The Anonymous Widower

I Design A Hydrogen Aventra

This article on Rail News is entitled Alstom Moves Ahead With Bombardier Takeover.

This is a paragraph in the report, which is dated the eighteenth of last month.

n a statement issued last night, Alstom said it had ‘signed a Memorandum of Understanding with Bombardier Inc. and Caisse de dépôt et placement du Québec in view of the acquisition of Bombardier Transportation. Post-transaction, Alstom will have a backlog of around €75bn and revenues around €15.5bn. The price for the acquisition of 100 per cent of Bombardier Transportation shares will be €5.8bn to €6.2bn, which will be paid via a mix of cash and new Alstom shares.’

That sounds pretty definite to me.

In the UK, Alstom will take over a company with the following projects.

  • A large order book for building Aventras in the Litchurch Lane factory at Derby.
  • Several support projects for existing train fleets.
  • A joint design project with Hitachi to bid for the trains for High Speed Two. Alstom are also bidding for High Speed Two, as are CAF, Siemens and Talgo.
  • Design and build the cars for the Cairo monorail.
  • Bombardier have been offering train operating companies a bi-mode Aventra.

There are also rumours, that Bombardier are in the running for a large order for Southeastern.

What are Bombardier’s strengths in the UK?

  • The Aventra is without doubt an excellent train, but with some software teething troubles.
  • The company has the ability to turn out finished trains at a formidable rate.
  • The company can make the carriage bodies in a high-tech plant.
  • The company has the ability to design complete trains to the UK’s smaller standards.
  • The company can make trains in both European-sizes in Europe and UK-sizes in Derby.
  • The company builds bogies for other train manufacturing companies.

On the other hand, Bombardier has the following weaknesses.

  • It doesn’t make any diesel-powered trains, although it has successfully trialled battery-powered trains.
  • It has dismissed hydrogen-powered trains.
  • But above all the finances of the parent company are a basket case.

It appears to me that Alstom might bring much needed technology and finance to Bombardier UK. In return, they will acquire a modern design, that caq be used in the UK and other countries, that use a smaller loading gauge.

Obviously, if the takeover goes through, more information should be forthcoming in the near to mid future.

The Future For Hydrogen Trains In The UK

I would suspect, that Alstom have designed a train in the Class 321 Breeze, that fits their view of what will work well in the UK train market.

  • It is a sixty metre long train.
  • It has a capacity similar to that of a modern two-car diesel multiple unit.
  • The Renatus version of the Class 321 train has a modern and reliable AC-based traction package. Or that’s what a Greater Anglia driver told me!
  • Eversholt Rail Group have already devised a good interior.
  • I said I was impressed with the train in A Class 321 Renatus.
  • The train can operate at 100 mph on a suitably electrified line, when running using the electrification.
  • Adding an extra trailer car or two could be a simple way of increasing capacity.

I should say, that I think it will be a quieter train, than the Coradia iLint, which has a rather noisy mechanical transmission.

I feel that a Class 321 Breeze train could be a good seller to routes that will not be electrified, either because of difficulty, expence or politics.

With a 100 mph operating speed on electrification and perhaps 90 mph on hydrogen power, it may have enough performance to work a lot of routes fast, profitably and reliably.

I think, that the Alston Class 321 Breeze will prove whether there is a market for hydrogen-powered trains in the UK.

I would think, that use of these trains could be a big application.

Replacement Of Two-And Three-Car Diesel Multiple Units

There are a lot of these still in service in the UK, which include.

All of these are currently running services all over Great Britain and I have ignored those trains run by Chiltern Railways as they will logically be replaced by a dedicated batch of new trains, with possible full- or part-electrification of the route.

As there are only 105 Class 321 trains that can be converted, some other trains will be needed.

I suppose classes of trains like Class 365 trains and others can be converted, but there must come a point, when it will be better to build a new hydrogen train from scratch.

Components For Hydrogen Trains

This article on Rail Business is entitled Breeze Hydrogen Multiple-Unit Order Expected Soon.

It says this about the design of the Alstom Breeze train.

The converted HMUs would have three roof-mounted banks of fuel cells on each of the two driving vehicles, producing around 50% more power than the iLint. Two passenger seating bays and one door vestibule behind each cab would be replaced by storage tanks. The fuel cells would feed underfloor battery packs which would also store regenerated braking energy. The current DC traction package on the centre car would be replaced by new AC drives and a sophisticated energy management system. Despite the loss of some seating space, each set of three 20 m vehicles would provide slightly more capacity than a two-car DMU with 23 m cars which it would typically replace.

The following components will be needed for hydrogen trains.

One Or More Hydrogen Tanks

This picture shows the proposed design of the  Alstom Class 321 Breeze.

Note how half the side of the front car of the train is blocked in because it is full of the hydrogen tank. As this Driver Car is twenty metres long, each hydrogen tank must be almost seven metres long. If it was one larger tank, then it could be longer and perhaps up to fourteen metres long.

Batteries

As the Rail Business article said, that the batteries are underfloor, I wouldn’t be surprised to see all cars having a battery pack.

I favour this layout, as if cars all are motored, it must cut the length of cabling and reduce electrical losses.

Effectively, it creates a train with the following.

  • Faster acceleration
  • Smooth, fast deceleration.
  • Efficient braking
  • Low energy losses.

It should also add up to a train with good weight distribution and high efficiency.

Hydrogen Fuel Cells

In the Class 321 Breeze, Alstom are quoted as having three banks of fuel cell on the roof of each driver car.

This would distribute the power derived from hydrogen to both ends of the train

Hydrogen For Hydrogen Trains

Alstom’s Coradia iLint trains do not have a custom-design of hydrogen system, but over the last few years green hydrogen systems have started to be supplied by companies including ITM Power from Rotherham. Recently, they have supplied the hydrogen system for the hydrogen-powered Van Hool  Exqui-City tram-buses in Pau in France. A similar system could be used to refuel a fleet of Breeze trains.

It looks like we have a limited number of hydrogen-powered trains and their fuel could be made available, but not enough to replace all of the UK’s small diesel trains.

My Design Of Hydrogen Train

I would start with the Aventra design.

  • It is very much Plug-and-Play, where different types of cars can be connected together.
  • Cars can be any convenient length.
  • Some Aventras, like the Class 345 trains for Crossrail are even two half-trains.
  • There are various styles of interior.
  • The Aventra appears to be a very efficient train, with good aerodynamics and a very modern traction system with regenerative braking.
  • Driver, pantograph, trailer and motor cars and third-rail equipment are available.
  • Battery cars have probably been designed.

This picture shows a four-car Class 710 train, which is an Aventra.

In the next sub-sections I will fill out the design.

Train Layout

Perhaps, a hydrogen-powered train could be five cars and consist of these cars.

  • Driver Motor Car
  • Trailer Car
  • Hydrogen Tank Car
  • Trailer Car
  • Driver Motor Car

Equipment would be arranged as followed.

  • I would put the hydrogen tank in the middle car. Stadler have been very successful in putting a power car in the middle and it could be the ideal car for some of the important equipment.
  • As I said earlier, I would put batteries under all cars.
  • Regenerative braking and electrification would be used to charge the batteries.
  • I think, I would put the hydrogen fuel cells in Alstom’s position on the rear part of the roof of the driver cars.
  • There would also be a need to add a pantograph, so that could go on any convenient car!
  • I do wonder, if the middle-car could be developed into a mini-locomotive with a walkway through, like the PowerCar in a Stadler Class 755 train.

There’s certainly a lot of possibilities on how to layout the various components.

Passenger Capacity

The five-car hydrogen-powered Aventra, I have detailed is effectively a four-car Aventra like a Class 710 train, with a fifth hydrogen tank car in the middle.

So the passenger capacity will be the same as a four-car Aventra.

The Class 710 trains have longitudinal seating, as these pictures of the interior show.

They have a capacity of 189 sitting and 489 standing passengers or a total capacity of 678.

Greater Anglia’s Class 720 trains have transverse seating and a five-car train holds 540 sitting and 145 standing passengers.

Multiplying by 0.8 to adjust for the hydrogen car and the capacity would be 432 sitting and116 standing passengers or a total capacity of 548.

Seats in various UK four-car electric multiple units are as follows.

  • Class 319 – 319
  • Class 321 – 309
  • Class 375 – 236
  • Class 379 – 209
  • Class 380 – 265
  • Class 385 – 273
  • Class 450 – 264

It would appear that a five-car hydrogen-powered Aventra, with one car taken up by a hydrogen tank and other electrical equipment can carry a more than adequate number of passengers.

Extra Passenger Capacity

Suppose to eliminate diesel on a route, a five-car Class 802 train were to be replaced with a six-car hydrogen-powered Aventra, which contained five passenger cars

  • The capacity of the Class 802 train is 326 seats, which still compares well with the five-car hydrogen-powered Aventra.
  • The extra car would increase the passenger capacity.

As Aventras are of a Plug-and-Play design, extra cars would be added as needed.

Maximum Length

Aventras tend to have lots of powered axles, as this improves accelerations and braking, so I suspect that trains with four or five cars on either side of the hydrogen car would be possible.

Nine-car trains could be ideal for replacing trains like Class 800 bi-mode trains to reduce the number of diesel trains. The Class 800 trains would then be converted to Class 801 electric trains or a new battery/electric version.

A Walkway Through The Hydrogen Car

These pictures show the walkway through the PowerCar in a Stadler Class 755 train.

I’m sure that an elegant design of walkway can be created.

In-Cab Digital Signalling

It goes without saying, that the train would be capable of being fitted with in-cab digital signalling.

Performance On Electrification

Bombardier have stated that they have a design for a 125 mph bi-mode Aventra. They might even have designed the trains to achieve 140 mph running on routes with full in-cab digital signalling.

These electrified lines are likely to be able to support 140 mph running with full in-cab digital signalling.

  • East Coast Main Line
  • Great Western Main Line
  • Midland Main Line
  • West Coast Main Line

As these hydrogen-powered Aventras may need to run on these high speed electrified lines, I would design the trains so that they could achieve the design speed of these lines, when using the electrification.

This would enable the trains to keep out of the way of the numerous 140 mph electric expresses.

Performance On Batteries And Hydrogen

Hydrogen-powered trains are essentially battery-electric trains, which have the ability to top up the batteries using hydrogen power.

I would suspect that a well-designed hydrogen/battery/electric train should have the same maximum speed on all modes of power, subject to the capabilities of the track and having sufficient power in the batteries to accelerate as required.

Conclusion

I think it would be possible to design a hydrogen/battery/electric train based on an Aventra with the following characteristics.

  • Up to eleven cars
  • A hydrogen car with a hydrogen tank in the middle of the train.
  • Ability to use 25 KVAC overhead or 750 VDC third-rail electrification.
  • In-cab digital signalling
  • 140 mph running where the route allows.
  • Regenerative braking to batteries.
  • Sufficient range on hydrogen power.
  • Sophisticated computer control, that swaps mode automatically.

The train would be possible to run the following routes, if configured appropriately.

  • Kings Cross and Aberdeen
  • Kings Cross and Inverness
  • Kings Cross and Cleethorpes via Lincoln and Grimsby
  • Kings Cross and Redcar via Middlesbrough
  • Kings Cross and Norwich via Cambridge
  • Paddington and Penzance
  • Paddington and Swansea
  • Waterloo and Exeter via Basingstoke

Some routes might need a section of fill in electrification, but most routes should be possible with a hydrogen fill-up at both ends.

 

 

 

March 9, 2020 Posted by | Business, Transport | , , , , , , , , , , , | 5 Comments

Alstom Coradia iLint Passes Tests

The title of this post is the same as that of this article on Railway Age.

This is the first paragraph.

Alstom has performed 10 days of tests of the Coradia iLint hydrogen fuel cell train—the world’s first passenger train powered by hydrogen fuel cells—on the 65-kilometer line between Groningen and Leeuwarden to the north of the Netherlands.

These details of the tests were given.

  • No passengers were carried.
  • The tests were done at night.
  • A mobile filling station was used.
  • The train ran up to a speed of 140 kph.

As green hydrogen was used, the tests were zero carbon.

The Test Route

This map clipped from Wikipedia, shows the Groningen and Leeuwarden route, used for the tests.

Note.

  1. It appears to be only single-track.
  2. It is roughly 65 kilometres long.
  3. There are eight intermediate stops.

Checking the timetable, the service seems to be two or three trains per hour (tph)

Hydrogen Trains Could Go All The Way To Germany

In From Groningen To Leer By Train, I took a train and a bus from Groningen in The Netherlands to Leer in Germany and eventually on to Bremen Hbf. The route is not complete at the moment, as a freighter demolished the rail bridge.

Once the bridge is rebuilt, a hydrogen-powered train, which could also use the catenary in the area could travel from West of Leeuwarden to possibly as far as Bremen and Hamburg.

It is interesting to note, that Alstom’s hydrogen-powered trains for the UK, which are called Breeze and are currently being converted from British Rail-era Class 321 electric trains, will not lose their ability to use the overhead electrification.

A train with that dual capability would be ideal for the Dutch and German rail network in this area, which is partially electrified.l

March 8, 2020 Posted by | Transport | , , , , , , , | 1 Comment

First Hydrogen Train Arrives In The Netherlands

The title of this post is the same as that on this article of Railway News.

This is the introductory paragraph.

On 26 February the first hydrogen train arrived in the Netherlands. The Dutch rail infrastructure manager ProRail led the train into the country from Germany via Oldenzaal and then ran it on track to its provisional parking facility in Leeuwarden.

The article also says this.

The public will also have the chance to view the hydrogen train on 7 March, when it will be at Groningen Station between noon and 4pm.

I won’t be going, as I’ve ridden the train in Germany as I reported in My First Ride In An Alstom Coradia iLint.

These trains are technology demonstrators at best and greenwash at worst.

Hydrogen power needs a radical new design of  train and not a quick rehash of an existing design.

The problem is that the Coradia iLint is based on a diesel mechanical train and it has a lot of transmission noise.

You get less noise and vibration in the average British-Rail era diesel multiple unit like a Class 156 train. But then these are diesel hydraulic, have steel-bodies and built thirty years ago.

When I first saw the iLint, I looked for the pantograph, as these trains run on partially-electrified lines and hydrogen-powered trains are effectively electric trains with a different source of electricity.

To be fair to Alstom, their development of the hydrogen-powered Class 321 Breeze, will also be able to use a pantograph, but as this visualisation shows, the hydrogen tanks take up a lot of space.

Hydrogen might find itself a place on the railways, but I suspect that battery-electric will always be better for passenger trains.

  • Battery technology will improve faster than hydrogen technology.
  • Innovators will find better ways of fast-charging trains.
  • A battery-electric train will match the daily range of a hydrogen-powered train, using innovative dynamic charging.
  • Many modern electric trains can be converted into battery-electric ones.

I suspect though, the mathematics will be different for freight locomotives.

February 28, 2020 Posted by | Transport | , , , , , | Leave a comment

Akiem Acquires Macquarie European Rail Fleet

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Leasing company Akiem Group has signed a definitive agreement to acquire Macquarie European Rail’s rolling stock leasing business, subject to regulatory approval.

Included in the deal are thirty Class 379 trains, currently used on the Stansted Express and soon to be replaced by new Class 745 trains.

Because of the lack of any published plans about where the Class 379 trains will be cascaded, I have been wondering if there is something wrong with the trains or perhaps their owner.

As the latter looks now to be changing from Macquarie to Akiem, perhaps we’ll hear some news on what is happening to the Class 379 trains.

I still feel the Class 379 trains would make excellent battery-electric trains, possibly for an airport service.

But which train operating company would need a fleet of thirty four-car electric trains?

Most have now sorted their fleet requirements and when Bombardier get their production working smoothly, perhaps with Alstom’s backing, there will be more trains being delivered to train operating companies.

But there is one fleet replacement, where battery-electric Class 379 trains may be ideal; the replacement of South Western Railway (SWR)‘s fleet of Class 158 and Class 159 trains.

Consider.

  • 10 x two-car Class 158 trains and 30 x three-car Class 159 trains could be replaced by 30 x four-car Class 379 trains, which would be a near ten percent increase in carriages.
  • 90 mph diesel trains, that were built in the 1990s, will be replaced by 100 mph battery-electric trains, that are not yet ten years old.
  • The Class 379 trains are Electrostars and fitting third-rail shoes, will be straight out of Bombardier’s parts bins.
  • Waterloo station will become another diesel-free London terminus.
  • Fellow French company; Alstom could step in to the picture with their battery knowledge from other products like the iLint hydrogen train and convert the trains at Widnes or one of their other maintenance depots.
  • South Western Railway and Akiem would need to procure a charging system and could probably do worse than see what Vivarail or Furrer and Frei can supply!

How would the Class 379 battery-electric trains handle various services?

London Waterloo To Salisbury And Exeter St. Davids

The most difficult service to run, would be the London Waterloo and Exeter St. Davids service via Salisbury.

Note that when SWR bid for the franchise, they promised to knock ten minutes off the time to Exeter and they will need 100 mph trains for that!

With climate change in the news, only a hardline climate-change denier would buy 100 mph diesel trains.

In Are Hitachi Designing the Ultimate Battery Train?, I suggested how Waterloo and Exeter could be run with a battery-electric train, with a range of around sixty miles on battery power.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged, at the same time.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging or traditional third-rail technology.
  3. The charging around Yeovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.
  4. Charging would also be needed at Exeter for the return journey.

I estimate that there could be time savings of up to fifteen minutes on the route.

London Waterloo To Salisbury And Bristol Temple Meads

This service in run in conjunction with the Exeter St. Davids service, with the two trains joining and splitting at Salisbury.

As Salisbury and Bristol Temple Meads is 53 miles, it looks like this service is possible, providing the following conditions are met.

  • The Class 379 train has a sixty mile range on battery power.
  • The train can charge at Bristol Temple Meads, perhaps by using the 25 KVAC overhead electrification.
  • The Class 379 trains can join and split with the with amount of alacrity.

Note that there may be other places, where a tri-mode capability might be useful.

Exeter And Axminster

This shorter trip is thirty miles and if the battery range is sufficient, it could probably be run by a Class 379 train, charged at Exeter.

If necessary, a method of charging could be provided at Axminster.

Romsey And Salisbury Via Southampton Central

This route is partially electrified and it looks like a battery-electric train with a sixty mile range could run the service without any extra infrastructure.

If Salisbury, gets a charging system, then this service might be used to ensure a reliable or extended service.

Portsmouth Harbour And Basingstoke And Portsmouth Harbour and Southampton Central

These two services could be run by Class 379 trains running using the electrification.

London Or Wareham and Corfe Castle

This Summer Saturday-only service is an ideal one for a battery-electric train.

New Services

There are also other branches that could be reopened, like those to Ringwood and Hythe, that could be worked by battery-electric trains.

Conclusion

It will be very interesting to see where the Class 379 trains end up.

But my money’s on them replacing South Western Railways, diesel trains, after conversion to battery-electric trains.

  • Only limited infrastructure works will need to be done.
  • South Western Railway will have more capacity.
  • Passengers will get a faster service in a modern train.
  • Waterloo will become a diesel-free station.

But most importantly, South Western Railway will have an all-electric fleet.

 

 

 

February 19, 2020 Posted by | Transport | , , , , , , , | Leave a comment

Fuelling The Change On Teesside Rails

The title of this post, is the same as that of an article in Edition 895 of RAIL Magazine.

The article is based on an interview with Ben Houchen, who is the Tees Valley Mayor.

Various topics are covered.

Hydrogen-Powered Local Trains

According to the article, the Tees Valley produces fifty percent of UK hydrogen and the area is already secured investment for fuelling road vehicles with hydrogen.

So the Tees Valley Combined Authority (TVCA) is planning to convert some routes to hydrogen.

The Trains

Ten hydrogen-powered trains will be purchased or more likely leased, as the trains will probably be converted from redundant electrical multiple units, owned by leasing companies like Eversholt Rail and Porterbrook.

The RAIL article says that the first train could be under test in 2021 and service could be started in 2022.

That would certainly fit the development timetables for the trains.

Lackenby Depot

A depot Will Be Created At Lackenby.

  • The site is between Middlesbrough and Redcar.
  • It already has rail and hydrogen connections.

This Google Map shows the area.

Note the disused Redcar British Steel station, which is still shown on the map.

I remember the area from the around 1970, when I used to catch the train at the now-closed Grangetown station, after visits to ICI’s Wilton site. It was all fire, smoke, smells and pollution.

Darlington Station

Darlington station will also be remodelled to allow more services to operate without conflicting with the East Coast Main Line.

Wikipedia says this under Future for Darlington station.

As part of the Tees Valley Metro, two new platforms were to be built on the eastern edge of the main station. There were to be a total of four trains per hour, to Middlesbrough and Saltburn via the Tees Valley Line, and trains would not have to cross the East Coast Main Line when the new platforms would have been built. The Tees Valley Metro project was, however, cancelled.

It does sound from reading the RAIL article, that this plan is being reinstated.

Would services between Bishop Auckland and Saltburn, use these new platforms?

Saltburn And Bishops Auckland Via Middlesbrough and Darlington

Currently, the service is two trains per hour (tph) between Saltburn and Darlington, with one tph extending to Bishop Auckland.

  • I estimate that the current service needs five trains.
  • If a two tph service were to be run on the whole route, an extra train would be needed.
  • I suspect, the limitations at Darlington station, stop more trains being run all the way to Bishops Auckland.

I could also see extra stations being added to this route.

The Mayor is talking of running a service as frequent as six or eight tph.

These numbers of trains, will be needed for services of different frequencies between Saltburn and Darlington.

  • 2 tph – 6 trains
  • 4 tph – 12 trains
  • 6 tph – 18 trains
  • 8 tph – 24 trains

As the London Overground, Merseyrail and Birmingham’s Cross-City Line, find four tph a more than adequate service, I suspect that should be provided.

After updating, Darlington station, should be able to handle the following.

  • Up to six tph terminating in one of the new Eastern platforms, without having to cross the East Coast Main Line.
  • Two tph between Saltburn and Bishops Auckland could use the other platform in both directions.

I would suspect that the design would see the two platforms sharing an island platform.

Alternatively, trains could continue as now.

  • Terminating trains could continue to use Platform 2!
  • Two tph between Saltburn and Bishops Auckland stopping in Platforms 1 (Eastbound) and 4 (Westbound)

This would avoid any infrastructure changes at Darlington station, but terminating trains at Darlington would still have to cross the Southbound East Coast Main Line.

If the frequencies were as follows.

  • 4 tph – Saltburn and Darlington
  • 2 tph – Saltburn and Bishop Auckland

This would require fourteen trains and give a six tph service between Saltburn and Darlington.

Ten trains would allow a two tph service on both routes.

There would be other services using parts of the same route, which would increase the frequency.

Hartlepool And The Esk Valley Line Via Middlesbrough

This is the other route through the area and was part of the cancelled Tees Valley Metro.

  • Service is basically one tph, with six trains per day (tpd) extending to Whitby.
  • A second platform is needed at Hartlepool station.
  • There is a proposal to add a Park-and-Ride station between Nunthorpe and Great Ayton stations.
  • One proposal from Modern Railways commentator; Alan Williams, was to simplify the track at Battersby station to avoid the reverse.
  • Currently, trains between Whitby and Middlesbrough are timetabled for around 80-100 minutes.
  • Hartlepool and Middlesbrough takes around twenty minutes.

Substantial track improvements are probably needed to increase the number of trains and reduce the journey times between Middlesbrough and Whitby.

But I believe that an hourly service between Hartlepool and Whitby, that would take under two hours or four hours for a round trip, could be possible.

This would mean that the hourly Hartlepool and Whitby service would need four trains.

Providing the track between Nunthorpe and |Whitby could be improved to handle the traffic, this would appear to be a very feasible proposition.

Nunthorpe And Hexham Via Newcastle

There is also an hourly service between Nunthorpe and Hexham, via Middlesbrough, Stockton, Hartlepool, Sunderland and Newcastle, there would be two tph.

  • It takes around two hours and twenty minutes.
  • I estimate that five trains would be needed for the service.
  • I travelled once between Newcastle and James Cook Hospital in the Peak and the service was busy.
  • A new station is being built at Horden, which is eight minutes North of Hartlepool.
  • The service could easily access the proposed fuelling station at Lackenby.
  • It would reduce carbon emissions in Newcastle and Sunderland stations..

Surely, if hydrogen power is good enough for the other routes, then it is good enough for this route.

Hartlepool Station

Hartlepool Station could become a problem, as although it is on a double track railway, it only has one through platform, as these pictures from 2011 show.

Consider.

  • There is no footbridge, although Grand Central could pay for one
  • There is a rarely-used bay platform to turn trains from Middlesbrough, Nunthorpe and Whitby.

This Google Map shows the cramped site.

The final solution could mean a new station.

Nunthorpe Park-And-Ride

This Google Map shows Nunthorpe with thje bEsk Valley Line running through it.

Note.

  1. Gypsy Lane and Nunthorpe stations.
  2. The dual-carriageway A171 Guisborough by-pass running East-West, that connects in the East to Whitby and Scarborough.
  3. The A1043 Nunthorpe by-pass that connects to roads to the South.

Would where the A1043 crosses the Esk Valley Line be the place for the Park-and-Ride station?

The new station could have a passing loop, that could also be used to turn back trains.

Battersby Station

Alan Williams, who is Chairman of the Esk Valley Railway Development Company, is quoted in the RAIL article as saying.

If you’re going to spend that sort of money we’d much rather you spent it on building a curve at Battersby to cut out the reversal there.

Williams gives further reasons.

  • Battersby is the least used station on the line.
  • It’s in the middle of nowhere.
  • The curve would save five minutes on the overall journey.

This Google Map shows Battersby station and the current track layout.

Note.

  1. The line to Middlesbrough goes through the North-West corner of the map.
  2. The line to Whitby goes through the North-East corner of the map.

There would appear to be plenty of space for a curve that would cut out the station.

LNER To Teesside

LNER, the Government and the TVCA are aiming to meet a target date of the Second Quarter of 2021 for a direct London and Middlesbrough service.

Middlesbrough Station

Middlesbrough Station will need to be updated and according to the RAIL article, the following work will be done.

  • A new Northern entrance with a glass frontage.
  • A third platform.
  • Lengthening of existing platforms to take LNER’s Class 800 trains.

This Google Map shows the current layout of the station.

From this map it doesn’t look to be the most difficult of stations, on which to fit in the extra platform and the extensions.

It should also be noted that the station is Grade II Listed, was in good condition on my last visit and has a step-free subway between the two sides of the station.

Journey Times

I estimate that a Kings Cross and Middlesbrough time via Northallerton would take aroud two hours and fifty minutes.

This compares with other journey times in the area to London.

  • LNER – Kings Cross and Darlington – two hours and twenty-two minutes
  • Grand Central – Kings Cross and Eaglescliffe – two hours and thirty-seven minutes.

I also estimate that timings to Redcar and Saltburn would be another 14 and 28 minutes respectively.

Frequencies

Currently, LNER run between three and four tph between Kings Cross and Darlington, with the competing Grand Central service between Kings Cross and Eaglescliffe having a frequency of five trains per day (tpd).

LNER have also started serving secondary destinations in the last month or so.

  • Harrogate, which has a population of 75.000, is served with a frequency of six tpd.
  • Lincoln, which has a population of 130,000 is now served with a frequency of six tpd.

Note that the RAIL article, states that the Tees Valley has a population of 750,000.

I feel that Middlesbrough will be served by a frequency of at least five tpd and probably six to match LNER’s new Harrogate and Lincoln services.

Will LNER’s Kings Cross and York Service Be Extended To Middlesbrough?

Cirrently , trains that leave Kings Cross at six minutes past the hour end up in Lincoln or York

  • 0806 – Lincoln
  • 0906 – York
  • 1006 – Lincoln
  • 1106 – York
  • 1206 -Lincoln
  • 1306 – York
  • 1406 – Lincoln
  • 1506 – York
  • 1606 – Lincoln
  • 1906 -Lincoln

It looks to me that a pattern is being developed.

  • Could it be that the York services will be extended to Middlesbrough in 2021?
  • Could six Middlesbrough trains leave Kings Cross at 0706, 0906, 1106, 1306, 1506 and 1706 or 1806?
  • York would still have the same number of trains as it does now!

LNER certainly seem to be putting together a comprehensive timetable.

Could Middlesbrough Trains Split At Doncaster Or York?

I was in Kings Cross station, this afternoon and saw the 1506 service to York, go on its way.

The train was formed of two five-car trains, running as a ten-car train.

If LNER employ spitting and joining,, as some of their staff believe, there are surely, places, where this can be done to serve more destinations, without requiring more paths on the East Coast Main Line.

  • Splitting at Doncaster could serve Hull, Middlesborough and York.
  • Splitting at York could serve Scarborough, Middlesborough and Sunderland.

Scarborough might be a viable destination, as the town has a population of over 100,000.

Onward To Redcar And Saltburn

One of the changes in the December 2019 timetable change, was the extension of TransPennine Express’s Manchester Airport and Middlesbrough service to Redcar Central station.

The RAIL article quotes the Mayor as being pleased with this, although he would have preferred the service to have gone as far as Saltburn, which is a regional growth point for housing and employment.

But the extra six miles would have meant the purchase of another train.

Redcar Central Station

This Google Map shows Redcar Central station and its position in the town.

It is close to the sea front and the High Street and there appears to be space for the stabling of long-distance trains to Manchester Airport and perhaps, London.

TransPennine seem to be using their rakes of Mark 5A coaches on Redcar services, rather than their Class 802 trains, which are similar to LNER’s Azumas.

Surely, there will be operational advantages, if both train operating companies ran similar trains to Teesside.

Saltburn Station

Saltburn station is the end of the line.

This Google Map shows its position in the town.

Unlike Redcar Central station, there appears to be very little space along the railway and turning back trains might be difficult.

There may be good economic reasons to use Saltburn as a terminal, but operationally, it could be difficult.

Will Redcar And Saltburn See Services To and From London?

Given that both towns will likely see much improved services to Middlesbrough, with at least a service of four tph, I think it will be unlikely.

But we might see the following.

  • LNER using Redcar as a terminus, as TransPennine Express do, as it might ease operations.
  • An early morning train to London and an evening train back from the capital, which is stabled overnight at Redcar.
  • TransPennine Express using Class 802 trains on their Redcar service for operational efficiency, as these trains are similar to LNER’s Azumas.

It would all depend on the passenger numbers.

A High-Frequency Service Between York And Teesside

After all the changes the service between York and Teesside will be as follows.

  • LNER will be offering a train virtually every two hours between York and Middlesbrough.
  • Grand Central will be offering a train virtually every two hours between York and Eaglescliffe, which is six miles from Middlesbrough.
  • TransPennine Express will have an hourly service between York and Redcar via Middlesbrough.
  • There will be between three and four tph between York and Darlington.

All services would connect to the hydrogen-powdered local services to take you all over Teesside.

Could this open up tourism without cars in the area?

Expansion Of The Hydrogen-Powered Train Network

Could some form of Hydrogen Hub be developed at Lackenby.

Alstom are talking of the hydrogen-powered Breeze trains having a range of over six hundred miles and possibly an operating speed of 100 mph, when using overhead electrification, where it is available.

In Breeze Hydrogen Multiple-Unit Order Expected Soon, I put together information from various articles and said this.

I am fairly certain, that Alstom can create a five-car Class 321 Breeze with the following characteristics.

  • A capacity of about three hundred seats.
  • A smaller three-car train would have 140 seats.
  • A near-100 mph top speed on hydrogen-power.
  • A 100 mph top speed on electrification.
  • A 1000 km range on hydrogen.
  • Regenerative braking to an on-board battery.
  • The ability to use 25 KVAC overhead and/or 750 VDC third rail electrification.

The trains could have the ability to run as pairs to increase capacity.

The distance without electrification to a selection of main stations in the North East from Lackenby is as follows.

  • Newcastle via Middlesbrough and Darlington – 21 miles
  • Newcastle via Middlesbrough and Durham Coast Line – 53 miles.
  • York via Northallerton – 27 miles
  • Doncaster via Northallerton and York – 27 miles
  • Leeds via Northallerton and York – 52 miles
  • Sheffield via Northallerton, York and Doncaster – 45 miles

I am assuming that the trains can use the electrification on the East Coast Main Line.

From these figures it would appear that hydrogen-powered trains stabled and refuelled at Lackenby could travel to Doncaster, Newcastle, Leeds, Sheffield or York before putting in a days work and still have enough hydrogen in the tank to return to Lackenby.

Several things would help.

  • As hydrogen-powered trains have a battery, with a battery range of thirty miles all these main stations could be reached on battery power, charging on the East Coast Main Line and at Lackenby.
  • Electrification between Darlington and Lackenby.
  • Electrification between Northallerton and Eaglescliffe.

I am fairly certain that a large proportion of the intensive network of diesel services in the North East of |England from Doncaster and Sheffield in the South to Newcastle in the North, can be replaced with hydrogen-powered trains.

  • Trains could go as far West as Blackpool North, Carlisle, Manchester Victoria, Preston and Southport.
  • Refueling could be all at Lackenby, although other refuelling points could increase the coverage and efficieny of the trains.
  • Green hydrogen could be produced by electrolysis from the massive offshore wind farms off the Lincolnshire Coast.
  • Hydrogen-powered trains would be ideal for re-opened routes like the proposed services from Newcastle to Blyth and Ashington.

The hydrogen-powered trains on Teesside could be the start of a large zero-carbon railway network.

The Alstom Breeze And The HydroFlex Would Only Be The Start

As I said earlier, the initial trains would be conversions of redundant British Rail-era electrical multiple units.

Thirty-year-old British Rail designs like the Class 319 and Class 321 trains based on the legendary Mark 3 carriages with its structural integrity and superb ride, may have been state-of-the-art in their day, but engineers can do better now.

  • Traction and regenerative braking systems are much more energy efficient.
  • Train aerodynamics and rolling resistance have improved, which means less energy is needed to maintain a speed.
  • Interior design and walk-through trains have increased capacity.
  • Crashworthiness has been improved.

Current Bombardier Aventras, Stadler Flirts or Siemens Desiros and CAF Civities are far removed from 1980s designs.

I can see a design for a hydrogen-powered train based on a modern design, tailored to the needs of operators being developed.

A place to start could be an electric CAF Class 331 train. or any one of a number of Aventras.

  • From the visualisation that Alstom have released of their Breeze conversion of a Class 321 train, I feel that to store enough hydrogen, a large tank will be needed and perhaps the easiest thing to do at the present time would be to add an extra car containing the hydrogen tank, the fuel cells and the batteries.
  • Alstom have stated they’re putting the fuel cells on the roof and the batteries underneath the train.

Although, it is not a hydrogen train, Stadler have developed the Class 755 train, with a power car in the middle of the train.

Stadler’s approach of a power car, must be working as they have received an order for a hydrogen-powered version of their popular Flirts, which I wrote about in MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train.

I think we can be certain, that because of the UK loading gauge, that a hydrogen-powered train will be longer by about a car, than the equivalent electric train.

I can see a certain amount of platform lengthening being required. But this is probably easier and less costly than electrification to achieve zero-carbon on a route.

Batteries can be distributed under all cars of the train, anywhere there is space., But I would suspect that fuel cells must be in the same car as the hydrogen tank, as I doubt having hydrogen pipes between cars would be a good idea.

Alstom have resorted to putting hydrogen tanks and fuel cells in both driving cars and they must have sound reasons for this.

Perhaps, it is the only way, they can get the required power and range.

As I understand it, the Alstom Breeze draws power from three sources.

  • The electrification if the route is electrified.
  • The electricity generated by regenerative braking.
  • The hydrogen system produces electricity on demand, at the required level.

Energy is stored in the batteries, which power the train’s traction motors and internal systems.

The electrical components needed for the train are getting smaller and lighter and I feel that it should be possible to put all the power generation and collection into a power car, that is somewhere near the middle of the train. Stadler’s power car is short at under seven metres, but there is probably no reason, why it couldn’t be the twenty metres, that are typical of UK trains.

Suppose you took a four-car version of CAF’s Class 331 train, which has two driver cars either side of a pantograph car and a trailer car.

This has 284 seats and by comparison with the three-car version the trailer car has eighty. As the pantograph car is also a trailer, I’ll assume that has eighty seats too! Until I know better!

Replacing the pantograph car with a hydrogen car, which would be unlikely to have seats, would cut the seats to 204 seats, but a second trailer would bring it back up to 284 seats.

I actually, think the concept of a hydrogen car in the middle of a four-car electric train could work.

  • The five-car hydrogen train would have the same capacity as the four-car electric version.
  • The train would need an updated software system and some rewiring. Bombardier achieved this quickly and easily with the train for the Class 379 BEMU trial.
  • There are several types of four-car electrical multiple units, that could possibly be converted to five-car hydrogen-powered multiple units.
  • Some five-car electrical multiple units might also be possible to be converted.

Obviously, if an existing train can be adapted for hydrogen, this will be a more cost effective approach.

Conclusion

Overall, the plans for rail improvements on Teesside seem to be good ones.

I’m looking forward to riding LNER to Teesside and then using the network of hydrogen-powered trains to explore the area in 2022.

My only worry, is that, if the network is successful, the many tourists visiting York will surely increase the numbers of day visitors to Whitby.

This is a paragraph from the RAIL article.

Alan Williams says that the EVRDC’s long-term objective is to see the Esk Valley served at intervals of roughly every two hours, equating to eight return trains per day, but with Northern and NYMR services sharing the single line between Grosmont and Whitby, introducing further Middlesbrough trains during the middle of the day, brings the conversation back to infrastructure.

He goes on to detail what is needed.

January 8, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | 4 Comments

Alstom Digital Train Control System Enters Service On Wuppertal Suspension Railway

The title of thiis post is the same as that of this article on Railways Africa.

It describes how Alstom have fitted digital signalling with ETCS to Wuppertal’s Schwebebahn.

 

Surely, if you can fit digital signalling to the city’s weird and wonderful railway, it can be applied to any other railway.

 

September 7, 2019 Posted by | Transport | , , , | Leave a comment

Battery Answer To Schleswig-Holstein’s Diesel Replacement Question

The title of this post, is the same as that of this article on Railway Gazette International.

It is a good explanation of why there is so much interest in battery-powered trains.

This paragraph from the article, describes how the trains will operate in Schleswig-Holstein.

They will have range of 150 km under optimal conditions, although the longest non-electrified route they will operate on is around 80 km. The batteries will be recharged from the existing 15 kV 16·7 Hz overhead electrification at Kiel, Neumünster, Flensburg, Lübeck and Lüneburg stations and on the Osterrönfeld – Jübek line. Charging facilities will also be provided in other locations, and there will be some extensions to the existing overhead power supply.

Consider.

  • These trains can run on routes of up to eighty kilometres or around fifty miles.
  • Greater Anglia and Transport for Wales will be running the UK versions of the Stadler Flirts, that will be used in Schleswig-Holstein.
  • Transport for Wales will also be running a tri-mode Flirt with electric, diesel and battery power.
  • The Continental loading gauge, probably allows more batteries than the smaller UK loading gauge.

I think it could be reasonable to assume, that a UK-sized  battery-electric Stadler Flirt could have a range of forty miles on batteries.

These could be possible routes for Greater Anglia.

  • Norwich and Sheringham – 30 miles
  • Norwich and Lowestoft – 23.5 miles
  • Norwich and Great Yarmouth – 18 miles
  • Ipswich and Felixstowe – 16 miles
  • Colchester Town and Sudbury – 20 miles

In addition some partially-electrified routes have gaps less than forty miles. Think Cambridge and Ipswich!

I would not be surprised to see battery trains, quietly gliding around East Anglia.

Would they attract passengers and tourists?

Perhaps Germany and Stadler will give us the Schleswig-Holstein Answer, which will be much more interesting than the Schleswig-Holstein Question.

Economics Of Battery Trains

The article also has this quote from the CEO of Stadler Germany about the economics of battery trains.

It makes us very proud that with the battery-powered Flirt we have not only managed to find an ecological and innovative solution, but have also enabled a clear economic improvement. If we consider the average life of a rail vehicle of around 30 years, battery-operated vehicles are more cost-effective than diesel’.

I think it can also be said, that battery technology will improve continuously in the next thirty years and we should see a corresponding improvement in range and performance.

You don’t get that with diesel.

Hydrogen Or Battery Power?

I would think that Alstom are not happy about this order for battery-powered trains.

  • Only a hundred kilometres or so to the West, they are supplying Alstom Coradia iLint trains for a similar network.
  • These trains are working well.
  • They have teamed up with Linde to supply the hydrogen.

I wouldn’t have been surprised if Schleswig-Holstein had chosen hydrogen trains.

So why did Schleswig-Holstein, choose battery rather than hydrogen trains?

  • Provided, the driver or a computer, raises and lowers the pantograph appropriately, there is no difference between an electric train and its battery-electric sibling.
  • Systems to charge battery trains can be installed anywhere, there is an electricity supply.
  • The electricity supply could be local wind or solar.
  • Charging battery trains could be automatic and require no more action from the driver, than checking everything is as it should be and perhaps pushing a button or two. On a bleak miserable day, the driver would remain in the warm and comfortable cab.
  • Hydrogen would need to be loaded on the train at a depot or another place with the necessary safety clearance.
  • The iLint seats 160 and the Flirt Akku seats 124, so I suspect capacity isn’t much of a problem.
  • The Flirt Akku is a train designed for battery-electric operation, whereas the iLint is a modified diesel train, with a noisy and harsh mechanical transmission. It’s like comparing Class 710 trains, with their predecessors on the Gospel Oak to Barking Line; the Class 172 trains.
  • I suspect most Germans have talked to a relative or older person, who remembers the Hindenburg.

There is probably little to choose between the two trains, but I believe that the operation of the hydrogen-powered train will be more complicated.

I also don’t know the cost of each train.

As I said earlier, Stadler claim long-term ownership of battery-powered trains is more economic than diesel. Does the same apply to battery against hydrogen power.

Conclusion

I believe we’ll see lots more battery trains.

 

 

 

 

July 2, 2019 Posted by | Transport | , , , , , , , | 1 Comment

Is There Nothing A Class 319 Train Can’t Do?

If a train every goes into orbit round the world, it will be highly-likely that it will be a Class 319 train!

Electric Trains In North-West England

The fleet of eighty-six trains entered service in 1987 on Thameslink  and now twenty-seven are plying their trade on the electrified routes around the North-West of England.

  • You don’t hear many complaints about them being called London’s cast-offs.
  • Passengers fill them up in Blackpool, Liverpool, Manchester and Preston.
  • They still do 100 mph where possible.
  • They seem to be reliable.
  • They are not the most attractive of trains.

But handsome is as handsome does!

Drivers have told me, that although the suspension may be a bit soft for the bumpy route across Chat Moss, the trains do have superb brakes.

Bi-Mode Class 769 Trains

Nearly thirty of the trains are being converted into bi-mode Class 769 trains for working partially-electrifired routes and although these are running late, they should be in service this year.

Rail Operations Group

Two Class 769 trains have been ordered to be fast logistics trains by Rail Operations Group.

Wikipedia says the trains will be used to transport mail.

But if you read the history of the Rail Operations Group, they make the assets sweat and I’ve read the trains will still have seats, so they might do some other rail operations.

The Hydrogen-Powered Class 799 Train 

And now comes the Class 799 train!

This is a demonstrator to prove the concept of conversion to hydrogen power.

The fact that the train now has it’s own number must be of some significance.

Alstom are converting Class 321 trains into Class 321 Breeze trains.

  • The conversion will reduce passenger capacity, due to the large hydrogen tank
  • It will have a 1,000 km range.
  • It will have regenerative breaking.
  • It will have a new AC traction package
  • It will probably have the interior of a Class 321 Renatus train.

The conversion will obviously build on Alstom’s experience with the Alstom Coradia iLint train and Eversholt’s experience with the Renatus.

When it comes to the Class 799 train, the following will apply.

  • Porterbrook have all the experience of creating the bi-mode and dual-voltage Class 769 train.
  • Birmingham University’s Birmingham Centre For Railway Research And Education (BCRRE) are providing the expertise to design and convert the Class 319 train to hydrogen power.
  • I also wouldn’t be surprised to find out, that the BCRRE has applied some very extensive mathematical modelling to find out the performance of a hydrogen-powered Class 319 train or HydroFLEX train.
  • The conversion could be based closely on Class 769 experience and sub-systems,

Could the main purpose be to demonstrate the technology and ascertain the views of train operators and passengers on hydrogen power?

The most important question, is whether the Class 799 train, will have the same passenger capacity as the original Class 319 train?

If it does, then BCRRE must have found a way to store the hydrogen in the roof or under the floor.

It should be noted, that it was only in September 2018, that the contract to develop the Class 799 train was signed and yet less than a year later BCRRE and Porterbrook will be demonstrating the train at a trade show.

This short development time, must mean that there is not enough time to modify the structure of the train to fit a large hydrphen tank inside, as Alstom are proposing.

A smaller hydrogen tank could be placed in one of three places.

  • Underneath the train.
  • On the roof.
  • Inside the train, if it is small enough to fit through the train’s doors.

Note.

  1. I doubt that anybody would put the tank inside the train for perceived safety reasons from passengers.
  2. On the roof, would require substantial structural modifications. Is there enough time?

So how do you reduce the size of the hydrogen tank and still store enough hydrogen in it to give the train a useful range?

In Better Storage Might Give Hydrogen The Edge As Renewable Car Fuel, I indicated technology from Lancaster University, that could store four times as much hydrogen in a given size of tank.

This reduced tank size would make the following possible.

  • The hydrogen tank, the fuel cell and the batteries could be located underneath the four-cars of the Class 319 train.
  • The seating capacity of the Class 799 train could be the same as that of a Class 319 train.

Clever electronics would link everything together.

If BCRRE succeed in their development and produce a working hydrogen-powered Class 799 train, how would the technology be used?

Personally, I don’t think we’ll see too many hydrogen-powered Class 799 trains, running passengers on the UK network.

  • The trains are based on a thirty-year-old train.
  • The interiors are rather utilitarian and would need a lot of improvement, to satisfy what passengers expect.
  • Their market can probably be filled in the short-term by more Class 769 trains.

But I do believe that the technology could be applied to more modern trains.

A Hydrogen-Powered Electrostar

Porterbrook own at least twenty four-car Electrostar trains, which have been built in recent years.

Six Class 387 trains, currently used by c2c, may come off lease in the next few years.

Could these trains be converted into a train with the following specification?

  • Modern train interior, with lots of tables and everything passengers want.
  • No reduction in passenger capacity.
  • 110 mph operating speed using electrification.
  • Useful speed and range on hydrogen power.
  • ERTMS capability, which Porterbrook are fitting to the Class 387 trains to be used by Heathrow Express.

It should be born in mind, that a closely-related Class 379 train proved the concept of a UK battery train.

  • The train was converted by Bombardier.
  • It ran successfully for three months between Manningtree and Harwich.
  • The interior of the train was untouched.

But what was impressive was that the train was converted to battery operation and back to normal operation in a very short time.

This leads me to think, that adding new power sources to an Electrostar, is not a complicated rebuild of the train’s electrical system.

If the smaller hydrogen tank, fuel cell and batteries can be fitted under a Class 319 train, I suspect that fitting them under an Electrostar will be no more difficult.

I believe that once the technology is proven with the Class 799 train, then there is no reason, why later Electrostars couldn’t be converted to hydrogen power.

  • Class 387 trains from c2c, Great Northern and Great Western Railway.
  • Class 379 trains, that will be released from Greater Anglia by new Class 745 trains.
  • Class 377 trains from Southeastern could be released by the new franchise holder.

In addition, some Class 378 trains on the London Overground could be converted for service on the proposed West London Orbital Railway.

A Hydrogen-Powered Aventra

If the Electrostar can be converted, I don’t see why an Aventra couldn’t be fitted with a similar system.

Conclusion

A smaller hydrogen tank, holding hydrogen at a high-density would enable trains to be converted without major structural modifications or reducing the passenger capacity.

The development of a more efficient method of hydrogen storage, would open up the possibilities for the conversion of trains to electric-hydrogen hybrid trains.

 

 

 

 

 

 

 

 

June 13, 2019 Posted by | Transport | , , , , , , , , , , , , , , | 1 Comment

Comparing A Class 769 Train With An Alstom Breeze

Who’d have thought that two thirty-year-old British Rail-era electrical multiple units, would be fighting in the same market for bi-mode trains to replace diesel multiple units?

Class 319 Train

Class 319 trains started life as four-car dual-voltage  electrical multiple units for Thameslink and Porterbrook are now converting them into four-car electro-diesel multiple units, which have been given the TOPS classification of Class 769 trains.

Class 321 Train

Class 321 trains started life as four-car 100 mph electrical multiple units for East Anglia and Eversholt and Alstom are now converting them into hydrogen-powered multiple units, which have been given the name of Breeze.

So how does a Class 769 compare with an Alstom Breeze?

Ability To Work Using Electrification

This article on Rail Engineer, which is all about the Class 769 train, is entitled Bi-Mode Good, Tri-Mode Better.

The title says it all about the ability to work from three different power sources.

  • 25 KVAC overhead electrification
  • 750 VDC third-rail electrification
  • Onboard power from two diesel generators.

This must have impressed Great Western Railway as they’ve ordered nineteen trains.

Nothing has been directly said, about whether an Alstom Breeze can use electrification, but as the partially-electrified Liverpool to Chester route has reportedly been chosen as a test route, I would think, that the ability to use electrification is very likely.

Operating Speed

In the Rail Engineer article, this is said about the operating speed of a Class 769 train.

Modelling has shown the gradient balancing speed on a flat gradient when powered by the diesel engines to be approximately 87 mph and the trains will retain the 100 mph capability when powered by electricity.

Alstom are claiming 87 mph on hydrogen power.

Operational Range

My brochure for a Class 769 train, says this about the operational range of the train.

Class 769 could operate the route between Manchester and Buxton and achieve timings equal to a Class 150. The Class 769 unit would have the capacity to make five return trips per day for two days before refuelling is required.

This is a total of about 540 km on a route, which climbs three hundred metres with twelve stops.

Alstom quote the Breeze as having a range of a thousand km. But over what sort of terrain!

This doesn’t appear to be an equal comparison.

So perhaps the Buxton trials should be undertaken!

Refuelling

The Class 769 train runs partially on diesel fuel, which makes the train easy to refuel.

The Alstom Breeze needs a hydrogen supply, which can either be sourced from a piped or tanked supply or a local hydrogen generator.

I believe that as Alstom are going down the hydrogen route, at least on a Europe-wide basis, that the provision of hydrogen, will not be a large problem.

Passenger Capacity

When they were built, I suspect that as both trains had a lot of 2+3 seating, that the capacity of both trains was very similar.

My brochure for a Class 769 train shows a suggested layout with 12 First Class seats, 255 Standard Class seats and a Universal Access Toilet.

In Hydrogen Trains Ready To Steam Ahead, I estimated that a three-car Alstom Breeze would have a seating capacity of around 140 seats, with the ability to perhaps take an additional 160 standees.

I also believe that longer versions of Alstom Breezes are possible, with the addition of trailer cars. I estimate capacities, which would include standees could be.

  • Four-car – 450 passengers
  • Five-car – 600 passengers

Both Class 769 trains and Alstom Breezes would appear to have sufficient capacity for typical routes.

Noise Signature

I have not heard either train in action, as neither is in service yet.

This article on Rail Engineer is entitled Class 769 In Action.

This is an extract talking about the noise and vibration of a Class 769 train.

There was no need to worry; just walking through the car park with the train alongside was a revelation. The two idling MAN diesel engines were almost purring; none of the ‘rattling’ that one is used to from older diesels and no visible exhaust either. A conversation at normal volume was easily possible, sitting on the benches outside the café just four metres away from the train.

As to the Alstom Breeze, it is likely to be a near-silent train, if my rides in battery-powered trains are anything to go by.

Carbon Footprint

The Alstom Breeze has a zero carbon footprint, whereas the Class 769 train will produce some carbon dioxide, as it’s partially diesel-powered.

The Alstom Breeze has the possibility of running using hydrogen produced by a zero carbon method, such as the electrolysis of water or brine using electricity from a renewable source such as geothermal, solar, water or wind power.

Recycling Credentials

Both trains effectively recycle existing trains, that would otherwise be scrapped or sold off to an operator in the Developing World.

Conclusion On Comparison

Both trains have their good points and both should find a niche market in the UK, as the Class 769 train already has with four orders for a total of thirty-nine trains.

The Future

In addition, the Alstom Breeze is a demonstrator for the company’s hydrogen technology in a train for a UK-sized rail network.

I would not be surprised, if the Breeze is successful, to see Alstom develop a family of trains based on the technology.

They would have the following characteristics.

  • Flexible length and capacity.
  • Modern aluminium construction.
  • Modern well-designed interiors with everything passengers, operators and staff want and need.
  • 100 mph on hydrogen and electrification
  • Efficient hydrogen generation and refuelling stations
  • Availability in various gauges.

I can also envisage a complete package being offered to railways in a country like Ireland or New Zealand, to run hydrogen-powered trains on a route that is currently not electrified.

By good design, I feel that the only difference between standard, Irish and narrow gauge versions would be a change of bogie.

The Gazelle In The Wings

Bombardier are proposing a 125 mph bi-mode Aventra, which I talked about in Bombardier Bi-Mode Aventra To Feature Battery Power.

Bombardier obviously have extensive mathematical models of the Aventra and just as this has led to a 125 mph bi-mode Aventra, I believe that if it is possible, Bombardier will propose a bi-mode train with the following characteristics.

  • Flexible length and capacity.
  • Small diesel engine and batteries
  • 100 mph on both diesel and electric power.
  • Level floor
  • Almost silent operation.

There will be plenty of applications for this bi-mode train.

It is interesting to note, that Bombardier have dismissed hydrogen as a fuel.

Could it be, that their modelling has shown, that the large tanks for hydrogen make a new-build hydrogen-powered bi-mode train an unviable proposition?

Diesel on the other hand is a much more convenient fuel.

Conclusion

It is going to be an interesting fight between, diesel and hydrogen bi-modes to determine the future of the rail industry.

It is a tribute to the much-maligned British Rail, that the first major battle between the two fuels is being fought using rebuilt thirty-year-old trains built by British Rail Egineering Limited.

Which fuel will win?

Some applications will be ideal for hydrogen and others will need diesel.

But as battery technology improves and electrification increases, it is likely that the need for hydrogen and diesel will decrease.

 

January 13, 2019 Posted by | Transport | , , , , , , | Leave a comment

Hydrogen Trains Ready To Steam Ahead

The title of this post is the same as that of an article in today’s copy of The Times.

This is the first two paragraphs.

Hydrogen trains will be introduced in as little as two years under ambitious plans to phase out dirty diesel engines.

The trains, which are almost silent and have zero emissions, will operate at speeds of up to 90 mph and release steam only as a by-product. The new trains, which will be called “Breeze” will be employed on commuter and suburban lines by early 2021.

From the article and other published sources like Wikipedia, I can say the following.

Train Formation

The formation of some of the current Class 321 trains is as follows.

DTSO(A)+TSO+MSO+DTSO(B)

Note.

  1. The two DTSO cars are identical and are Driving Trailer Standard Open cars.
  2. The TSO car is a Trailer Standard Open car.
  3. The MSO car is a Motor Standard Open, which contains the four traction motors, the pantograph and all the electrical gubbins.

The refurbished Class 321 Renatus train has a new AC traction system.

In the past, the Trailer car has been removed from some of these trains, to make a three-car Class 320 train, which has this formation.

DTSO(A)+MSO+DTSO(B)

The Times says this about the formation of the hydrogen trains.

New images released by Alstom show that the existing four-carriage 321s will be reduced to three as part of the conversion process, which will be carried out at the company’s plant in Widnes, Cheshire. The front and rear third of the train will be used to house hydrogen gas storage tanks.

It would appear to me that Alstom have decided to go down a route based on the proven Class 320 train.

The TSO car will be removed and the existing or re-tractioned MSO car will be sandwiched between two rebuilt DTSO cars containing large hydrogen tanks and the hydrogen fuel cells to generate the electricity to power the train.

Although, Alstom’s pictures show a three-car train, I can’t see any reason, why a four-car train would not be possible, with the addition of a TSO car.

The train would obviously need to have enough power.

But then a standard Class 321 train is no wimp with a 100 mph operating speed and one MW of power, which is a power level not far short of the 1.68 MW of a modern four-car Class 387 train.

The MSO Car

You could almost consider that a Class 321 train is an MSO car, with a Driving Trailer car on either side and an extra Trailer car to make a four-car train.

In an original Class 321 train, the MSO car has the following.

  • Two motored bogies, each with two traction motors.
  • A pantograph on the roof to pick up the 25 KVAC overhead power.
  • A transformer and the other electrical gubbins.

This picture shows the side view of an MSO car in an unmodified Class 321 train.

It does appear to be rather full under the MSO car, but I suspect, that modern AC equipment will take up less space. Although, the air-conditioning will have to be squeezed in.

Some if not all cars are labelled as PMSO, to indicate they have the train’s pantograph.

British Rail designed a lot of Mark 3 coach-based Electric Multiple Units like this, with a power car in the middle and trailer cars on either side. For instance, the legendary Class 442 train, is of five cars, with all the traction motors and electrical gear in the middle car. It still holds the speed record for third-rail-powered trains. British Rail certainly got the dynamics right.

The upgraded Class 321 Renatus trains have a new AC traction system.

  • This will be state-of-the-art, more efficient and probably more reliable.
  • New traction motors handle regenerative braking.

But is it more powerful than the original system?

If it was, it would give better acceleration.

This modern traction system will probably be a starting point for the electrical system of a hydrogen-powered Class 321 train.

It would have to be able to accept electrical power from the following sources.

  • The pantograph, when connected to the 25 KVAC overhead electrification.
  • The two Driving Trailer Standard Open cars with their hydrogen tanks and fuel-cells..

The voltages will probably be different, but this should not be a problem for a modern well-designed electrical system.

Batteries And Regenerative Braking

The Times has a graphic, which shows a part-cutaway of the train.

There is an arrow and explanation labelled Traction System, where this is said.

Ensures appropriate energy is transmitted between fuel cell and battery. Drives wheels and collects energy during braking.

I would suspect that a single battery would be placed in the MSO car, so that the battery could be close to the traction motors under the car.

Battery Size Calculation

The battery should be big enough to handle the energy generated when braking from the train’s maximum speed.

Obviously, Alstom have not disclosed the weight of the train, but a three-car Class 320 train, which is a Class 321 train without the trailer car,  weighs 114.5 tonnes and has 213 seats. So I suspect that because of the hydrogen tanks, there will be about 140 seats in the hydrogen-powered train. So could it hold 300 passengers with the addition of standees?

I don’t know how much a hydrogen tank weighs, but I suspect it is more bulky than heavy.

Fuel cells of the required size, seem to weigh in the order of hundreds of kilograms rather than tonnes.

So I think I will assume the following for my kinetic energy calculation.

  • A 200 tonne train
  • 300 passengers at 90 Kg each with baggage, bikes and buggies.
  • A speed of 87 mph.

This gives a 227 tonne train, when fully loaded.

Omni’s Kinetic Energy Calculator gives a kinetic energy of just under 50 kWh.

So this amount of energy will be needed to accelerate the train to the operating speed and could be substantially recovered at a station stop from the operating speed.

As the train will also need hotel power for doors, air-conditioning and other train systems, a battery of perhaps around 100 kWh would give enough power.

Obviously, Alstom will have done a complete computer simulation, they will have much better and more accurate figures.

As 50 kWh traction batteries are of the size of a large suitcase, I doubt there would be a problem putting enough battery capacity in the MSO car.

Obviously, these are very rough calculations, but it does appear that with modern lightweight tanks, hydrogen trains are feasible, with readily-available components.

But then Alstom have already converted a Coradia Lint to hydrogen power.

Will The Train Be A Series Hybrid?

In a series hybrid, like a New Routemaster bus, the vehicle is driven by an electric motor, powered by a battery, which in the case of the bus is charged by a small diesel engine. Braking energy is also recycled to the battery.

In Alstom’s Breeze train, the traction motors in the MSO car would be connected to the battery.

When the power in the battery is low, the train’s computer will top up the battery from the overhead electrification, if it is available or use the hydrogen fuel cells.

I suspect the computer would always leave enough spare capacity in the battery to accommodate the energy generated during braking.

Passenger Capacity and Range

I have estimated that the passenger capacity of the train is around three hundred.

This picture from Alstom, shows a side view of one DTSO car of the train.

The windows, probably denote the size of the passenger compartment. So instead of having the capacity of a three-car train, it probably only carries that of a two-car train.

Compare this visualisation with a picture of an unmodified DTSO car.

There’s certainly a lot of space under the DTSO car, which I’m sure Alstom will use creatively. Can the fuel cells fit underneath?

From the cutaway view of the proposed train in The Times, it would appear that the section behind the driving compartment is occupied by the hydrogen tank.

The hydrogen fuel cells or at least their vents are on the roof at the back end of the car.

The Times gives the range of the train as in excess of 625 miles.

To put this into context, the Tyne Valley Line has a length of sixty miles, so a train could do at least five round trips between Newcastle and Carlisle without refuelling.

It’s certainly no short-range trundler!

I deduce from the extreme range quoted by The Times, that Alstom’s Breeze is an extremely efficient train and probably a series hybrid.

If the train is very efficient, that could mean, that there is the possibility to use smaller tanks to increase the train’s passenger capacity to fit a particular route better.

Use Of The Pantograph

All the articles published today don’t say anything about the pantograph.

But I can’t see any reason, why when 25 KVAC overhead electrification exists, it couldn’t be used.

Being able to use available electrification is also a great help in positioning trains before and after, trains  perform their daily schedule.

750 VDC Operation

British Rail did get a lot of things right and one was that nearly all of their electrical multiple units could work or be modified to work on both forms of electrification in the UK; 25 KVAC overhead and 750 VDC third-rail.

So I believe that a 750 VDC version of Alstom’s Breeze will be possible.

A Replacement For A Two-Car Diesel Multiple Unit

There are large numbers of two-car diesel multiple units in the UK.

All would appear to have a similar passenger capacity to Alstom’s Breeze.

Some though will be converted into more efficient diesel-battery hybrids.

But there will still be a sizeable number of replacements, where the Breeze will be suitable.

The Breeze will have a major advantage, if as I expect, it has the ability to run using 25 KVAC or 750 VDC electrification.

It will be able to work routes that are partially electrified.

Possible Routes

The Times says this about possible routes.

Although the company refused to be drawn on the destination of the new trains, it is believed that they could be used on unelectrified lines in the north-west or north-east.

It is worth looking at the location of Alstom’s factory in Widnes, where the Class 321 trains will be converted. This Google Map shows the area.

Note.

  1. The main railway between Liverpool and Crewe running across the top of the map and then crossing the River Mersey to go South.
  2. The Alstom factory is shown by a red arrow in the North-West corner of the map.

Not shown on the map, as it is just to the South on the South Bank of the Mersey, is INEOS’s massive Castner-Kellner works, which is a major producer of hydrogen, as it was when I worked there in the late 1960s.

I doubt that Alstom will be short of hydrogen to test the new trains.

Alstom and INEOS could even build a pipeline across the Mersey.

The Liverpool and Crewe Line is electrified and recently, the Halton Curve has been upgraded to form a new route between Liverpool and Chester via Runcorn, Frodsham and Helsby.

The Wikipedia entry for the Halton Curve has a section called Hydrogen Fuel Cell Train Trials, where this is said.

The Chester to Liverpool line via the Halton Curve is proposed for a trial by Alstom of their zero emissions hydrogen fuel cell trains. The line was chosen as Alstom’s new technology facility is at Halebank on the Liverpool border adjacent to the line, with hydrogen supplied via the nearby Stanlow refinery.

I should say, that I personally prefer the INEOS route for hydrogen, where it is a by-product of the electrolysis of brine, which is mainly to produce chlorine. Even in the 1960s, ICI performed a lot of production at night to take advantage of more affordable electricity.

The other route that goes close to Alstom’s factory is the Liverpool Lime Street to Manchester route via Warrington.

Increasing Capacity

I believe that effectively two-car trains with a capacity of 300 passengers,running between say the cities of Liverpool and Chester would not be large enough.

The current Class 321 trains are four-car trains and the conversion to Alstom’s Breeze trains, will result in the removal of the Trailer car, which contains the toilet.

The power of the MSO car in the current Class 321 trains is 1,000 kW.

During the conversion for use in Alstom’s Breeze trains, the power system will be updated.

  • Four new AC traction motors will be fitted.
  • A battery to store electricity and handle regenerative braking will be fitted. I estimated earlier, that this could be at least 100 kWh.
  • The ability to connect to the hydrogen fuel cells in the two updated Driving Trailer Standard Open cars will be fitted.

I also suspect a well-designed computer control system will be added.

As a time-expired Control Engineer, I believe that the updated MSO car can be designed to deliver any amount of power between say 1,000 kW and 1,600 kW.

Alstom will obviously know, how much power will be needed to accelerate their proposed three-car train to the operating speed of 87 mph.

Four-Car Alstom Breeze Trains

Suppose though that the trailer car was also updated and added to the train.

  • The weight would rise to 223 tonnes.
  • Passenger capacity would rise to 450.
  • Maximum kinetic energy at 87 mph, would rise to 55 kWh.

Provided the MSO car is powerful enough, a four-car Alstom Breeze would appear to be feasible.

Five-Car Alstom Breeze Trains

What would the sums look like for a five-car Alstom Breeze.

  • Two trailer cars would be added.
  • The weight would rise to 246 tonnes.
  • Passenger capacity would rise to 600.
  • Maximum kinetic energy at 87 mph, would rise to 63 kWh.

With the priviso of the power of the MSO car, it certainly looks like a five-car Alstom Breeze could be feasible.

It looks like at least three different sizes of train are possible.

  • Three-car – 300 passengers
  • Four-car – 450 passengers
  • Five-car – 600 passengers

Only three different types of car will be needed.

  • Driving Trailer Standard Open – DTSO – With hydrogen tanks and hydrogen fuel cells and less seating than in the current trains.
  • Motor Standard Open – MSO – With new AC power system and a battery.
  • Trailer Standard Open – TSO – With seats and possibly a Universal Access Toilet, bike racks or a buffet.

Note.

  1. All DTSO would be more-or-less identical, but some might have larger tanks and more fuel-cells.
  2. All MSO cars would be identical.
  3. TSO cars would be specified by the customer and could be tailored to a particular route.

The train’s computer, would automatically determine what train had been assembled and adjust power settings and displays accordingly.

Suppose four Class 321 trains were to be converted to Alstom Breezes.

You could end up with.

  • Four three-car trains.
  • Four spare Trailer Standard Open cars.

Or.

  • Four four-car trains.

Or.

  • Two three-car trains.
  • Two five-car trains

The permutations are endless.

It is an infinitely flexible system, which can produce trains of a variety of lengths.

I would suspect that Eversholt will want customers to take complete trains, to maximise their returns and not end up with too many orphaned trailer cars.

Are There Any Spare Trailer Cars?

I ask this question, as in the last few years, twelve four-car Class 321 trains, have been converted to three-car Class 320 trains. As part of this process the trailer car is removed.

I would assume the twelve trailer cars have been put into store.

Could they be used to create five-car Alstom Breeze trains?

Will Alstom Breeze Trains Work In Multiple?

Class 321 trains can do this and I suspect that the Alstom Breezes will have the capability.

But it will probably be mainly for train recovery, than general operation.

Although, running two shorter trains as a longer one, is always useful, when there is a large sporting or other event happening.

Manufacturing

Alstom’s design eases the conversion.

Each type of car has its own manufacturing process,

Driving Trailer Standard Open

This would need to be done to all DTSO cars.

  • The car is checked, cleaned and externally refurbished.
  • The seats and most of the interior is removed.
  • The driving compartment is updated.
  • The hydrogen tank is added behind the driving compartment.
  • The hydrogen fuel cells are added, with vents on the roof.
  • The new interior with seats is fitted behind the hydrogen tank and fuel cells.
  • No work would need to be done to the bogies, except that needed for maintenance.
  • Finally, the new livery would be applied.

All DTSO cars would be treated in the same manner, although some might have smaller hydrogen tanks and detailed differences due to customer preferences and route needs.

Motor Standard Open

This would need to be done to all MSO cars.

  • The car is checked, cleaned and externally refurbished.
  • The seats and most of the interior is removed.
  • The electrical equipment is replaced with the new AC system with a battery.
  • The bogies would be fitted with the new AC traction motors.
  • The new interior is fitted.
  • Finally, the new livery would be applied.

All MSO cars would probably be treated in the same manner.

Trailer Standard Open

This would need to be done to all TSO cars.

  • The car is checked, cleaned and externally refurbished.
  • The seats and most of the interior is removed.
  • The new interior is fitted.
  • Finally, the new livery would be applied.

All TSO cars would probably be treated in a similar manner, but the interior fitment would depend on the customer’s requirements.

This picture shows a side view of an unmodified TSO car.

There is certainly a lot of space underneath the car.

I wonder if Alstom have any plans for using this space?

Summing Up Manufacturing

The process for the three types of cars is very similar and is very typical of the work regularly done to give mid-life updates to trains in the UK.

Alstom’s Widnes factory has already performed a major upgrade to Virgin Trains’ Pendelinos and I doubt that the work will hold many terrors for the factory, if the design phase is good.

Train Testing

So many train projects have been let down recently, by the lack of suitable test facilities and poorly-planned testing.

The Halton Curve route between Liverpool and Chester would appear to be an ideal route to test the trains.

  • Liverpool Lime Street station has recently been upgraded in size.
  • Chester station is not busy.
  • The route is about forty miles long.
  • I estimate that trains will take about forty minutes
  • The route passes Alstom’s factory in Widnes.
  • The route is about half-electrified, between Liverpool Lime Street and Runcorn.
  • Access is good to the North Wales Main Line for long range testing.

Running on both electrification and hydrogen can be tested with a changeover at Runcorn station.

A Liverpool to Chester service would go through the following sequence.

  • Arrive at Runcorn station, after running from Liverpool using existing 25 KVAC electrification.
  • Drop the pantograph.
  • Continue towards Chester on hydrogen power.

The sequence would be reversed in the opposite direction.

I don’t believe Alstom could want for a better test route.

I can only see one major problem.

Liverpudlians are a curious breed and I predict they will turn up in droves at a new attraction in their midst.

Conclusion

I very much feel that by using hydrogen tanks in the two driving cars Alstom have created a pragmatic flexible design, that will prove if hydrogen trains are a viable proposition for the UK.

Things that I particularly like.

  • The first trains being two-car DMU-sized.
  • The ability to use electrified lines.
  • The extraordinary range.
  • The performance.
  • Trains of different length and capacity can be created from three different car types.
  • The testing process.

But I have my doubts that the initial train has enough capacity.

Although I suspect that it could be increased by adding one or more trailer cars.

 

 

 

January 8, 2019 Posted by | Transport | , , , , , , | 4 Comments