The Anonymous Widower

The Future Of West Midlands Trains’s Class 350 Trains

Currently, West Midlands Trains have four sub-fleets of Class 350 trains.

  • Class 350/1 – 30 trains – Leased from Angel Trains
  • Class 350/2 – 37 trains – Leased from Porterbrook
  • Class 350/3 – 10 trains – Leased from Angel Trains
  • Class 350/4 – 10 trains –  Leased from Angel Trains

Note.

  1. All are 110 mph trains
  2. The trains are capable of being modified for 750 VDC third-rail electrification.

Under Future the Wikipedia entry for Class 350 trains says this.

West Midlands Trains announced that they would be replacing all 37 of their 350/2 units for Class 350/4 units cascaded from TransPennine Express and brand new Class 730 units which both can travel up to speeds of 110 mph.

In October 2018, Porterbrook announced it was considering converting its fleet of 350/2s to Battery electric multiple units for potential future cascades to non-electrified routes.

As West Midlands Trains have ordered 45 Class 730 trains for express services, it looks like they will be expanding services on the West Coast Main Line and around the West Midlands.

But it does appear that as many as thirty-seven trains will be returned to Porterbrook.

Class 350 Trains With Batteries

I believe that if fitted with batteries, these trains would meet or be very near to Hitachi’s specification, which is given in this infographic from Hitachi.

 

Note that 90 kilometres is 56 miles.

Could West Midlands Trains Run Any Services With Class 350 Trains With Batteries?

I think there are some possibilities

  • Birmingham New Street and Shrewsbury – 30 miles without electrification between Shrewsbury and Wolverhampton – Charging facility needed at Shrewsbury.
  • Birmingham New Street and Hereford via Worcester – 41 miles without electrification between Hereford and Bromsgrove – Charging facility needed at Hereford.
  • Leamington Spa and Nuneaton via Coventry – 19 miles without electrification – Charging on existing electrification at Coventry and Nuneaton.
  • The proposed direct Wolverhampton and Walsall service, that i wrote about in Green Light For Revived West Midlands Passenger Service.

There may also be some services added because of the development of the Midlands Rail Hub and extensions to London services,

Who Has Shown Interest In These Trains?

I can’t remember any reports in the media, about any train operator wanting to lease these trains; either without or with batteries.

Conclusion

It does all seem a bit strange to me.

  • As a passenger, I see nothing wrong with these trains.
  • They are less than twenty years old.
  • They are 110 mph trains.
  • They have 2+2 interiors, with lots of tables.
  • They could be fitted with batteries if required.

But then, all of those things could be said about Greater Anglia’s Class 379 trains.

 

July 20, 2020 Posted by | Transport | , , , , , , , | 1 Comment

Beeching Reversal – Stockport And Ashton Line

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

I came across this railway, when I was writing Macclesfield Station And High Speed Two, as I felt the Stockport and Stalybridge Line could be a useful connection to the proposed High Speed Two terminus at Macclesfield station.

This article on the Quest Media Network is entitled Proposals For New Rail Link Between Ashton And Stockport.

This paragraph described the political backing.

The Labour politicians are backing a bid to the ‘Restoring Your Railway Fund’, which will distribute £500 million of funds to reinstate axed local services and restore stations. 

The bid was put forward by Transport for Greater Manchester (TfGM) and Stockport Council, but also has the backing of Tameside Council.

Not fans of Boris, I would presume!

These paragraphs describe the proposals

It proposes two options – a heavy rail service between Stockport and Manchester Victoria via Denton and Reddish South, and a light rail service connecting with the existing Manchester-Ashton Metrolink line at Ashton Moss in the north, and with the proposed Stockport-East Didsbury line in the south.

The proposals also open possibilities of new stations along the line at Audenshaw, Thornley Lane and Heaton Norris.

These are my thoughts.

Macclesfield As A Terminal

As I said in conjunction with High Speed Two, I believe that Macclesfield station would make a good terminal, where a Stockport-facing platform could be built, which would give step-free access to the hourly High Speed Two train to Stoke, Stafford and London.

Manchester Victoria And Stockport

This route map, which has been clipped from Wikipedia, shows the route between Manchester Victoria and Stockport stations.

Note.

  1. The connection to Manchester Victoria station joins at Denton Junction.
  2. There are possible stations at Denton, Reddish South and Heaton Norris.
  3. Trains to Macclesfield station take the West Coast Main Line from Stockport station.
  4. At Stalybridge there is a connection to the Huddersfield Line for Huddersfield and Leeds.

Realtimetrains devolves this extra information.

  • Manchester Victoria and Stockport are twelve miles apart via Denton.
  • It is a busy freight route with upwards of a couple of trains per hour (tph)
  • There used to be a station at Miles Platting.

It is a comprehensive route and deserves a lot more than a simple hourly service to Manchester Victoria station.

Battery Electric Trains

Consider.

  • Macclesfield, Manchester Victoria and Stockport stations are all fully electrified.
  • About twelve miles of track are not electrified.
  • Manchester Victoria and Macclesfield stations are twenty-four miles apart.
  • I estimate a four-car 100 mph battery electric train like a Class 350 train would do the trip in close to 25 minutes.

It looks like an ideal route for a battery electric train to me.

Two trains would be needed to run a two tph service, with no extra infrastructure.

Conclusion

Develop a service between Manchester Victoria and Macclesfield stations using battery electric trains, with at least a frequency of two tph.

 

July 15, 2020 Posted by | Transport | , , , , , , , | 2 Comments

The World’s First Bi-Mode Hydrogen-Electric Train

This news page on the University of Birmingham web site is entitled HydroFLEX Secures Funding For Hydrogen-Powered Train Design.

The page is mainly about the new funding from Innovate UK, that I wrote about in First Of A Kind Funding Awarded For 25 Rail Innovation Projects, but it also includes this significant paragraph.

As well as being the UK’s first hydrogen-powered train, HydroFLEX is also the world’s first bi-mode electric hydrogen train. It will be undergoing mainline testing on the UK railway in the next few weeks.

One of my disappointments in the design of the Alstom Coradia iLint, is that, it is designed as a hydrogen-power only train, where it could surely have had a pantograph fitted, for more efficient working.

Consider.

  • I suspect many hydrogen-powered trains will only be doing short distances, where electrification is not available, so daily distances under hydrogen power could be quite short.
  • In the UK, a smaller hydrogen tank would certainly ease the design problems caused by a large fuel tank.
  • There have been improvements in hydrogen storage in recent years.

The funding award to the project talks about raft production, so are the engineers, aiming to design a hydrogen power-pack on rafts, that could be fitted underneath the large fleets of retired electric multiple units, that are owned by Porterbrook.

Now that would be a game changer.

  • Porterbrook have thirty-seven Class 350 trains, that will be replaced in the next few years by new trains. The electric trains are less than a dozen years old and Porterbrook have been talking about fitting batteries to these trains and creating a battery/FLEX train. Would making these trains bi-mode hydrogen-electric trains be better?
  • Birmingham wants to open up new rail routes in the city on lines without electrification. What would be better than a hydrogen powered train, designed in the city’s premier university?
  • Routes from Birmingham to Burton-on-Trent, Hereford, Leicester, Shrewsbury, Stratford-on-Avon and Worcester would be prime candidates for the deployment of a fleet of bi-mode hydrogen-electric trains.
  • Birmingham have already asked ITM Power to build a hydrogen filling station in the city for hydrogen buses.

 

June 18, 2020 Posted by | Transport | , , , , , , , , , , | 3 Comments

TransPennine Express’s New Liverpool Lime Street And Glasgow Central Service

Transpennine Express are introducing a new service between Liverpool Lime Street and Glasgow Central stations at the December 2019 timetable change.

So I examined the service for the the 21st January, 2020.

  • There are three Northbound trains at 08:12, 12:12 and 16:12.
  • There are three Southbound trains at 07:45, 11:44 and 16:29
  • Journey times vary between three hours and 17 minutes and three hours and 47 minutes.
  • Trains appear to always stop at Wigan North Western, Preston, Penrith North Lakes and Carlisle.
  • Selective services call at other stations including Lancaster and St. Helens Central.

As passengers can always travel the route with a change at Preston, it is a useful start. It should also be born in mind that there are currently, two trains per hour (tph) between Glasgow Central and Preston stations, so the route with a change at Preston can be quicker than waiting for a direct train.

If you look at the Transpennine service between Manchester Airport and Glasgow Central stations, it appears that there are gaps in the hourly service at 08:00, 12:00 and 16:00.

These gaps have now been filled with Liverpool services.

Current and Future Trains Between Liverpool or Manchester and Glssgow or Edinburgh

The current service is run by nine Class 350 trains, which includes the following.

  • One tph between Between Manchester Airport and Glasgow Central, with three services missing.
  • One train every two hours between Manchester Airport and Edinburgh.

The service from the December 2019 change will at some point be run by twelve Class 397 trains.

It will add three trains per day between Liverpool Lime Street and Glasgow Central, which will give an hourly TranPennine service between Glasgow Central and Preston.

I estimate that the new service will require two more trains, which is incorporated in the larger fleet size.

Timings Between Preston And Glasgow

If you look at the limitings between Preston and Glasgow, you find the following.

  • Virgin’s Class 390 trains take between two hours 21 minutes and two hours 34 minutes.
  • The new Liverpool service is timetabled to take two hours 53 minutes.

As the current Class 350 trains are only 110 mph trains, this is the explanation.

But the new Class 397 trains are 125 mph trains and can probably match the times set by Virgin.

So expect to see some timing reductions on TransPennine’s routes on the West Coast Main Line.

Will Services Between Liverpool And Manchester and Glasgow Split And Join At Preston?

TransPennine Express are meeting their franchise obligations, by providing three trains per day between Liverpool ad Glasgow, but could they do better by splitting and joining services at Preston.

  • Going North, a service from Manchester Airport and one from Liverpool would join at Preston, before proceeding to Glasgow as a ten-car train.
  • Coming South, a pair of trains from Glasgow, would split at Preston, with one train going to Liverpool and the other to Manchester Airport.

Obviously, the trains would need to be able to split and join in a minute or so, but it would open up the possibility of an hourly service from both Liverpool and Manchester to Glasgow.

Liverpool And Manchester To Edinburgh

After the December 2019 timetable change, TransPennine’s Liverpool and Newcastle service will be extend to Edinburgh, giving Liverpool a direct service to \Edinburgh and Manchester, a second service to Edinburgh.

Timings by the various routes will be.

  • Liverpool and Edinburgh via Manchester, Leeds and York – Four hours 28 minutes – Hourly
  • Manchester Piccadilly and Edinburgh via Preston and Carstairs – Three hours 10 minutes – Two hourly
  • Manchester Victoria  and Edinburgh via Leeds and York – Three hours 52 minutes – Hourly

These times compare well with the four hours drive predicted on the Internet.

Conclusion

Connections between Northern England and the Central Belt of Scotland will improve greatly after the December 2019 timetable change.

New trains on these routes will also mean faster services, where they run on the East and |West Coast Main Lines.

More trains will also increase frequency.

 

November 17, 2019 Posted by | Transport | , , , , , , , | 2 Comments

Shapps Wants ‘Earlier Extinction Of Diesel Trains’

The title of this post, is the same as that of this article on the East London and West Essex Guardian.

This is the first two paragraphs of the article.

The phasing out of diesel trains from Britain’s railways could be intensified as part of the Government’s bid to cut carbon emissions.

Transport Secretary Grant Shapps told MPs he is “hugely concerned” that the current policy means diesel trains will continue to operate until 2040.

In some ways the positioning of the article in a newspaper serving East London and West Essex is a bit strange.

  • The only diesel trains in the area are freight trains, after the electrification of the Gospel Oak and Barking Line.
  • Grant Schapps constituency is Welwyn and Hatfield, which is twenty or so miles North of London.

It looks to me to be a syndicated story picked up by the paper.

But as it reports what he said to the Transport Select Committee, there is a strong chance that it is not fake news.

How Feasible Would It Be To Bring Forward The 2040 Diesel Extinction Date?

Government policy of an extinction date of 2040 was first mentioned by Jo Johnson, when he was Rail Minister in February 2018.

This article on Politics Home is entitled Rail Minister Announces Diesel Trains To Be Phased Out By 2040, gives more details about what Jo said.

Since then several developments have happened in the intervening nearly two years.

Scores Of Class 800 Trains Are In Service

Class 800 trains and their similar siblings can honestly be said to have arrived.

Currently, there appear to be over two hundred of these trains either delivered or on order.

Many have replaced diesel trains on Great Western Railway and LNER and stations like Kings Cross, Paddington and Reading are becoming over ninety percent diesel-free.

It should be noted that over half of these trains have diesel engines, so they can run on lines without electrification.

But the diesel engines are designed to be removed, to convert the trains into pure electric trains, when more electrification is installed.

Midland Main Line Upgrade

This line will be the next to be treated to the Hitachi effect, with thirsty-three of the second generation of Hitachi’s 125 mph trains.

  • The Hitachi trains will use electrification South of Melton Mowbray and diesel power to the North.
  • The trains will have a redesigned nose and I am sure, this is to make the trains more aerodynamically efficient.
  • The introduction of the trains will mean, that, all passenger trains on the Midland Main Line will be electric South of Melton Mowbray.
  • St. Pancras will become a diesel-free station.

Whether High Speed Two is built as planned or in a reduced form, I can see electrification creeping up the Midland Main Line to Derby, Nottingham and Sheffield and eventually on to Leeds.

Other Main Line Routes

The Midland Main Line will have joined a group of routes, that are  run partly by diesel and partly by electricity.

  • London and Aberdeen
  • London and Bradford
  • London and Cheltenham
  • London and Harrogate
  • London and Hull
  • London and Inverness
  • London and Lincoln
  • London and Middlesbrough
  • London and Penzance via Exeter and Plymouth.
  • London and Sunderland
  • London and Swansea
  • London and Worcester and Hereford

Once the Midland Main Line is upgraded, these main routes will only be these routes that use pure diesel for passenger routes.

  • TransPennine Routes
  • Chiltern Route
  • London and Exeter via Basingstoke
  • London and Holyhead

Plans already exist from West Coast Rail to use bi-mode on the Holyhead route and the Basingstoke route could also be a bi-mode route.

TransPennine and Chiltern will need bespoke solutions.

Some Electrification Has Happened

Electrification has continued at a slow pace and these schemes have been completed or progressed.

  • Chase Line
  • Between Birmingham and Bromsgrove
  • North West England
  • Between Edinbugh, Glasgow, Alloa, Dunblane and Stirling.
  • Gospel Oak to Barking Line
  • Between St. Pancras and Corby.
  • Crossrail

In addition London and Cardiff will soon be electrified and a lot of electrification designed by the Treasury in the past fifty years has been updated to a modern standard.

Battery Trains Have Been Developed And Orders Have Been Received Or Promised

Stadler bi-mode Class 755 trains have been delivered to Greater Anglia and these will be delivered as electric-diesel-battery trains to South Wales.

Stadler also have orders for battery-electric trains for Germany, which are a version of the Flirt called an Akku.

In the Wikipedia entry for the Stadler Flirt, this is a paragraph.

In July 2019, Schleswig-Holstein rail authority NAH.SH awarded Stadler a €600m order for 55 battery-powered Flirt Akku multiple unit trains along with maintenance for 30 years. The trains will start entering service in 2022 and replace DMUs on non-electrified routes.

55 trains at €600 million is not a small order.

Alstom, Bombardier, CAF, Hitacxhi and Siemens all seem to be involved in the development of battery-electric trains.

I think, if a train operator wanted to buy a fleet of battery trains for delivery in 2023, they wouldn’t have too much difficulty finding a manmufacturer.

Quite A Few Recently-Built Electric Trains Are Being Replaced And Could Be Converted To Battery-Electric Trains

In 2015 Bombardier converted a Class 379 train, into a battery-electric demonstrator.

The project showed a lot more than battery-electric trains were possible.

  • Range could be up to fifty miles.
  • The trains could be reliable.
  • Passengers liked the concept.

Judging by the elapsed time, that Bombardier spent on the demonstrator, I would be very surprised to be told that adding batteries to a reasonably modern electric train, is the most difficult of projects.

The Class 379 trains are being replaced by by brand-new Class 745 trains and at the time of writing, no-one wants the currents fleet of thirty trains, that were only built in 2010-2011.

In addition to the Class 379 trains, the following electric trains are being replaced and could be suitable for conversion to battery-electric trains.

There also may be other trains frm Heathrow Express and Heathrow Connect.

All of these trains are too good for the scrapyard and the leasing companies that own them, will want to find profitable uses for them.

Porterbrook are already looking at converting some Class 350 trains to Battery-electric operation.

Vivarail And Others Are Developing Fast Charging Systems For Trains

Battery trains are not much use, unless they can be reliably charged in a short time.

Vivarail and others are developing various systems to charge trains.

Hydrogen-Powered Trains Have Entered Service In Germany

Hydrogen-powered Alstom Coradia Lint trains are now operating in Germany.

Alstom are developing a Class 321 train powered by hydrogen for the UK.

Stadler’s Bi-Mode Class 755 Train

The Class 755 train is the other successful bi-mode train in service on UK railways.

I would be very surprised if Grant Schapps hasn’t had good reports about these trains.

They may be diesel-electric trains, but Stadler have made no secret of the fact that these trains can be battery electric.

Like the Class 800 train, the Class 755 train must now be an off-the-shelf solution to use on UK railways to avoid the need for full electrification.

Class 93 Locomotives

Stadler’s new Class 93 locomotive is a tri-mode locomotive, that is capable of running on electric, diesel or battery power.

This locomotive could be the best option for hauling freight, with a lighter carbon footprint.

As an example of the usability of this locomotive, London Gateway has around fifty freights trains per day, that use the port.

  • That is an average of two tph in and two tph out all day.
  • All trains thread their way through London using either the North London or Gospel Oak to Barking Lines.
  • Most trains run run substantially on electrified tracks.
  • All services seem to go to freight terminals.

With perhaps a few of miles of electrification, at some freight terminals could most, if not all services to and from London Gateway be handled by Class 93 locomotives or similar? Diesel and/or battery power would only be used to move the train into, out of and around the freight terminals.

And then there’s Felixstowe!

How much electrification would be needed on the Felixstowe Branch to enable a Class 93 locomotive to take trains into and out of Felixstowe Port?

I have a feeling that we’ll be seeing a lot of these tri-mode freight locomotives.

Heavy Freight Locomotives

One of the major uses of diesel heavy freight locomotives,, like Class 59 and Class 70 locomotives is to move cargoes like coal, biomass, stone and aggregate. Coal traffic is declining, but the others are increasing.

Other countries also use these heavy freight locomotives and like the UK, would like to see a zero-carbon replacement.

I also believe that the current diesel locomotives will become targets of politicians and environmentalists, which will increase the need for a replacement.

There could be a sizeable world-wide market, if say a company could develop a powerful low-carbon locomotive.

A Class 93 locomotive has the following power outputs.

  • 1,300 kW on hybrid power
  • 4,055 kW on electric

It also has a very useful operating speed on 110 mph on electric power.

Compare these figures with the power output of a Class 70 locomotive at 2,750 kW on diesel.

I wonder if Stadler have ideas for a locomotive design, that can give 4,000 kW on electric and 3,000 kW on diesel/battery hybrid power.

A few thoughts.

  • It might be a two-section locomotive.
  • Features and components could be borrowed from UKLight locomotives.
  • It would have a similar axle loading to the current UKLight locomotives.
  • There are 54 UKLight locomotives in service or on order for the UK.
  • Stadler will have details of all routes run by Class 59, Class 66 and Class 70 locomotives, in the UK.
  • Stadler will have the experience of certifying locomotives for the UK.

Stadler also have a reputation for innovation and being a bit different.

Conclusion

All pf the developments I have listed mean that a large selection of efficient zero carbon passenger trains are easier to procure,than they were when Jo Johnson set 2040 as the diesel extinction date.

The one area, where zero carbon operation is difficult is the heavy freight sector.

For freight to be zero-carbon, we probably need a lot more electrification and more electric locomotives.

October 19, 2019 Posted by | Transport, Uncategorized | , , , , , , , , , | 5 Comments

Irlam Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Irlam station is on the list.

These pictures show the station and the current subway.

The station was a total surprise, with a large pub-cafe and a lot of visitors and/or travellers sitting in the sun.

I had an excellent coffee and a very welcoming gluten-free blueberry muffin!

This Google Map shows the station.

It is one of those stations where commuters have to cross the railway either on the way to work or coming home.

So a step-free method of crossing the railway is absolutely necessary.

The Current And Future Rail Service

As the station lies conveniently between Liverpool and Warrington to the West and Manchester and Manchester Airport to the East, it must be a station with tremendous potential for increasing the number of passengers.

At the moment the service is two trains per hour (tph) between Liverpool Lime Street and Manchester Oxford Road stations.

  • Oxford Road is probably not the best terminus, as it is not on the Metrolink network.
  • When I returned to Manchester, many passengers alighted at Deansgate for the Metrolink.
  • On the other hand, Liverpool Lime Street is a much better-connected station and it is backed up by Liverpool South Parkway station, which has a connection to Merseyrail’s Northern Line.
  • The current service doesn’t serve Manchester Piccadilly or Airport stations.

A guy in the cafe also told me that two tph are not enough and the trains are often too short.

Merseyrail work to the same principle as the London Overground and other cities of four tph at all times and the frequency certainly draws in passengers.

Whilst I was drinking my coffee, other trains past the station.

  • One tph – Liverpool Lime Street and Manchester Airport
  • One tph – Liverpool Lime Street and Norwich

Modern trains like Northern’s new Class 195 trains, should be able to execute stops at stations faster than the elderly diesel trains currently working the route.

So perhaps, after Irlam station becomes step-free, the Manchester Airport service should call as well.

As Liverpool Lime Street station has been remodelled, I can see a time in the not too distant future, when that station can support four tph, that all stop at Irlam station.

The Manchester end of the route could be a problem, as services terminating at Oxford Road have to cross the busy lines of the Castlefield Corridor.

So perhaps all services through Irlam, should go through Deansgate, Manchester Oxford Road and Manchester Piccadilly stations to terminate either at the Airport or perhaps Stockport or Hazel Grove stations.

But would this overload the Castlefield Corridor?

Battery/Electric Trains

If you look at the route between Liverpool Lime Street and Manchester Oxford Road stations, the following can be seen.

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The section without electrification doesn’t appear to be particularly challenging, as it is along the River Mersey.

It is my view, that the route between Liverpool and Manchester via Irlam, would be an ideal route for a battery/electric train.

A train between Liverpool Lime Street and Manchester Airport stations would do the following.

  • Run from Liverpool Lime Street station to Liverpool South Parkway station using the installed 25 KVAC overhead electrification.
  • Drop the pantograph during the stop at Liverpool South Parkway station.
  • Run from Liverpool South Parkway station to Deansgate station using battery power.
  • Raise the pantograph during the stop at Deansgate station.
  • Run from Deansgate station to Manchester Airport station, using the installed 25 KVAC overhead electrification.

The exact distance between Deansgate and Liverpool South Parkway stations is 28.2 miles or 45.3 kilometres.

In 2015, I was told by the engineer riding shotgun on the battery/electric Class 379 train, that that experimental train was capable of doing fifty kilometres on battery power.

There are at least four possible trains, that could handle this route efficiently.

  • Porterbrook’s proposed batteryFLEX train based on a Class 350 train.
  • A battery/electric train based on the seemingly unwanted Class 379 train.
  • A battery/electric version of Stadler’s Class 755 train.
  • I believe that Bombardier’s Aventra has been designed so that a battery/electric version can be created.

There are probably others and I haven’t talked about hydrogen-powered trains.

Battery power between Liverpool and Manchester via Irlam, appears to be very feasible.

Tram-Trains

As my train ran between Manchster and Irlam it ran alongside the Metrolink between Cornbrook and Pomona tram stops.

Manchester is very serious about tram-trains, which I wrote about in Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?.

Tram-trains are often best employed to go right across a city, so could the Bury tram-trains go to Irlam after joining the route in the Cornbrook area?

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The route between Liverpool and Manchester via Irlam doesn’t look to be a very challenging line to electrify.
  • The total distance bettween Liverpool Lime Street and Manchester Victoria station is only about forty miles, which is a short distance for a tram-train compared to some in Karlsruhe.
  • Merseyrail’s Northern Line terminates at Hunts Cross station, which is going to be made step-free.
  • There is an existing step-free interchange between the Liverpool and Manchester route via Irlam and Merseyrail’s Northern Line at Liverpool South Parkway station.
  • Class 399 tram-trains will have a battery capability in South Wales.
  • Class 399 tram-trains have an operating speed of 62 mph, which might be possible to increase.
  • Stadler make Class 399 tram-trains and are building the new Class 777 trains for Merseyrail.

I think that Stadler’s engineers will find a totally feasible and affordable way to link Manchester’s Metrolink with Liverpool Lime Street station and Merseyrail’s Northern and Wirral Lines.

I can envisage the following train service running between Liverpool and Manchester via Irlam.

  • An hourly service between Liverpool Lime Street and Nottingham, as has been proposed for the new East Midlands Franchise.
  • A four tph service between Liverpool Lime Street and Manchester Airport via Manchester Piccadilly.
  • A tram-train every ten minutes, linking Liverpool Central and Manchester’s St Peter’s Square.
  • Tram-trains would extend to the North and East of Manchester as required.
  • All services would stop much more comprehensively, than the current services.
  • Several new stations would be built.
  • In the future, the tram-trains could have an interchange with High Speed Two at Warrington.

Obviously, this is just my speculation, based on what I’ve seen of tram-train networks in Germany.

The possibilities for the use of tram trains are wide-ranging.

Installing Step-Free Access At Irlam Station

There would appear to be two ways of installing step-free access at Irlam station.

  • Add lifts to the existing subway.
  • Add a separate bridge with lifts.

These are my thoughts on each method.

Adding Lifts To The Existing Subway

Consider.

  • The engineering would not be difficult.
  • Installaton would probably take a number of weeks.
  • There is good contractor access on both sides of the railway.

There are similar successful step-free installations around the UK

The problem is all about, how you deal with passengers, whilst the subway is closed for the installation of the lifts.

Adding A Separate Bridge With Lifts

Consider.

  • There is a lot of space at both the Eastern and Western ends of the platform to install a new bridge.
  • Adding a separate bridge has the big advantage, that during the installation of the bridge, passengers can use the existing subway.
  • Once the bridge is installed, the subway can be refurbished to an appropriate standard.

Passengers will probably prefer the construction of a new bridge.

In Winner Announced In The Network Rail Footbridge Design Ideas Competition, I wrote how the competition was won by this bridge.

So could a factory-built bridge like this be installed at Irlam station?

There is certainly space at both ends of the platform to install such a bridge and the daily business of the station and its passengers would be able to continue unhindered, during the installation.

I’m also sure, that the cafe would be happy to provide the daily needs of the workforce.

Conclusion

From a station and project management point-of-view, adding a new factory-built bridge to Irlam station is the easiest and quickest way to make the station step-free.

It also appears, that Network Rail have made a wise choice in deciding to put Irlam station on their list of stations to be made step-free, as the station could be a major part in creating a new high-capacity route between Liverpool and Manchester.

This could also be one of the first stations to use an example of the new bridge.

  • Installation would be quick and easy.
  • There is no site access problems.
  • There station can remain fully open during the installation.
  • All stakeholders would probably be in favour.

But above all, it would be a superb demonstration site to bring those from stations, where Network Rail are proposing to erect similar bridges.

July 6, 2019 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

A Trip Around The West Midlands

Today, I did a trip around the West Midlands, using five different trains.

Tain 1 – 19:10 – Chiltern – London Marylebone To Leamington Spa

This was one of Chiltern’s rakes of Mark 3 coaches hauled by a Class 68 locomotive.

I like these trains.

  • They are comfortable.
  • Everybody gets a table and half sit by a big window.
  • There is more space than Virgin Train’s Class 390 trains.
  • They may be slower, but they are fast enough for most journeys I make.

The train arrived seven minutes late at Leamington Spa at 11:32.

Train 2 – 12:02 – West Midlands Trains – Leamington Spa To Nuneaton

This is a new West Midlands Trains service, via the new station at Kenilworth and Coventry.

The trains are Class 172 trains, that used to run on the Gospel Oak to Barking Line.

Note.

  1. The have been repainted and refreshed.
  2. The seat cover on the driver’s seat is a relic of the London Overground.
  3. The train now has a toilet.

The train was about half-full and I got the impression, that the new service had been well-received.

The train arrived on time at Nuneaton at 12:38.

Train 3 – 12:54 – West Midlands Trains – Nuneaton to Rugeley Trent Valley

The train was a Class 350 train and it arrived eight minutes late at 13:29.

These pictures show Rugeley Trent Valley station.

It is very minimal with just a shelter, a basic footbridge and no information on how or where to buy a ticket.

Passengers deserve better than this!

Train 4 – 13:43 – West Midlands Trains – Rugeley Trent Valley to Birmingham New Street

This is a new West Midlands Trains electric service.

Compared to the Leamington Spa to Nuneaton service, passengers were spread rather thinly in the train.

The train was a Class 350 train and it arrived five minutes late at 14:44.

Train 5 – 15:55 – Chiltern – Birmingham Moor Street to London Marylebone

Another comfortable Chiltern Railways train back to London, which arrived four minutes late at 17:47.

Customer Service

Customer service and especially that from West Midlands Trains was rather patchy.

  • Leamington Spa station was rebuilding the entrance, but staff were around.
  • Nuneaton station was very quiet.
  • Rugeley Trent Valley station needs a lot of improvement.
  • The two Birmingham City Centre stations were much better.

I actually had to travel ticketless from Rugeley Trent Valley to Birmingham New Street, as the Conductor on the train didn’t check the tickets.

But Virgin Trains were very professional at Birmingham New Street.

Service Pattern

I have some observations on the service patterns.

  • For comfort reasons, I would prefer that Chiltern ran Mark 3 coaches and Class 68 locomotives on all Birmingham services.
  • In the future, it looks like Leamington Spa and Nuneaton needs at least a half-hourly service.
  • There definitely needs to be more services on the Chase Line.

There also is a serious need for staff and better facilities at Rugeley Trent Valley station.

No-one even a hardened member of the SAS would want to spend thirty minutes changing trains there on a blustery and cold winter’s day.

Conclusion

I tried two new services today, that started on the May 2019 timetable change.

  • A diesel service between Leamington Spa and Nuneaton via Kenilworth and Coventry.
  • An electrified service between Rugeley Trent Valley and Birmingham New Street.

The first would appear to be what passengers want, but the second needs a bit of promoting.

 

May 24, 2019 Posted by | Transport | , , , , , , , , | Leave a comment

Thoughts On A Battery/Electric Train With Batteries And Capacitors

I’m going to use a Class 350/2 train as the example.

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of one of these trains at various speeds.

Wikipedia gives this information.

  • Maximum Speed – 100 mph
  • Train Weight – 175.5 tonnes
  • Capacity – Around 380 passengers

If I assume each passenger weighs 90 Kg with baggage, bikes and buggies, the train weight is 209.7 tonnes.

This weight could be a bit high, bnut then the train must perform even when crush-loaded.

Using Omni’s Kinetic Energy Calculator, I get the following kinetic energies at various speeds.

  • 80 mph – 37.2 kWh
  • 90 mph – 47.1 kWh
  • 100 mph – 58.2 kWh
  • 110 mph – 70.4 kWh

In the video shown in A Must-Watch Video About Skeleton Technologies And Ultracapacitors., Taavi Madiberk of Skeleton Technologies likens a capacitor/battery energy store with Usain Bolt paired with a marathon runner. Usain would handle the fast energy transfer of braking and acceleration, with the marathon runner doing the cruising.

This would seem to be a good plan, as the capacitors  could probably quickly store the regenerative braking energy and release it at a high rate to accelerate the train.

Once, up to operating speed, the lithium-ion batteries would take over and keep the train at the required speed.

Obviously, it would be more complicated than that and the sophisticated control system would move electricity about to keep the train running efficiently and to maximum range.

The capacitors should probably be sized to handle all the regenerative braking energy, so for a 100  mph train, which would have a kinetic energy of 58.2 kWh, a 100 kWh capacitor would probably be large enough.

In some ways the lithium-ion batteries can be considered to be a backup to the capacitors.

  • They provide extra power where needed.
  • If during deceleration, the capacitors become full, energy could be transferred to the lithium-ion batteries.
  • If after acceleration, the capacitors have got more energy than they need, it could be transferred to the lithium-ion batteries.
  • The lithium-ion batteries would probably power all the hotel services, like air-con, lights doors etc.  of the train.

Note that the energy transfer between the capacitors and the lithium-ion batteries should be very fast.

A good Control Engineer could have a lot of fun with sorting the trains control system.

 

 

 

November 11, 2018 Posted by | Energy Storage, Transport | , , , | Leave a comment

How Do Porterbrook’s Battery/FLEX Trains Compare With Eversholt’s Hydrogen-Powered Trains?

In the two green corners of this ultra-heavyweight fight to provide electric trains for rail routes without electrification, there are two ROSCOs or rolling stock operating companies.

Eversholt Rail Group

Eversholt Rail Group‘s product is the Class 321 Hydrogen, which is an upgrade of a Class 321 train with batteries and hydrogen-power.

Porterbrook

Porterbrook‘s product is the Class 350 Battery/FLEX, which is an upgrade of a Class 350 train with batteries.

How Do The Two Trains Compare?

I will list various areas and features in alphabetical order.

Age

The Class 350 trains date from 2008-2009 and others were introduced to the UK rail network as early as 2004.

The Class 321 trains date from the 1990s, but that shouldn’t be too  much of a problem as they are based on the legendary Mark 3 Coach.

Scores: Porterbrook 4 – Eversholt 3

Batteries And Supercapacitors

This is an area, where the flow of development and innovation is very much in favour of both trains.

Currently, a 1000 kWh battery would weigh about a tonne. Expect the weight and volume to decrease substantially.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Electrification

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Rapid Charging System

I believe that a third-rail based rapid charging system can be developed for battery/electric trains and I wrote about this in Charging Battery/Electric Trains En-Route.

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Development And Engineering

Fitting batteries to rolling stock has now been done successfully several times and products are now appearing with 400 kWh and more energy storage either under the floor or on the roof of three and four-car electrical multiple units.

I feel that adding batteries, supercapacitors or a mixture of both to typical UK electric multiple units is now a well-defined process of engineering design and is likely to be achieved without too much heartache.

It should be noted, that the public test of the Class 379 BEMU train, was a rare rail project, where the serious issues found wouldn’t even fill a a thimble.

So I have no doubt that both trains will get their batteries sorted without too much trouble.

I do feel though, that adding hydrogen power to an existing UK train will be more difficult. It’s probably more a matter of space in the restricted UK loading gauge.

Scores: Porterbrook 5 – Eversholt 3

Electrification

Both types of train currently work on lines equipped with 25 KVAC overhead electrification, although other closely-related trains have the ability to work on 750 VDC third-rail electrification.

Both trains could be converted to work on both systems.

Scores: Porterbrook 5 – Eversholt 5

Interiors

The interior of both trains will need updating, as the interiors reflect the period, when the trains were designed and built.

Eversholt have already shown their hand with the Class 321 Renatus.

The interiors is a design and refurbishment issue, where train operating companies will order the trains and a complimentary interior they need, for the routes, where they intend to run the trains.

Scores: Porterbrook 5 – Eversholt 5

Operating Speed

Both trains in their current forms are 100 mph trains.

However some versions of the Class 350 trains have been upgraded to 110 mph, which allows them to work faster on busy main lines and not annoy 125 mph expresses.

I am pretty sure that all Class 350 trains can be 110 mph trains.

Scores: Porterbrook 5 – Eversholt 4

Public Perception

The public judge their trains mainly on the interiors and whether they are reliable and arrive on time.

I’ve talked to various people, who’ve used the two scheduled battery/electric services, that have run in the UK.

All reports were favourable and I heard no tales of difficulties.

In my two trips to Hamburg, I didn’t get a ride on the Coradia iLint hydrogen-powered train, but I did talk to passengers who had and their reactions were similar to those who travelled to and from Harwich in the UK.

I rode on the Harwich train myself and just like Vivarail’s Class 230 train, which I rode in Scotland, it was impressive.

I think we can say, that the concept and execution of battery/electric or hydrogen-powered trains in the UK, will be given a fair hearing by the general public.

Scores: Porterbrook 5 – Eversholt 5

Range Without Electrification

Alstom talk of ranges of hundreds of miles for hydrogen trains.and there is no reason to believe that the Class 321 Hydrogen trains will not be capable of this order of distance before refuelling.

Bombardier, Vivarail and others talk of battery ranges in the tens of miles before a recharge is needed.

The game-changer could be something like the technique for charging electric trains, I outlined in Charging Battery/Electric Trains En-Route.

This method could give battery trains a way of topping up the batteries at station stops.

Scores: Porterbrook 3 – Eversholt 5

Conclusion

The total scores are level at forty-seven.

All those, who say that I fiddled it, not to annoy anybody are wrong.

The level result surprised me!

I feel that it is going to be an interesting engineering, technical and commercial battle between the two ROSCOs, where the biggest winners could be the train operating companies and the general public.

I wouldn’t be surprised to see two fleets of superb trains.

 

November 4, 2018 Posted by | Transport | , , , , , , , , | 2 Comments

Could Electric Trains Run On Long Scenic And Rural Routes?

In the UK we have some spectacular scenic rail routes and several long rural lines.

Basingstoke And Exeter

The West of England Main Line is an important rail route.

The section without electrification between Basingstoke and Exeter St. Davids stations has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirteen intermediate stations, where the expresses call.
  • The average distance between stations is around nine miles.
  • The longest stretch between stations is the sixteen miles between Basingstoke and Andover stations.
  • The average speed of trains on the line is around forty-four mph.

There is high quality 750 VDC third-rail electrification at the London end of the route.

Cumbrian Coast Line

The Cumbrian Coast Line  encircles the Lake District on the West.

The section without electrification between Carnforth and Carlisle stations has the following characteristics.

  • It is around a hundred and fourteen miles long.
  • There are twenty-nine intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Millom and Silecroft stations.
  • The average speed of trains on the line is around thirty-five mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Far North Line

The Far North Line is one of the most iconic rail routes in the UK.

The line has the following characteristics.

  • It is one-hundred-and-seventy-four miles long.
  • There are twenty-three intermediate stations.
  • The average distance between stations is around seven miles.
  • The longest stretch between stations is the thirteen miles between Georgemas Junction and Wick stations.
  • The average speed of trains on the line is around forty mph.

The line is without electrification and there is none nearby.

Glasgow To Oban

The West Highland Line is one of the most iconic rail routes in the UK.

The line is without electrification from Craigendoran Junction, which is two miles South of Helensburgh Upper station  and the section to the North of the junction, has the following characteristics.

  • It is seventy-eight miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around eight miles.
  • The longest stretch between stations is the twelve miles between Tyndrum Lower and Dalmally stations.
  • The average speed of trains on the line is around thirty-three mph.

From Glasgow Queen Street to Craigendoran Junction is electrified with 25 KVAC overhead wires.

Glasgow To Mallaig

This is a second branch of the West Highland Line, which runs between Crianlarich and Mallaig stations.

  • It is one hundred and five miles long.
  • There are eighteen intermediate stations.
  • The average distance between stations is around five miles.
  • The longest stretch between stations is the twelve miles between Bridge Of Orchy and Rannoch stations.
  • The average speed of trains on the line is around twenty-five mph.

Heart Of Wales Line

The Heart of Wales Line is one of the most iconic rail routes in the UK.

The line is without electrification and the section between Swansea and Shrewsbury stations, has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirty-one intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Shrewsbury and Church Stretton stations.
  • The average speed of trains on the line is just under forty mph.

There is also no electrification at either end of the line.

Settle And Carlisle

The Settle and Carlisle Line is one of the most iconic rail routes in the UK.

The section without electrification between Skipton and Carlisle stations has the following characteristics.

  • It is just over eighty miles long.
  • There are thirteen intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Gargrave and Hellifield stations.
  • The average speed of trains on the line is around forty mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Tyne Valley Line

The Tyne Valley Line is an important route between Carlisle and Newcastle stations.

The line is without electrification has the following characteristics.

  • It is just over sixty miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Carlisle and Haltwhistle stations.
  • The average speed of trains on the line is around mph.

There is also high standard 25 KVAC electrification at both ends of the line.

A Pattern Emerges

The routes seem to fit a pattern, with very similar characteristics.

Important Local Transport Links

All of these routes are probably important local transport links, that get children to school, many people to large towns for shopping and entertainment and passengers of all ages to see their friends and relatives.

Many would have been closed but for strong local opposition several decades ago.

Because of the overall rise in passengers in recent years, they are now relatively safe for a couple of decades.

Iconic Routes And Tourist Attractions

Several of these routes are some of the most iconic rail routes in the UK, Europe or even the world and are tourist attractions in their own right.

Some of these routes are also, very important in getting tourists to out-of-the-way-places.

Lots Of Stations Every Few Miles

The average distance between stations on all lines seems to be under ten miles in all cases.

This surprised me, but then all these lines were probably built over a hundred years ago to connect people to the expanding railway network.

The longest stretch between two stations appears to be sixteen miles.

Diesel Hauled

All trains seem to be powered by diesel.

This is surely very inappropriate considering that some of the routes go through some of our most peaceful and unspoilt countryside.

Inadequate Trains

Most services are run by trains, that are just too small.

I know to put a four-car train on, probably doubles the cost, but regularly as I explore these lines, I find that these two-car trains are crammed-full.

I once inadvertently took a two-car Class 150 train, that was on its way to Glastonbury for the Festival. There was no space for anything else and as I didn’t want to wait an hour for the next train, I just about got on.

Passengers need to be encouraged to take trains to rural events, rather than discouraged.

An Electric Train Service For Scenic And Rural Routes

What would be the characteristics of the ideal train for these routes?

A Four-Car Electric Train

Without doubt, the trains need to be four-car electric trains with the British Rail standard length of around eighty metres.

Dual Voltage

To broaden the applications, the trains should obviously be capable of running on both 25 KVAC overhead and 750 VDC third-rail electrification.

100 mph Capability

The trains should have at least a 100 mph capability, so they can run on main lines and not hold up other traffic.

No Large Scale Electrification

Unless there is another reason, like a freight terminal, quarry, mine or port, that needs the electrification, using these trains must be possible without any large scale electrification.

Battery, Diesel Or Hydrogen Power

Obviously, some form of power will be needed to power the trains.

Diesel is an obvious no-no but possibly could only be used in a small way as emergency power to get the trains to the next station, if the main power source failed.

I have not seen any calculations about the weight, size and power of hydrogen powered trains, although there have been some professional videos.

But what worries me about a hydrogen-powered train is that it still needs some sizeable batteries.

So do calculations indicate that a hydrogen-powered train is both a realisable train and that it can be produced at an acceptable cost?

Who knows? Until, I see the maths published in a respected publication, I will reserve my judgement.

Do Bombardier know anything?

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial Director and Global Head of Regional and Intercity.

This is a paragraph.

However, Mr McKeon said his view was that diesel engines ‘will be required for many years’ as other power sources do not yet have the required power or efficiency to support inter-city operation at high-speeds.

As Bombardier have recently launched the Talent 3 train with batteries that I wrote about in Bombardier Introduces Talent 3 Battery-Operated Train, I would suspect that if anybody knows the merits of hydrogen and battery power, it is Mr. McKeon.

So it looks like we’re left with battery power.

What could be a problem is that looking at all the example routes is that there is a need to be able to do station-to-station legs upwards of thirteen-sixteen miles.

So I will say that the train must be able to do twenty miles on battery power.

How Much Battery Capacity Should Be Provided On Each Train?

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

As it would be required that the train didn’t regularly run out of electricity, then I wouldn’t be surprised to see upwards of 800 kWh of battery installed in the train.

n an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So if we are aiming for a twenty mile range from a four-car train with an 800 kWh battery, this means that any energy consumption better than 10 kWh will achieve the required range.

Regular Charging At Each Station Stop

In the previous section, I showed that the proposed train with a full battery could handle a twenty mile leg between stations.

But surely, this means that at every stop, the electricity used on the previous leg must be replenished.

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of a four-car Class 350 train, with a full load of passengers, travelling at ninety mph, as 47.1 kWh.

So if the train is travelling at a line speed of ninety mph and it is fitted with regenerative braking with an efficiency of eighty percent, 9.4 kWh of energy will be needed for the train to regain line speed.

There will also be an energy consumption of between 3 kWh and 5 kWh per vehicle per mile.

For the proposed four-car train on a twenty mile trip, this will be between 240 and 400 kWh.

This will mean that between 240 and 400 kWh will need to be transferred to the train during a station stop, which will take one minute at most.

I covered en-route charging fully in Charging Battery/Electric Trains En-Route.

I came to this conclusion.

I believe it is possible to design a charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

This means that a substantial top up can be given to the train’s batteries at stations equipped with a fast charging system.

New Or Refurbished Trains?

New trains designed to meet the specification, could obviously be used.

But there are a several fleets of modern trains, which are due to be replaced. These trains will be looking for new homes and could be updated to the required battery/electric specification.

  • Greater Anglia – 30 x Class 379 trains.
  • Greater Anglia – 26 x Class 360 trains.
  • London North Western Railway – 77 x Class 350 trains.
  • TransPennine Express – 10 x Class 350 trains

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I describe Porterbrook’s plans to convert a number of Class 350 trains to battery/electric trains.

These Class 350 Battery/FLEX trains should meet the specification needed to serve the scenic and rural routes.

Conclusion

I am led to the conclusion, that it will be possible to design a battery/electric train and charging system, that could introduce electric trains to scenic and rural routes all over the UK, with the exception of Northern Ireland.

But even on the island of Ireland, for use both North and South of the border, new trains could be designed and built, that would work on similar principles.

I should also say, that Porterbrook with their Class 350 Battery/FLEX train seem to have specfied a train that is needed. Pair it with the right charging system and there will be few no-go areas in mainland UK.

November 2, 2018 Posted by | Energy Storage, Transport | , , , , , , , , , , | 2 Comments