The Anonymous Widower

Battery Answer To Schleswig-Holstein’s Diesel Replacement Question

The title of this post, is the same as that of this article on Railway Gazette International.

It is a good explanation of why there is so much interest in battery-powered trains.

This paragraph from the article, describes how the trains will operate in Schleswig-Holstein.

They will have range of 150 km under optimal conditions, although the longest non-electrified route they will operate on is around 80 km. The batteries will be recharged from the existing 15 kV 16·7 Hz overhead electrification at Kiel, Neumünster, Flensburg, Lübeck and Lüneburg stations and on the Osterrönfeld – Jübek line. Charging facilities will also be provided in other locations, and there will be some extensions to the existing overhead power supply.

Consider.

  • These trains can run on routes of up to eighty kilometres or around fifty miles.
  • Greater Anglia and Transport for Wales will be running the UK versions of the Stadler Flirts, that will be used in Schleswig-Holstein.
  • Transport for Wales will also be running a tri-mode Flirt with electric, diesel and battery power.
  • The Continental loading gauge, probably allows more batteries than the smaller UK loading gauge.

I think it could be reasonable to assume, that a UK-sized  battery-electric Stadler Flirt could have a range of forty miles on batteries.

These could be possible routes for Greater Anglia.

  • Norwich and Sheringham – 30 miles
  • Norwich and Lowestoft – 23.5 miles
  • Norwich and Great Yarmouth – 18 miles
  • Ipswich and Felixstowe – 16 miles
  • Colchester Town and Sudbury – 20 miles

In addition some partially-electrified routes have gaps less than forty miles. Think Cambridge and Ipswich!

I would not be surprised to see battery trains, quietly gliding around East Anglia.

Would they attract passengers and tourists?

Perhaps Germany and Stadler will give us the Schleswig-Holstein Answer, which will be much more interesting than the Schleswig-Holstein Question.

Economics Of Battery Trains

The article also has this quote from the CEO of Stadler Germany about the economics of battery trains.

It makes us very proud that with the battery-powered Flirt we have not only managed to find an ecological and innovative solution, but have also enabled a clear economic improvement. If we consider the average life of a rail vehicle of around 30 years, battery-operated vehicles are more cost-effective than diesel’.

I think it can also be said, that battery technology will improve continuously in the next thirty years and we should see a corresponding improvement in range and performance.

You don’t get that with diesel.

Hydrogen Or Battery Power?

I would think that Alstom are not happy about this order for battery-powered trains.

  • Only a hundred kilometres or so to the West, they are supplying Alstom Coradia iLint trains for a similar network.
  • These trains are working well.
  • They have teamed up with Linde to supply the hydrogen.

I wouldn’t have been surprised if Schleswig-Holstein had chosen hydrogen trains.

So why did Schleswig-Holstein, choose battery rather than hydrogen trains?

  • Provided, the driver or a computer, raises and lowers the pantograph appropriately, there is no difference between an electric train and its battery-electric sibling.
  • Systems to charge battery trains can be installed anywhere, there is an electricity supply.
  • The electricity supply could be local wind or solar.
  • Charging battery trains could be automatic and require no more action from the driver, than checking everything is as it should be and perhaps pushing a button or two. On a bleak miserable day, the driver would remain in the warm and comfortable cab.
  • Hydrogen would need to be loaded on the train at a depot or another place with the necessary safety clearance.
  • The iLint seats 160 and the Flirt Akku seats 124, so I suspect capacity isn’t much of a problem.
  • The Flirt Akku is a train designed for battery-electric operation, whereas the iLint is a modified diesel train, with a noisy and harsh mechanical transmission. It’s like comparing Class 710 trains, with their predecessors on the Gospel Oak to Barking Line; the Class 172 trains.
  • I suspect most Germans have talked to a relative or older person, who remembers the Hindenburg.

There is probably little to choose between the two trains, but I believe that the operation of the hydrogen-powered train will be more complicated.

I also don’t know the cost of each train.

As I said earlier, Stadler claim long-term ownership of battery-powered trains is more economic than diesel. Does the same apply to battery against hydrogen power.

Conclusion

I believe we’ll see lots more battery trains.

 

 

 

 

July 2, 2019 - Posted by | Transport | , , , , , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.