermediate stations on unelectrified lines.

Vivarail is likely to install a Fast Charge system at a UK station in the next few months.

These are my thoughts about charging trains at various stations.

Penzance station

This Google Map shows Penzance station.

Penzance would be an ideal station to fully charge the trains, before they ran East.

  • The station has four long platforms.
  • There appears to be plenty of space just to the East of the station.
  • Penzance TMD is nearby.

This picture shows Platform 4, which is on the seaward side of the station. The train in the platform is one of GWR’s Castles.

It is partly outside the main station, so might be very suitable to charge a train.

If trials were being performed to Penzance, it appears that the station would be a superb choice to charge trains.

My only worry, is would the location have enough power to charge the trains?

Plymouth Station

This Google Map shows Plymouth station.

It is another spacious station with six platforms.

Chargers could be installed as needed for both expresses and local trains.

A Zero-Carbon Devon and Cornwall

If the battery trains perform as expected, I can see the Devon and Cornwall area becoming a low if not zero carbon railway by the end of this decade.

  • The Castles would be retired.
  • They would be replaced by battery electric trains.
  • Charging would be available on all platforms at Penzance, Plymouth and possible some other intermediate stations and those on some branch lines.

It certainly wouldn’t hurt tourism.

 

December 28, 2020 Posted by | Transport | , , , , , , , , | 2 Comments

Middlesbrough Station – 20th October 2020

I took These pictures at Middlesbrough station on my trip to Teesside.

These are my thoughts on the station.

Station Track Layout

This Google Map shows the layout of the station.

Note.

  1. The pair of freight lines passing around the North side of the station.
  2. Platform 1 is the Westbound platform on the South side of the tracks.
  3. Platform 2 is the Eastbound platform on the North side of the tracks.

Both platforms would appear to be about 150 metres long, which is long enough for a five-car Class 80x train, but not for a 234 metre long nine-car train.

Period Features

The station has a lot of period features, like cast-iron columns and brackets, and good Victorian stonework.

Much seems to have received good TLC.

Northern Entrance

I have seen comments about improving the Northern entrance on various web sites.

It certainly, isn’t in bad condition.

Improving The Station

In £35m Station Transformation Launched By Tees Valley Mayor, I wrote about the current plans to transform the station. I started with these paragraphs.

The title of this post, is the same as that of this article on Rail Technology Magazine.

This is the introductory paragraph.

Tees Valley Mayor Ben Houchen has announced (June 9th) a £35m transformation of Middlesbrough Station to transport more train services to the town, including the first direct rail link to London in decades.

The Rail Technology Magazine article indicates that Platform 2 at Middlesbrough station will be extended to handle Azuma trains. As the current platform looks to be around 150 metres long and this would be long enough for a five-car train, does this mean that in the future nine-car and ten-car Azumas will be able to run services to Middlesbrough?

Having seen since I wrote the related post, that Hull station has handled some nine-car Azumas, I feel that although five-car Azumas could probably use Middlesbrough station, it would seem prudent to make it possible for the longer trains to call.

Let’s suppose Middlesbrough, were playing a big London club in an important post-pandemic FA Cup match. LNER might want to run a nine-car Azuma to Middlesbrough to accommodate extra passengers.

Charging Battery Trains

LNER and TransPennine Express could be running battery electric Class 800 and Class 802 trains to Middlesbrough and/or Redcar Central stations.

This Hitachi infographic describes their Regional Battery Train, which can be created by adding batteries to the current trains.

With a range of 90 km. or 56 miles, these trains could be able to reach Middlesbrough from the electrification on the East Coast Main Line at Northallerton.

With most journeys, they should have sufficient energy in the battery to return without trouble.

But it would probably be prudent to have charging at Middlesbrough and/or Redcar Central to ensure a safe return.

These pictures were taken from the Eastern end of Platform 2, which is down to be lengthened.

Note.

  1. The freight lines behind Platform 2.
  2. There is plenty of space beyond the end of Platform 2.
  3. There appears to be space for a reversing siding with a charger.

I am sure that a suitable form of charging can be provided on Platform 2 at Middlesbrough station.

Conclusion

Middlesbrough station could be turned into a big asset for the town.

October 30, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , | Leave a comment

Hull Station

On my recent visit to Hull station I took these pictures.

This Google Map shows the station.

These are my thoughts on the station .

Platforms

Consider.

  • The station has seven platforms, which are numbers 1 to 7 from South to North.
  • My Hull Trains service from London arrived in the Northernmost platform, which is numbered 7.
  • Most Hull Trains services seem to use this platform.
  • LNER services also seem to use Platform 7.
  • Platforms 4, 5 and 6 seem to be the same length as Platform 7
  • A friendly station guy told me, that LNER have run nine-car Class 800 trains into the station. These trains are 234 metres long.
  • My pictures show that Platform 7 is more than adequate for Hull Train’s five-car Class 802 train, which is 130 metres long.
  • The platforms are wide.

This second Google Map shows the Western platform ends.

It looks to me, that the station should be capable of updating to have at least four platforms capable of taking trains, that are 200 metres long.

Current Long Distance Services To Hull Station

There are currently, two long distance services that terminate at Hull station.

  • One train per hour (tph) – Manchester Piccadilly – two hours
  • Eight trains per day (tpd) – London Kings Cross – two hours and forty-four minutes

Both services are run by modern trains.

Improvements To The Current London And Hull Service

I believe Hull Trains and LNER will run between London Kings Cross and Hull using battery-equipped versions of their Hitachi trains, within the next three years.

The trains will also be upgraded to make use of the digital in-cab signalling, that is being installed South of Doncaster, which will allow 140 mph running.

In Thoughts On Digital Signalling On The East Coast Main Line, I estimated that this could enable a two hours and thirty minute time between London Kings Cross and Hull.

It is very likely that the service will be hourly.

Hull Station As A High Speed Station

Plans for High Speed Two are still fluid, but as I said in Changes Signalled For HS2 Route In North, there is a possibility, that High Speed Two could be extended from Manchester Airport and Manchester Piccadilly to Leeds and ultimately to Newcastle and Hull.

In that post, I felt that services across the Pennines could be something like.

  • High Speed Two – Two tph between London and Hull via Manchester Airport, Manchester Piccadilly and Leeds
  • High Speed Two – One tph between London and Edinburgh via Manchester Airport, Manchester Piccadilly, Leeds, York and Newcastle.
  • Northern Powerhouse Rail – One tph between Liverpool and Edinburgh via Manchester Airport, Manchester Piccadilly, Leeds, York and Newcastle.
  • Northern Powerhouse Rail – Two tph between Liverpool and Sheffield via Manchester Airport and Manchester Piccadilly
  • Northern Powerhouse Rail – Two tph between Liverpool and Hull via Manchester Airport, Manchester Piccadilly and Leeds

There would be four tph between Manchester Airport and Hull via Manchester Piccadilly, Leeds and other intermediate stations.

I estimate that the following timings would be possible.

  • London Euston and Hull – two hours and 10 minutes – Currently two hours and forty-four minutes to London Kings Cross
  • Liverpool and Hull – one hour and thirty minutes – No direct service
  • Manchester and Hull – one hour and three minutes – Currently two hours

As I said earlier London Kings Cross and Hull could be only twenty minutes longer by the classic route on the East Coast Main Line.

I think it will be likely, that both High Speed Two and Northern Powerhouse Rail will use similar High Speed Two Classic-Compatible trains, which will have the following characteristics.

  • Two hundred metres long
  • Ability to run in pairs
  • 225 mph on High Speed Two
  • 125 mph and up to 140 mph on Classic High Speed Lines like East Coast Main Line, Midland Main Line and West Coast Main Line and sections of Northern Powerhouse Rail.

It would appear that as Hull station can already handle a nine-car Class 800 train, which is 234 metre long, it could probably handle the proposed High Speed Two Classic-Compatible trains.

I could see the following numbers of high speed trains terminating at Hull in a typical hour would be as follows.

  • Two High Speed Two trains from London Euston
  • Two Northern Powerhouse Trains from Liverpool Lime Street
  • One Hull Trains/LNER train from London Kings Cross

As Hull already has four platforms, that can accept 200 metre long trains, I don’t think the station will have any capacity problems.

Charging Battery Trains At Hull Station

If Hull Trains, LNER and TransPennine Express, decide to convert their Class 800 and Class 802 trains, that run to and from Hull to Hitachi Regional Battery Trains, they will need charging at Hull station, to be able to reach the electrification of the East Coast Main Line at Temple Hirst Junction.

In Thoughts On The Design Of Hitachi’s Battery Electric Trains, I said this about having a simple charger in a station.

At stations like Hull and Scarborough, this charger could be as simple as perhaps forty metres of 25 KVAC overhead electrification.

    • The train would stop in the station at the appropriate place.
    • The driver would raise the pantograph.
    • Charging would start.
    • When the battery is fully-charged, the driver would lower the pantograph.

This procedure could be easily automated and the overhead wire could be made electrically dead, if no train is connected.

Platforms 4 to 7 could be fitted out in this manner, to obtain maximum operational flexibility.

Full Electrification Of Hull Station

Full electrification of Hull station would also allow charging of any battery electric trains.

I would hope, that any partial electrification carried out to be able to charge trains would be expandable to a full electrification for the station and the connecting rail lines.

A Full Refurbishment

The station would need a full refurbishment and a possible sorting out of the approaches to the station.

But this type of project has been performed at Kings Cross and Liverpool Lime Street in recent years, so the expertise is certainly available.

These pictures are of Liverpool Lime Street station.

I could see Hull station being refurbished to this standard.

Conclusion

It is my belief that Hull would make a superb terminal station for both High Speed Two and Northern Powerhouse Rail

In the interim, it could be quickly developed as a modern terminal for long-distance battery electric trains to make services across the Pennines and to London zero carbon.

The work could also be organised as a series of smaller work packages, without interrupting train services to and from Hull.

 

 

 

 

 

 

 

October 9, 2020 Posted by | Transport | , , , , , , , , , , , , , | 1 Comment

Thoughts On The Design Of Hitachi’s Battery Electric Trains

If you look at a Class 800 or Class 802 train, they have underfloor diesel engines. Their powertrain is described like this in its own section in Wikipedia.

Despite being underfloor, the generator units (GU) have diesel engines of V12 formation. The Class 801 has one GU for a five to nine-car set. These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. The Class 800 and Class 802 bi-mode has three GU per five-car set and five GU per nine-car set. A five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8.

There have been rumours of overheating.

Hitachi’s Regional Battery Train

Hitachi have teamed up with Hyperdrive Innovation to create a Regional Battery Train. There is this Press Release on the Hyperdrive Information web site, which is entitled Hitachi Rail And Hyperdrive Agreement P[ens Way For Battery Trains Across Britain.

This Hitachi infographic gives the specification.

Note, that this is a 100 mph train, with a range of 56 miles.

Typical routes would include a route like Norwich and Stansted Airport via Cambridge.

  • It is 93 miles.
  • There are thirty-nine miles of electrification at the Stansted Airport end.
  • Norwich station is fully-electrified.
  • There is just 53 miles between the Trowse swing-bridge and Ely station, that is not electrified.

Trains would charge the batteries at both ends of the route and use battery power, where no electrification exists.

There are many similar routes like this in the UK.

Hitachi have also produced this video.

My thoughts lead me to a few questions.

Are The Battery Modules Simulated Diesel Engines?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

Stadler have three very similar trains, that are destined for the UK.

All share the same PowerPack-in-the-Middle design, which is shown in this picture.

There are four slots in the PowerPack, with two on either side and they can all hold, either a diesel engine or a battery. Only, the Class 756 trains, are planned to have batteries at present, to make the trains tri-mode and capable of being powered by overhead electric, on-board batteries or a diesel generator.

If I was designing the battery modules to slot into the PowerPack, I and many other engineers would make the battery module deliver similar characteristics and plug compatibility to the diesel module.

The train’s control computer, would be simpler to program and debug and would use modules appropriately to drive the train according to the driver’s instructions.

This interchangeability would also give the operator lots of flexibility, in how they configured and used the trains.

So will Hyperdrive Innovation use an approach for Hitachi, where the battery module has similar characteristics and plug compatibility to the current diesel module?

I wouldn’t be surprised if they did, as it allows modules to be quickly swapped as operational needs change and the train’s computer sorts out the train’s formation and acts accordingly.

On An Hitachi Regional Battery Train Will All Diesel Engines Be Replaced With Battery Modules?

If the computer is well-programmed, it should handle any combination of diesel engines and battery modules.

Perhaps for various routes different combinations might apply.

  • For maximum battery range, all modules would be batteries.
  • For maximum power, all modules would be diesel engines.
  • To handle some out and back routes, there might be three battery modules and a diesel engine to charge the batteries before return.
  • Could perhaps one or two battery modules be fitted to avoid using the diesel engines in stations and in sensitive areas?

On some routes all diesel engines will be replaced with batteries on Battery Regional Trains, but on others there could be a mixture of both battery and diesel engines.

It should be noted that Stadler achieve the same flexibility with their PowerPack-in-the-Middle design.

Operators will like this flexibility.

What Is The Capacity Of A Battery Module?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that an all-electric Class 801 train uses 3.42 kWh per vehicle mile.

I can do a simple estimate based on this figure.

When running on batteries the train will need less energy due to less air resistance, because it is going at 100 mph, rather than 125 mph.

  • If the energy use is proportional to the speed, then at 100 mph, the energy use will be 2.73 kWh per vehicle mile.
  • But if the energy use is proportional to the square of the speed, the energy use will be 2.19 kWh per vehicle mile.

I will compromise and use 2.5 kWh per vehicle mile.

Total energy needed to move a five-car train 56 miles would be 5 x 56 x 2.5 or 700 kWh, which could be three batteries of 233 kWh.

These are not outrageous sizes and the batteries could probably be of a comparable weight to the current diesel engines. So replacement wouldn’t affect the handling of the train.

In addition, the batteries would need to be large enough to hold all the regenerated by braking during a stop.

  • The weight of a Class 800 train is 243 tonnes.
  • It can carry 326 passengers, who probably weigh 80 Kg with baggage, bikes and buggies.
  • This gives a total train weight of 269 tonnes.
  • Using Omni’s Kinetic Energy Calculator, the kinetic energy at 100 mph is just 75 kWh.
  • For completeness, at 125 mph, the kinetic energy is 117 kWh and at 140 mph, the kinetic energy is 146 kWh.

All these figures are small compared to the battery size needed for traction.

Will East Coast Train’s Class 803 trains Use The Same Technology?

On East Coast Trains‘s Class 803 trains, batteries will be fitted to maintain onboard services, in case of a power failure.

Have these batteries been designed by Hyperdrive Innovation, with perhaps less capacity?

As East Coast Trains’s route between London Kings Cross and Edinburgh is fully electrified, the trains probably won’t need any auxiliary traction power.

But would increasing the battery size make this possible?

Where Do Avanti West Coast Class 807 Trains Fit In?

Avanti West Coast‘s Class 807 trains are also members of the same Hitachi A-Train family.

In the January 2020 Edition of Modern Railways, there is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services, which have now been numbered as Class 807 trains.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

It may also have the wiring for a diesel engine or a battery module, should operational experience indicate one is needed.

Will All Cars Be Wired Ready For A Diesel Or Battery Module?

A five-car Class 802 train currently has a diesel engine in cars 2, 3 and 4.

The Hitachi infographic says that a Regional Battery Train has a range of 56 miles on batteries.

Let’s assume that this range applies to a Class 802 train, that has been fitted with three battery modules.

If we take Hull Trains as an example, their Class 802 trains do the following sections using their diesel engines

  • Temple Hirst Junction and Beverley – 44.34 miles or 87 miles round trip
  • Temple Hirst Junction and Hull – 36 miles or 72 miles round trip

These distances mean that with a 56 mile range, there needs to be some form of changing at Hull and/or Beverley.

But supposing all cars are wired to accept batteries or diesel engines. This could mean the following.

  • A train with three batteries and a range of 56 miles, could fit a standard diesel engine as a range extender, which could also be used to charge the batteries at Hull or Beverley.
  • A train with four batteries, could have a range of 75 miles, which with regenerative braking and precise energy-saving driving could be able to go between Temple Hirst Junction and Hull and back on battery power.
  • A train with four batteries and a diesel engine,, could have a range of 75 miles on battery power. The diesel energy could be used as a range extender or to charge the batteries at Hull and/or Beverley.
  • Could a train with five batteries, which could have a range of 90 miles, be able to reach Beverley and return to Temple Hirst Junction?

Note.

  1. I have assumed that battery range is proportional to the number of batteries.
  2. There must also be scope for running slower to cut the amount of energy used.

In addition, all Hull Trains schedules seem to spend fifteen minutes or more in Hull station. This would be enough time to recharge the batteries.

I’m fairly certain, that if all cars were wired  for batteries or diesel engines, it would give the operators a lot of flexibility.

Running With Batteries And A Range Extender Diesel Engine

The LEVC TX taxi is described as a plug-in hybrid range extender electric vehicle, where a small petrol engine, can also be used to generate electricity to power the vehicle.

Suppose a Class 802 train was fitted with two battery modules and a diesel engine. Could the diesel act as a range extender, in the same way as the petrol engine does on the LEVC TX?

The diesel engines fitted to a Class 802 train are 700 kW, so if I’m right about the train having total battery capacity of 700 kWh, one engine would take an hour to charge the batteries.

Returning to my Hull Trains example, drivers could probably ensure that the train didn’t get stranded by judicial use of the a single diesel engine to charge the batteries, whilst running in rural areas along the route.

As there would only be one diesel engine rather than three, the noise would be much lower.

I suspect too, that a simple charger in Hull station could charge a train, as it passes through, to make sure it doesn’t get stranded in the countryside.

I suspect that a mix of batteries and diesel engines could be part of an elegant solution on some routes.

  • Edinburgh and Aberdeen
  • Edinburgh and Inverness
  • London Kings Cross and Hull
  • London Paddington and Swansea
  • London St. Pancras and Sheffield.
  • London St. Pancras and Nottingham

It might also be a useful configuration on some TransPennine routes.

Charging Battery Trains

Having a charger in a terminal station would open up a lot of routes to Hitachi’s battery electric trains.

At stations like Hull and Scarborough, this charger could be as simple as perhaps forty metres of 25 KVAC overhead electrification.

  • The train would stop in the station at the appropriate place.
  • The driver would raise the pantograph.
  • Charging would start.
  • When the battery is fully-charged, the driver would lower the pantograph.

This procedure could be easily automated and the overhead wire could be made electrically dead, if no train is connected.

It should be noted that Hitachi have recently acquired ABB’s power grid business, as announced in this Hitachi press release which is entitled Hitachi Completes Acquisition of ABB’s Power Grids Business; Hitachi ABB Power Grids Begins Operation.

Rail is not mentioned, but mobility is. So will this move by Hitachi, strengthen their offering to customers, by also providing the systems in stations and sidings to charge the trains.

This Google Map shows Hull station, with its large roof.

Could an integrated solution involving solar panels over the station be used to power electrification to charge the trains and dome electric buses next door?

Integrated solutions powered by renewable energy would appeal to a lot of municipalities seeking to improve their carbon profile.

Conclusion

These trains will transform a lot of rail services in the UK and abroad.

 

 

 

 

 

October 9, 2020 Posted by | Transport | , , , , , , , , , | 3 Comments

Hopes Rekindled Of Full Midland Main Line Electrification

The title of this post, is the same as that of this article on Rail Magazine.

This is the key section of the article.

During a House of Commons debate on transport on September 17, HS2 Minister Andrew Stephenson said in response to a question from Alex Norris (Labour/Co-op, Nottingham North): “We are currently delivering the Midland Main Line upgrade, which includes electrification from London to Kettering, with additional electrification to Market Harborough being developed.

“Further electrification of the MML is currently at an early stage, but it is being examined by Network Rail.”

Stephenson said the DfT will continue to work closely with NR on the development of a proposal that would include approaches to advancing the delivery of electrification across the route.

The title of the article, probably sums it up well.

Electrification Of The Midland Main Line

Having read lots of stories about electrification of Midland Main Line, I think the following must be born in mind.

  • Electrification on the line will reach as far North as Market Harborough station.
  • The route between Sheffield station and Clay Cross North Junction will be shared with High Speed Two. It will obviously need to be electrified for High Speed Two.
  • The section of the Midland Main Line between Derby and Clay Cross North Junction, runs through the World Heritage Site of the Derwent Valley Mills. The Heritage Taliban will love the electrification, with a vengeance.
  • Electrification through Leicester station could be tricky, as the station building and the A6 road are over the tracks and there is limited clearance. Electrification could involve major disruption to the trains for some time.

These are some of the distances involved of sections of the route that are not electrified.

  • Market Harborough and Derby are 54 miles apart.
  • Market Harborough and Clay Cross North Junction are 67 miles apart.
  • Market Harborough and Chesterfield are 70 miles apart.
  • Market Harborough and Nottingham are 44 miles apart
  • Market Harborough and Leicester are 16 miles apart.
  • Derby and Clay Cross North Junction are 21 miles apart.

Since 2017, when electrification for the full route was originally abandoned, there have been big changes in rolling stock technology.

The biggest change has been the development of battery trains.

Hitachi’s Regional Battery Trains

This infographic from Hitachi gives the specification for their Regional Battery Train.

Note.

  1. The trains have a range of 56 miles on battery power.
  2. The trains can cruise at 100 mph on battery power.
  3. Hitachi have said that all of their AT-300 trains can be converted into Regional Battery Trains.
  4. Trains are converted by removing the diesel engines and replacing them with battery packs.
  5. I suspect these battery packs look like a diesel engine in terms of control inputs and performance to the driver and the train’s computer.

It is extremely likely, that the bi-mode Class 810 trains, which are a version of the AT-300 train, that have been ordered for the Midland Main Line can be converted into Regional Battery Trains.

These trains have four diesel engines, as opposed to the Class 800 and Class 802 trains, which only have three.

These are reasons, why the trains could need four engines.

  • The trains need more power to work the Midland Main Line. I think this is unlikely.
  • Four engine positions gives ,more flexibility when converting to Regional Battery Trains.
  • Four battery packs could give a longer range of up to 120 kilometres or 75 miles.

It could just be, that Hitachi are just being conservative, as engines can easily be removed or replaced. The fifth-car might even be fitted with all the wiring and other gubbins, so that a fifth-engine or battery pack can be added.

I suspect the train’s computer works on a Plug-And-Play principle, so when the train is started, it looks round each car to see how many diesel engines and battery packs are available and it then controls the train according to what power is available.

London St. Pancras And Sheffield By Battery Electric Train

Any battery electric train going between London St. Pancras and Sheffield will need to be charged, at both ends of the route.

  • At the London end, it will use the electrification currently being erected as far as Market Harborough station.
  • At the Sheffield end, the easiest way to charge the trains, would be to bring forward the electrification and updating between Sheffield station and Clay Cross North Junction, that is needed for High Speed Two.

This will leave a 67 mile gap in the electrification between Market Harborough station and Clay Cross North junction.

It looks to me, the Class 810 trains should be able to run between London St. Pancras and Sheffield, after the following projects are undertaken.

  • Class 810 trains are given four battery packs and a battery range of 75 miles.
  • Electrification is installed between Sheffield station and Clay Cross North Junction.

Trains would need to leave Market Harborough station going North and Clay Cross Junction going South with full batteries.

Note.

  1. Trains currently take over an hour to go between Chesterfield to Sheffield and then back to Chesterfield, which would be more than enough to fully charge the batteries.
  2. Trains currently take around an hour to go between London St. Pancras and Market Harborough, which would be more than enough to fully charge the batteries.
  3. Chesterfield station is only three miles further, so if power changeover, needed to be in a station, it could be performed there.
  4. Leeds and Sheffield are under fifty miles apart and as both stations would be electrified, London St. Pancras and Sheffield services could be extended to start and finish at Leeds.

London St. Pancras and Sheffield can be run by battery electric trains.

London St. Pancras And Nottingham By Battery Electric Train

Could a battery electric train go from Market Harborough to Nottingham and back, after being fully-charged on the hour-long trip from London?

  • The trip is 44 miles each way or 88 miles for a round trip.
  • Services have either three or eight stops, of which two or three respectively are at stations without electrification.
  • Trains seem to take over thirty minutes to turnback at Nottingham station.

Extra power North of Market Harborough will also be needed.

  • To provide hotel power for the train, during turnback at Nottingham station.
  • To compensate for power losses at station stops.

If 75 miles is the maximum battery range, I doubt that a round trip is possible.

I also believe, that Hitachi must be developing a practical solution to charging a train during turnback, at a station like Nottingham, where trains take nearly thirty minutes to turnback.

If the Class 810 trains have a battery range of 75 miles, they would be able to handle the London St. Pancras and Nottingham service, with charging at Nottingham.

Conclusion

It appears that both the Nottingham and Sheffield services can be run using battery electric Class 810 trains.

  • All four diesel engines in the Class 810 trains would need to be replaced with batteries.
  • The route between Clay Cross North Junction and Sheffield station, which will be shared with High Speed Two, will need to be electrified.
  • Charging facilities for the battery electric trains will need to be provided at Nottingham.

On the other hand using battery electric trains mean the two tricky sections of the Derwent Valley Mills and Leicester station and possibly others, won’t need to be electrified to enable electric trains to run on the East Midlands Railway network.

Will it be the first main line service in the world, run by battery electric trains?

 

September 28, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 1 Comment

Running Battery Electric Trains Between London Marylebone And Aylesbury

This post was suggested by Fenline Scouser in a comment to Vivarail Targets Overseas Markets, where they said.

I have long thought that one UK application that would make sense is the Marylebone – Aylesbury via Harrow on the Hill service, the intermediate electrified section lending itself to full recharge on each trip. ? stabling facility at Aylesbury with overnight charging.

It does look to be an idea worth pursuing.

Current And Future Services

Currently, the services between London Marylebone and Aylesbury are as follows.

  • London Marylebone and Aylesbury via High Wycombe
  • London Marylebone and Aylesbury via Amersham
  • London Marylebone and Aylesbury Vale Parkway via Amersham

All services are one train per hour (tph)

In the future, it is planned to extend the Aylesbury Vale Parkway service to Milton Keynes, according to information I found on the East West Rail web site.

  • It looks like the service will go via High Wycombe, Saunderton, Princes Risborough, Monks Risborough, Little Kimble, Aylesbury, Aylesbury Vale Parkway, Winslow and Bletchley.
  • The service will have a frequency of 1 tph.
  • Time between Milton Keynes and Aylesbury is quoted as 33 minutes.
  • Time between High Wycombe and Milton Keynes is quoted as 63 minutes.

Will this leave the Marylebone and Aylesbury are as follows?

  • 1 tph – London Marylebone and Aylesbury via High Wycombe.
  • 2 tph – London Marylebone and Aylesbury via Amersham

Passengers between London Marylebone and Aylesbury would have the same service.

Distances

These are a few distances, of which some have been estimated.

  • London Marylebone and Harrow-on-the-Hill – 9.18 miles.chains
  • Amersham and Harrow-on-the-Hill – 14.27 miles.chains – Electrified
  • Aylesbury and Amersham – 15.23 miles.chains
  • London Marylebone and High Wycombe – 28.11 miles.chains
  • Aylesbury and High Wycombe – 15.28 miles.chains
  • Aylesbury and Aylesbury Vale Parkway – 2.25 miles.chains
  • Aylesbury Vale Parkway and Calvert – 8.19 miles.chains
  • Aylesbury and Milton Keynes – 16.40 miles.chains – Estimated

Note that there are eighty chains to the mile.

Hitachi’s Regional Battery Train

Hitachi’s Regional Battery Train, is the only battery electric train intended for the UK network for which a detailed specification has been released.

This infographic from Hitachi gives the specification.

Note that ninety kilometres is fifty-six miles.

I would suspect that battery trains from other manufacturers, like Bombardier, CAF and Stadler, will have a similar specification.

Battery Electric Trains Between London Marylebone And Aylesbury

I’ll take each possible route in turn.

London Marylebone And Aylesbury Via Amersham

The three sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified

Note.

  1. The total distance is 38.85 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Vale Parkway Via Amersham

The four sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified
  • Aylesbury and Aylesbury Vale Parkway – 2.31 miles – Not Electrified

Note.

  1. The total distance is 41.16 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury Vale Parkway and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Via High Wycombe

The two sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified

Note.

  1. The total distance is 43.50 miles
  2. There is no electrification to charge the trains.

A battery electric train, with the range of a Hitachi Regional Battery Train will need charging to work this route.

However, with charging at both ends, this would be a route for a battery electric train.

At the London Marylebone end, there are two possible solutions.

  • Electrify the station traditionally, together with perhaps the tracks as far as Neasden, where the routes split. Either 750 VDC third-rail or 25 KVAC overhead electrification could be used.
  • Fit fast charging systems into all the platforms at the station.

Note.

  1. Turnround times in Marylebone station are typically nine minutes or more, so using a charging system should be possible.
  2. Power for the electrification should not be a problem, as the station is close to one of London’s central electricity hubs at Lisson Grove by the Regent’s Canal.

The final decision at Marylebone, would be one for the engineers and accountants.

At the Aylesbury end, it should be noted that much of the under twenty miles of track between Princes Risborough and Aylesbury and on to Aylesbury Vale Parkway and Calvert us single-track.

So why not electrify from Princes Risborough and Calvert, where the route joins the East West Railway?

The electrification in Aylesbury station could also be used to top-up trains going to London via Amersham.

I would use 25 KVAC overhead electrification, using lightweight gantries like these, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

London Marylebone And Milton Keynes Via High Wycombe, Aylesbury and Aylesbury Vale Parkway

The three sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified
  • Aylesbury and Milton Keynes – 16.50 miles – Partially Electrified

Note.

  1. The total distance is sixty miles
  2. There is some electrification to charge the trains between Bletchley and Milton Keynes.

A battery electric train, with the range of a Hitachi Regional Battery Train should be able to work this route, if they can work London Marylebone and Aylesbury, with charging at Aylesbury.

Milton Keynes Central is a fully-electrified station.

The picture shows Platform 2A, which is South-facing electrified, five-car platform, which could be used by the Chiltern service.

Train Specification

Consider.

  • Chiltern Railway’s workhorse is a Class 168 train, which is a diesel multiple unit of up to four cars, with a 100 mph operating speed.
  • The longest leg without electrification could be London Marylebone and Aylesbury via High Wycombe, which is 43.5 miles.
  • Hitachi’s Regional Battery Train has a range of fifty-six miles.
  • As there is a need to work with London Underground electrification, a dual-voltage train will be needed.

So a battery electric train with this specification would probably be ideal.

  • Four cars
  • Ability to work with both 750 VDC third-rail and 25 KVAC overhead electrification.
  • 100 mph operating speed.
  • Battery range of perhaps 55 miles.

Could the specification fit a battery-equipped Class 385 train, which will probably be built for Scotland?

Conclusion

I am convinced that battery electric trains can run between London Marylebone and Aylesbury, Aylesbury Vale Parkway and Milton Keynes stations.

The following would be needed.

  • A battery electric range of perhaps fifty-five miles.
  • Some form of charging at Marylebone and Aylesbury stations.

I would electrify, the single-track route between Princes Risborough and Aylesbury Vale Parkway.

September 4, 2020 Posted by | Transport | , , , , , , , , , , , | Leave a comment

Replacement Of South Western Railway’s Class 158/159 Trains

South Western Railway use Class 158 and Class 159 trains on the following routes.

  • London Waterloo and Salisbury (and Yeovil Pen Mill)
  • London Waterloo and Exeter St Davids
  • Romsey and Salisbury
  • Salisbury and Bristol Temple Meads

The two types of train are very similar, with the Class 159 trains being converted from Class 158 trains.

  • There are ten two-car Class 158 trains in service with South Western Railway. which have a capacity of around 140 seats
  • There are thirty three-car Class 159 trains in service with South Western Railway, which have a capacity of 196 seats
  • Each car has a diesel engine driving two axles through a hydraulic transmission.
  • Both trains have an operating speed of 90 mph.
  • The trains are all around thirty years old.

I took these pictures on my trip to Basingstoke station on Friday, when I rode in nine-car formation of three Class 159 trains both ways.

Note.

  1. For much of the route between Clapham Junction and Basingstoke, the trains were doing just a few mph short of ninety on the 100 mph route.
  2. The interiors are fairly spacious and I got a table seat both ways.

As diesel multiple units go, there are worse ones in service in the UK. And I don’t mean Pacers.

Replacement Possibilities

Ideally, these trains should be replaced with zero-carbon trains.

As most of the routes, on which the trains run are not-electrified, there must either be a lot of new third-rail electrification or battery electric trains must be used.

These are my thoughts for the various trains.

Two-Car Class 158 Train

These trains have the following specification.

  • Length – 46 metres
  • Seats – 140
  • Operating Speed – 90 mph

In Converting Class 456 Trains Into Two-Car Battery Electric Trains, I stated that these Class 456 battery electric trains would have the following specification.

  • Seats – 113
  • Range on Battery Power – 30-40 miles
  • Operating Speed – 75 mph

I also felt that as the trains would receive a new AC traction system, that the operating speed could be increased to perhaps 90 mph.

I wouldn’t be surprised to find, that a professional conversion capitalising on Alstom’s work to create the Class 600 hydrogen train, could turn a Class 456 train into a battery electric replacement for a two-car Class 158 train.

Three-Car Class 159 Train

These trains have the following specification.

  • Length – 69 metres
  • Seats – 196
  • Operating Speed – 90 mph

Could these be replaced with a three-car Class 456 battery electric train, lengthened by the addition of a Trailer Car from a Class 321 train, that has been converted to a Class 600 hydrogen train?

As most Class 159 trains probably work in longer formations, this could be a possibility, to replace units working alone.

Two Three-Car Class 159 Trains Working As A Six-Car Formation

These trains have the following specification.

  • Length – 138 metres
  • Seats – 392
  • Operating Speed – 90 mph

This formation would be impossible for Class 456 battery electric trains, so it must be a case for calling up the heavy brigade, in the shape of Hitachi’s Regional Battery Train, which is described in this Hitachi infographic.

A five-car version of this train could have the following specification.

  • Length – 130 metres
  • Seats – 326
  • Range on battery power – 56 miles
  • Operating Speed – 100 mph
  • It would probably be able to work with both 25 KVAC overhead and 750 VDC third-rail electrification.

Note.

  1. More seats could probably be fitted if needed.
  2. Platforms where the trains would work can already accept nine-car Class 159 trains, which are 207 metres long.
  3. The trains would charge the batteries using the electrification between London Waterloo and Basingstoke.
  4. Fast Charge facilities would also be needed at some intermediate and terminal stations like Bristol Temple Meads, Exeter St. Davids, Salisbury, Westbury and Yeovil Junction.
  5. These trains would be ten mph faster than the Class 159 trains and this may enable the saving of a few minutes between London Waterloo and Basingstoke stations.

A six-car version would be possible, if more capacity is needed.

Three Three-Car Class 159 Trains Working As A Nine-Car Formation

These trains have the following specification.

  • Length – 207 metres
  • Seats – 588
  • Operating Speed – 90 mph

An eight-car version of Hitachi’s Regional Battery Train could have the following specification.

  • Length – 208 metres
  • Seats – 522
  • Range on battery power – 56 miles
  • Operating Speed – 100 mph
  • It would probably be able to work with both 25 KVAC overhead and 750 VDC third-rail electrification.

Note.

  1. More seats could probably be fitted if needed.
  2. Platforms where the trains would work can already accept nine-car Class 159 trains, which are 207 metres long.
  3. The trains would charge the batteries using the electrification between London Waterloo and Basingstoke.
  4. Fast Charge facilities would also be needed at some intermediate and terminal stations like Bristol Temple Meads, Exeter St. Davids, Salisbury, Westbury and Yeovil Junction.
  5. These trains would be ten mph faster than the Class 159 trains and this may enable the saving of a few minutes between London Waterloo and Basingstoke stations.

A nine-car version would be possible, if more capacity is needed.

More Capacity Between London Waterloo And Basingstoke

London Waterloo and Basingstoke was very busy before COVID-19 and it needed more capacity.

  • All the express passenger trains are capable of 100 mph, with the exception of the diesel Class 158 and Class 159 trains, which can only do 90 mph.
  • If these diesel trains were to be replaced by Hitachi’s Regional Battery Trains, these trains will be able to do 100 mph on battery power.

This speed increase will enable faster journey times and increase capacity.

  • But between London Waterloo and Basingstoke, they will be using the third-rail electrification.
  • Class 800 and Class 801 trains, which are cousins of the Regional Battery Train are currently able to do 125 mph between London Paddington and Swindon and London Kings Cross and Doncaster.
  • London and Doncaster is being upgraded to 140 mph running.

So will we see 125 mph running between London Waterloo and Basingstoke? I will be very surprised if we didn’t, before 2030.

Charging The Batteries

Much of the charging of batteries will be performed whilst running on electrified lines.

But as I indicated there will need to be Fast Charge facilities at intermediate and terminal stations.

The Need For A Universal Fast Charge Facility For All Battery Electric Trains

If you look at Salisbury for example, the facility would need to be able handle all types of battery electric trains. So the Government, Network Rail and the Office of Road and Rail must come up with a universal design of charging facility that can be used by all battery electric trains.

Standard UK electrification, which can be either 25 KVAC overhead or 750 VDC third-rail, can obviously be used, as all battery electric trains will be designed to be able to charge the batteries, whilst running on electrified lines.

But a Universal Fast Charge system is surely needed, that can charge every battery electric train running on the UK rail network.

Splash-and-Dash At Yeovil Junction Station

But I believe that trains like Hitachi’s Regional Battery Train, when working long routes like Salisbury and Exeter will need the equivalent of Formula One’s Splash-and-Dash, where a fast pit-stop enabled cars to complete the race in the most economic manner.

If you look at timings between Salisbury and Exeter on Real Time Trains, you find the following.

  • Salisbury and Exeter is 88.5 miles
  • Salisbury and Yeovil Junction is 39 miles
  • Yeovil Junction and Exeter St. Davids is 50 miles
  • Trains seem to be timed to wait between 8-14 minutes at Yeovil Junction station.
  • At several times during the day the Westbound and Eastbound services pass at Yeovil Junction station.

I would assume the wait and the passing, are so that trains can safely navigate the sections of single-track line, that are a legacy of British Rail’s policy of saving money, that affectively ruined the efficiency of sections of the network.

It would appear that a well-designed Universal Fast Charge facility at Yeovil Junction station could enable battery electric trains to run between Salisbury and Exeter St Davids stations, without any adjustment to the existing timetable.

This Google Map shows Yeovil Junction station.

Note.

  1. Yeovil Junction station is in the South West corner of the map.
  2. The West of England Main Line passes East-West through the station.
  3. The station has two platforms.
  4. The two lines running North to Yeovil Pen Mill and Westbury stations.
  5. The line running between the North side and the South-East corner of the map is the Heart of Wessex Line, between Yeovil Pen Mill in the North and Weymouth in the South.
  6. Most links between the West of England Main Line and the Heart of Wessex Line have been removed.

The station doesn’t appear short of space.

Great Western Railway’s Gloucester And Weymouth Service

If a link between Yeovil Junction station and the Heart of Wessex Line towards Weymouth, this would enable Great Western Railway’s Gloucester and Weymouth service to call at both Yeovil stations, with a reverse at Yeovil Junction.

It would surely, improve the train service for the town of Yeovil.

If in the future, it was desired to run the Gloucester and Weymouth service using a battery electric train, Yeovil Junction station could be used to charge the train’s batteries.

Vivarail’s Fast Charge System

Vivarail’s Fast Charge system has been patented and demonstrated and this could be used with both the battery electric Class 456 train and Hitachi’s Regional Battery Train.

So it could be used as an initial design for a Universal Fast Charge system.

Conclusion

A mix of these battery electric trains could probably replace the Class 158 and 159 trains.

  • Two-car Class 456 train
  • Three-car Class 456 train
  • Five-car Hitachi Regional Battery Train
  • Eight-car Hitachi Regional Battery Train

Note.

  1. Universal Fast Charge facilities would also be needed at some intermediate and terminal stations like Bristol Temple Meads, Exeter St. Davids, Romsey, Salisbury, Westbury and Yeovil Junction.
  2. Services between London Waterloo and Basingstoke could be faster.

These rebuilt and new trains would fully decarbonise South Western Railway.

 

 

August 16, 2020 Posted by | Energy Storage, Transport | , , , , , , , , | 4 Comments

Bristol Temple Meads Station – 28th July 2020

I took these pictures of Bristol Temple Meads station, when I visited.

Note.

  1. The station is Listed to the highest level of Grade 1.
  2. London services seem to use Platforms 15 and 16.
  3. There is quite a fair bit of space between the tracks.

.Do Network Rail need all the hassle of full electrification of one of Brunel’s most famous creations?

Bristol Temple Meads Station And Trains With a Battery Capability

Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, is described in this infographic from the company.

The proposed 90 km or 56 mile range would even be sufficient take a train between Chippenham and Bristol Temple Meads stations on a return trip. So this means that one of these trains could work the London Paddington and Bristol Temple Meads stations service via Bath Spa using the electrification between London Paddington and Chippenham stations.

But where could trains reach, if they were able to leave Bristol Temple Meads station with a fully-charged battery?

  • Bristol Parkway – 6 miles
  • Cardiff Central – 5 miles to the electrified Great Western Main Line.
  • Cheltenham Spa – 41 miles
  • Filton Abbey Wood – 4 miles
  • Gloucester – 39 miles
  • Newport – 5 miles to the electrified Great Western Main Line.
  • Severn Beach – 13.5 miles
  • Taunton – 45 miles
  • Westbury – 28.5 miles
  • Weston-super-Mare – 19 miles

Note.

  1. Return trips to Bristol Parkway, Filton Abbey Wood, Severn Beach and Western-super-Mare would be possible.
  2. The other destinations will need charging facilities.

Other local destinations could be added as the Bristol Metro develops.

This Google Map shows the station.

Note.

  1. The curving nature of the platforms doesn’t make 25 KVAC overhead electrification easy.
  2. Trains to and from London appear to use the two Eastern platforms 13 and 15.
  3. It might be possible to increase platform lengths to run longer trains to and from places like London.

I believe that there are three possible ways of charging the trains in Bristol Temple Meads station.

25  KVAC Overhead Electrification

This could be short length of standard 25 KVAC overhead electrification in platforms, that would be served by trains with pantographs like the Class 800 trains.

The driver would stop in the correct place in the platform and connect the pantograph, whilst waiting in the station.

Note that the Class 800 trains to and from London typically take 35-20 minutes to turn round, which is time enough for a full charge.

750 VDC Third-Rail Electrification

This could be short lengths of standard 750 VDC third-rail electrification in platforms, that would be used by standard third-rail shoes on trains.

The train would connect automatically and charging would take place, whilst waiting in the station.

A Specialist Charging Facility Like Vivarail’s Fast Charge System

Vivarail’s Fast Charge system is described in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

This extract from this Vivarail press release explains how the system works.

he concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

I believe that this system or something like it could be adapted to work with all trains with a battery capability in the UK.

I also believe that this system can be designed so that it is ultra-safe and doesn’t disrupt, the visual impact of the station.

Conclusion

Bristol Temple Meads station could be converted into a station, where a high proportion of trains ran solely on electricity.

 

 

 

July 30, 2020 Posted by | Transport | , , , , , , , | 5 Comments

Could Hitachi’s Class 800 Trains Work The Cornish Main Line On Battery Power?

The distance between Plymouth and Penzance stations along the Cornish Main Line is just seventy-nine miles and thirty-eight chains. I’ll call it 79.5 miles.

Hitachi’s proposed train is described in this infographic.

The range on battery power of 90 km or 56 miles, will not be quite enough to get all the way between Plymouth and Penzance!

But note the phrase – Allows Discontinuous Electrification; at the top of the infographic.

Will Electrification Be Needed?

Obviously or the train could perhaps wait at Truro for ten minutes to charge the batteries.

But how customer-unfriendly and disruptive to good operating practice is that?

Could Bigger Batteries Be Fitted?

This obviously is a possibility, but surely an operator would prefer all of their trains to have the same battery range and updating them all for a longer distance might not be an economic proposition.

Could Intelligent Discontinuous Third-Rail Electrification Be Used?

Third-rail electrification, is hated by the Health & Safety Taliban, as it occasionally kills people trespassing or falling on the railway. But in the UK, we have around 1,500 miles of third-rail electrified line, that generally operates to a high level of safety.

Can my modern successors make third-rail electrification absolutely safe in new installations?

Third-Rail And Discontinuous Electrification Installations!

To connect to overhead electrification, the driver or an automatic system on the train, must raise the pantograph. It doesn’t often go wrong, but when it does, it can bring down the wires. This section on panotograph weaknesses from Wikipedia give more details.

With third-rail, the connection and disconnection is automatic, with far less to go wrong.

These pictures show a gap in the third-rail electrification at the Blackfriars station, which was rebuilt in 2012, so it must meet all modern regulations.

Note the gap in the third-rail, which carries the current.

  • The third-rail shoes on the train disconnect and connect automatically, as the train passes through.
  • The only rails with voltage are between the tracks for safety.
  • The high-tech shields appear to be real tree wood painted yellow.

As an Electrical Engineer, I actually suspect, that this gap in the conductor rail, is to isolate the North and South London electricity supplies from each other,, so that a catastrophic failure on one side doesn’t affect both halves of Thameslink.

Third-Rail Electrification In Stations

Most rail passengers in the UK, understand third-rail electrification, if they’ve ever used trains in the South of London or Merseyside.

Electrifying stations using third-rail equipment could enable battery trains to go further.

  • Stopping trains could top-up their batteries.
  • Passing trains, that were low on power could make a pit-stop.
  • All trains would connect automatically to the third-rail, when in the station.

The safety level would be raised by making sure that the third-rail was electrically-dead unless a train was over the top.

I am by training a Control Engineer and one of my first jobs in a dangerous factory as a fifteen-year-old,  was designing and building safety systems, that cut power to guillotines, when the operator put their hands somewhere they shouldn’t! I remember endlessly testing the system with an old broom, which survived unscathed.

I believe that only switching on the electrification, when a train completes the circuit, is a fairly simple operation for modern control switchgear. I can imagine an intelligent switch constantly monitoring the resistance  and only switching on power, when the resistance in the circuit looks like a train.

Third-Rail Electrification In Discrete Locations

Overhead electrification can receive complaints in scenic locations, but third-rail electrification can be invisible in tunnels and over bridges and viaducts.

The Cornish Main Line has four tunnels, two bridges, which include the Royal Albert Bridge, and no less than thirty-two viaducts.

How many of these could be used to hide electrification?

  • Any electrified sections could be intelligently controlled to increase safety.
  • Power for the electrification could come from local renewable sources, using techniques like Riding Sunbeams.

I can see engineers developing several techniques for discrete electrification.

Third-Rail And Charging Battery Trains

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Hitachi And Third Rail

The picture shows a Hitachi Class 395 train at Gillingham station.

 

The silver-coloured  third-rail equipment is clearly visible, under the javelin logo.

These trains are cousins of all the new Hitachi trains in the UK, so I suspect fitting third-rail equipment to Class 80x trains, is just a matter of finding the appropriate documents on the computer and raiding the parts bin.

I suspect, as Hitachi will probably be building some more trains for Southeastern to start the Highspeed service between London St. Pancras and Hastings, that Hitachi are already working on the design of a third-rail high-speed train with batteries.

I doubt that Hitachi have any fears about fitting third-rail gear to their trains, as an optional extra.

Electrifying Between Plymouth And Penzance

Obviously, Plymouth and Penzance stations would have charging facilities, but now many would the trains handle the 79.5 miles in between?

There are three possibilities.

Limited-Third Rail Electrification

As I indicated earlier short lengths of intelligent third-rail electrification could be added at various places on the route.

A full battery would take the train fifty-six miles and as the Cornish Main Line is nearly eighty miles long, I suspect that the train would need almost a full charge halfway along the route.

  • Hitachi claim in the infographic, that a full-charge takes 10-15 minutes, when the train is static, so I will assume the largest figure of this range, as charging on the move might not be as efficient, with everything happening at 90 mph.
  • So I will assume a fifteen minute charge time.
  • Typically, a Class 80x takes two hours between Penzance and Plymouth, which is an average speed of just 40 mph.
  • In fifteen minutes, the train will go ten miles. So a rough estimate would say ten miles should be electrified.

As electrification in stations would allow trains to have a bigger sup, a scientifically-correct simulation would show the best philosophy.

The London Paddington and Penzance services call at the following stations, that are West of Plymouth.

Liskeard, Saltash, St. Germans, Bodmin Parkway, Lostwithiel, Par, St Austell, Truro, Redruth, Camborne, Hayle and St Erth

Note.

  1. Some smaller stations do get skipped.
  2. According to Real Time Trains, stops seem to take 1-2 minutes.
  3. Trains are usually nine- or ten-cars, but I feel that the proposed improvements between Bodmin General and Bodmin Parkway stations, that I wrote about in Increased Service Provision Bodmin General-Bodmin Parkway, may result in a large reorganisation of services between London and Cornwall.

Could it be that electrifying the major stations with third-rail electrification would enable enough power to be taken on board by a train running between London Paddington and Penzance, so that the journey could be completed?

Vivarail Fast Chargers

Vivarail’s Fast Chargers could be fitted at all or selected stations and trains could take a sip as and when they need.

A charger would also be needed at any Cornish terminal station, that would have services from battery electric trains.

A Mixture Of Third-Rail Electrification And Vivarail Fast Chargers

Both technologies are interchangeable and can be used with compatible battery electric trains.

I would expect an accurate mathematical model will indicate the best layout of electrification and Fast Chargers.

 

July 26, 2020 Posted by | Transport | , , , , , , , , , , | Leave a comment