The Anonymous Widower

Could A Battery- Or Hydrogen-Powered Freight Locomotive Borrow A Feature Of A Steam Locomotive?

Look at these pictures of the steam locomotive; Oliver Cromwell at Kings Cross station.

Unlike a diesel or electric locomotive, most powerful steam locomotives have a tender behind, to carry all the coal and water.

The Hydrogen Tank Problem

One of the problems with hydrogen trains for the UK’s small loading gauge is that it is difficult to find a place for the hydrogen tank.

The picture is a visualisation of the proposed Alstom Breeze conversion of a Class 321 train.

  • There is a large hydrogen tank between the driving compartment and the passengers.
  • The passenger capacity has been substantially reduced.
  • The train will have a range of several hundred miles on a full load of hydrogen.

The Alstom Breeze may or may not be a success, but it does illustrate the problem of where to put the large hydrogen tank needed.

In fact the problem is worse than the location and size of the hydrogen tank, as the hydrogen fuel cells and the batteries are also sizeable components.

An Ideal Freight Locomotive

The Class 88 locomotive, which has recently been introduced into the UK, is a successful modern locomotive with these power sources.

  • 4 MW using overhead 25 KVAC overhead electrication.
  • 0.7 MW using an onboard diesel engine.

Stadler are now developing the Class 93 locomotive, which adds batteries to the power mix.

The ubiquitous Class 66 locomotive has a power of  nearly 2.5 MW.

But as everybody knows, Class 66 locomotives come with a lot of noise, pollution, smell and a substantial carbon footprint.

To my mind, an ideal locomotive must be able to handle these freight tasks.

  • An intermodal freight train between Felixstowe and Manchester.
  • An intermodal freight train between Southampton and Leeds.
  • A work train for Network Rail
  • A stone train between the Mendips and London.

The latter is probably the most challenging, as West of Newbury, there is no electrification.

I also think, that locomotives must be able to run for two hours or perhaps three,  on an independent power source.

  • Independent power sources could be battery, diesel, hydrogen, or a hybrid design
  • This would enable bridging the many significant electrification gaps on major freight routes.

I feel that an ideal locomotive would need to meet the following.

  • 4 MW when running on a line electrified with either 25 KVAC overhead or 750 VDC third-rail.
  • 4 MW for two hours, when running on an independent power source.
  • Ability to change from electric to independent power source at speed.
  • 110 mph operating speed.

This would preferably be without diesel.

Electric-Only Version

Even running without the independent power source, this locomotive should be able to haul a heavy intermodal freight train between London and Glasgow on the fully-electrified West Coast Main Line.

I regularly see freight trains pass along the North London Line, that could be electric-hauled, but there is a polluting Class 66 on the front.

Is this because there is a shortage of quality electric locomotives? Or electric locomotives with a Last Mile capability, that can handle the routes that need it?

If we have to use pairs of fifty-year-old Class 86 locomotives, then I suspect there are not enough electric freight locomotives.

Batteries For Last Mile Operation

Stadler have shown, in the design of the Class 88 locomotive, that in a 4 MW electric locomotive, there is still space to fit a heavy diesel engine.

I wonder how much  battery capacity could be installed in a UK-sized 4 MW electric locomotive, based on Stadler’s UK Light design.

Would it be enough to give the locomotive a useful Last Mile capability?

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I estimated that a Class 88 locomotive could replace the diesel engine with a battery with a battery capacity of between 700 kWh and 1 MWh.

This would give about fifteen minutes at full power.

Would this be a useful range?

Probably not for heavy freight services, if you consider that a freight train leaving the Port of Felixstowe takes half-an-hour to reach the electrification at Ipswich.

But it would certainly be enough power to bring the heaviest freight train out of Felixstowe Port to Trimley.

If the Felixstowe Branch Line were to be at least partially electrified, then I’m sure a Class 88 locomotive with a battery instead of the diesel engine could bring the heaviest train to the Great Eastern Main Line.

  • Electrifying between Trimley and the Great Eastern Main Line should be reasonably easy, as much of the route has recently been rebuilt.
  • Electrifying Felixstowe Port would be very disruptive to the operation of the port.
  • Cranes and overhead wires don’t mix!

I wonder how many services to and from Felixstowe could be handled by an electric locomotive with a Last Five Miles-capability, if the Great Eastern Main Line electrification was extended a few miles along the Felixstowe Branch Line.

As an aside here, how many of the ports and freight interchanges are accessible to within perhaps five miles by electric haulage?

I believe that if we are going to decarbonise UK railways by 2040, then we should create electrified routes to within a few miles of all ports and freight interchanges.

Batteries For Traction

If batteries are to provide 4 MW power for two hours, they will need to have a capacity of 8 MWh.

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

This means that a one tonne battery holds about 100 kWh.

So to hold 8 MWh or 8,000 kWh, there would be a need to be an 80 tonne battery using today’s technology.

A Stadler Class 88 locomotive weighs 86 tonnes and has a 21.5 tonne axle load, so the battery would almost double the weight of the locomotive.

So to carry this amount of battery power, the batteries must be carried in a second vehicle, just like some steam locomotives have a tender.

But suppose Stadler developed another version of their UK Light locomotive, which was a four-axle locomotive that held the largest battery possible in the standard body.

  • It would effectively be a large battery locomotive.
  • It would share a lot of components with the Class 88 locomotive or preferably the faster Class 93 locomotive, which is capable of 110 mph.
  • It would have cabs on both  ends.
  • It might have a traction power of perhaps 2-2.5 MW on the battery.
  • It would have a pantograph for charging the battery if required and running under electrification.
  • It might be fitted with third rail equipment.

It could work independently or electrically-connected to the proposed 4 MW electric locomotive.

I obviously don’t know all the practicalities and economics of designing such a pair of locomotives, but I do believe that the mathematics say  that a 4 MW electric locomotive can be paired with a locomotive that has a large  battery.

  • It would have 4 MW, when running on electrified lines.
  • It would have up to 4 MW, when running on battery power for at least an hour.
  • ,It could use battery-power to bridge the gaps in the UK’s electrification network and for Last Mile operation.

A  very formidable zero-carbon locomotive-pair could be possible.

The battery locomotive could also work independently as a 2 MW battery-electric locomotive.

Hydrogen Power

I don’t see why a 4 MW electric locomotive , probably with up to 1,000 kWh of batteries couldn’t be paired with a second vehicle, that contained a hydrogen tank, a hydrogen fuel-cell.and some more batteries.

It’s all a question of design and mathematics.

It should also be noted, that over time the following will happen.

  • Hydrogen tanks will be able to store hydrogen at a greater pressure.
  • Fuel cells will have a higher power to weight ratio.
  • Batteries will have a higher power storage density.

These improvements will all help to make a viable hydrogen-powered generator or locomotive possible.

I also feel that the same hydrogen technology could be used to create a hydrogen-powered locomotive with this specfication.

  • Ability to use 25 KVAC overhead or 750 VDC third-rail electrification.
  • 2 MW on electrification.
  • 1.5 MW on hydrogen/battery power.
  • 100 mph capability.
  • Regenerative braking to batteries.
  • Ability to pull a rake of five or six coaches.

This could be a very useful lower-powered locomotive.

What About The Extra Length?

A Class 66 locomotive is 21.4 metres long and a Class 68 locomotive is 20.3 metres long. Network Rail is moving towards a maximum freight train length of 775 metres, so it would appear that another twenty metre long vehicle wouldn’t be large in the grand scheme of things.

Conclusion

My instinct says to be that it would be possible to design a family of locomotives or an electric locomotive with a second vehicle containing batteries or a hydrogen-powered electricity generator, that could haul freight trains on some of the partially-electrified routes in the UK.

 

 

 

July 28, 2019 Posted by | Transport | , , , , , , | Leave a comment

Toshiba Unveils Tri-Mode Locomotive Demonstrator

The title of this post is the same as that of this article on Railway Gazette.

This is the first two paragraphs.

Toshiba Railway Europe unveiled a electric-diesel-battery hybrid traction technology demonstrator locomotive at the Transport Logistic trade show in München on June 4.

The company has a contract to supply 50 diesel-battery centre cab locomotives to DB Cargo from 2021, TRE Managing Director Hinrich Krey told Railway Gazette. The demonstrator is intended to showcase the company’s design work to date as well as highlighting future development options.

It is based on the frame and bogies of a heavy shunting locomotive.

  • There are two MAN 471 kW gensets.
  • The diesel engines are compatible with EU Stage V emissions regulations.
  • There are two SCiB 62 kWh lithium titanate oxide traction batteries.
  • Battery life is quoted as up to ten years.
  • The design is modular, so that a diesel engine can be replaced with another battery pack.
  • A pantograph working with common European voltages can provide electric power.

The locomotive is aimed at heavy shunting and light freight.

Conclusion

The power of the locomotive is probably about 1MW, which is less than half the power of a Class 66 locomotive. But locomotives like the Class 66 are often used for tasks, where a smaller locomotive could do an excellent job.

The low pollution of the Toshiba locomotive probably means it could work in sensitive areas or close to a workforce.

The locomotive appears to be a well-designed locomotive for an important niche market.

If this design and others like the Stadler Class 93 locomotive succeed it will lead nearer to the ultimate goal of a high performance heavy freight zero-carbon locomotive to replace the polluting diesel locomotives, that are so common on the railways of the world.

June 4, 2019 Posted by | Transport | , , , , | Leave a comment

Freight Diesel Traction Realities

The title of this post is the same as that of a comprehensive article by Roger Ford in an article in the April 2019 Edition of Modern Railways.

In the article Roger talks about the problems of decarbonising the freight sector on the UK’s railways.

Future Traction

This section in the article begins with this paragraph

Since the laws of physics and chemistry rule out pure battery or hydrogen fuel cell 3 MegaWatt (4,000 hp) freight locomotives from around 2035 we are going to need to start replacing the diesel locomotives for routes yet to be electrified.

The following actions are suggested.

  • More electrification, through a rolling program.
  • Research into and production of low-CO2 locomotives.
  • 4000 hp locomotives to run faster, longer and heavier freight trains.

These actions will apply to many countries in Europe and the wider world.

Hybrid

This section in the article begins with these two paragraphs.

Extension of electrification will reduce the length of the last miles beyond the end of the wires, making increased use of electric traction viable. Here the challenge will be to provide sufficient diesel traction power and range.  Stadler’s Class 93 ‘tri-mode’ locotive provides an interesting preview.

It builds on the Class 88, which adds a 700kW diesel engine to a 4MW Bo-Bo electric locomotive.

The Class 93 locomotive has a larger 900 kW diesel engine and a lithium titanate oxide battery.

I estimated the battery size at 126 kWH in Stadler’s New Tri-Mode Class 93 Locomotive.

Roger reckons that the battery gives 6-7 ,minutes of power to boost output to 1,740 hp or 1300 kW.

  • The boost from the battery would appear to be 400 kW
  • For 6.5 minutes this would need 43.3 kWH

Either Roger’s 6-7 minutes or my deduced battery size of 126 kWH is wrong. So I will assume both figures are wrong.

Suppose though, you wanted to boost the power of a Class 93 locomotive to the 2,500 kW of a Class 66 locomotive for an hour, which would get a freight train into or out of the Port of Felixstowe.

  • 1600 kW will be needed to boost the diesel engine.
  • 1600 kWH will need to be stored in the battery.
  • I will assume 75 Wh/Kg for the LTO batteries.
  • I have made no allowance for the use of regenerative braking.

This gives a weight of 21.3 tonnes for the batteries.

Roger says this in the article.

If you need to fit diesel engines and batteries into an electric locomotive for freight the a Co-Co configuration gives you another 20 tonnes on a 17.5 tonne axle load.

This leads me to believe that a hybrid locomotive with the power of a Class 66 locomotive and a range of one hour is possible.

 

 

 

March 21, 2019 Posted by | Transport | , , , , | Leave a comment

GE To Partner BNSF On Battery Freight Locomotive Tests

The title of this post is the same as that of this article on Rail Engineer.

The article includes this image.

I think that there are some mixed up captions on the image.

It talks about Massive Power Generation Capabilities up to 2400 kWhrs.

kWhrs are a unit of total energy and could refer to the battery storage capability of the locomotive.

If you look at our much smaller ubiquitous UK diesel freight locomotive, the Class 66, this has a power output of 2,460 kW.

If the GE locomotive, which is experimental had a battery of 2400 kWh, then it could supply 2400 kW for an hour.

But the concept seems sound, where the battery electric locomotive would be paired with a diesel locomotive to haul a freight train. Fuel savings of ten percent are expected.

A Diesel/Electric/Battery Hybrid Locomotive For The UK

I could see a practical diesel/electric/battery locomotive being developed for the UK.

A Class 66 Replacement

Over four hundred of the these locomotives were built and they are currently used by these operators  in the UK.

Which adds up to a surprisingly precise four hundred locomotives.

  • They have a power output of 2,460 kW – Call it 2500 kW for ease of calculation.
  • They have a top speed of 75 mph, although some can only manage 65 mph.
  • They weigh 68 tonnes.
  • They are noisy, smelly and don’t meet the latest EU pollution regulations.
  • Class 66 drivers, I’ve spoken to, are not keen on the working environment.

But they do various jobs for their operators competently and are not the most expensive of locomotives.

There are also other modern similar-sized diesel locomotives like the thirty Class 67 and thirty-seven Class 70, but these are not as unfriendly, to the environment and staff.

Many of the Class 66 locomotives pull heavy freight trains on routes that are fully or partly electrified like the East Coast Main Line, West Coast Main Line, Great Western Main Line, Midland Main Line and Great Eastern Main Line. The services are diesel-hauled because at the ends of the route, they need to use diesel power.

A specification for a locomotive to replace the long-haul Class 66 locomotives for working fully or partly-electrified routes could be something like.

  • Power on electrification of upwards of 3000 kW.
  • Ability to move a heavy freight train in and out freight terminals to and from electrification.
  • Ability to do a small amount of shunting.
  • Sufficient diesel or battery power to handle the train, away from electrification.
  • Ability to switch between electric and diesel/battery power at line speed.

I’ve heard from those who work at the Port of Felixstowe, that port operators wouldn’t electrify the port, for both cost and Health and Safety reasons.

The Felixstowe Problem

The Port of Felixstowe is at the end of the twelve mile long Felixstowe Branch Line, which is not electrified.

Trains seem to be allocated up to just over an hour for the journey between the Great Eastern Main Line and the Port.

This would mean that any proposed locomotive must be capable of handling a branch line to a port or freight depot remote from the electrified network.

Similar problems exist at other ports and freight depots including Hull, Immingham, Liverpool, Southampton, Tilbury and Teesport.

The Southampton Problem

If anything, the Port of Southampton has the worst problem, in that it only has access to the third-rail electrification South of the Thames, until freight trains reach Reading, where there is 25 KVAC overhead electrification. It looks like that trains take about ninety minutes between the Port of Southampton and Reading.

Even, if a powerful dual-voltage locomotive were to be available, I doubt that the power supply to the electrification could provide enough power.

The proposed solution to the Southampton problem was the Electric Spine, which would have linked the port to Northern and Central England with a 25 KVAC overhead electrified route.

It has now been largely cancelled.

An alternative would be a locomotive, that could pull a heavy freight train between the Port of Southampton and Reading in an environmentally-friendly way.

One point to note is that a Class 92 locomotive is rated at 4000 kW on 750 VDC third-rail electrification.

Thoughts On A Battery Locomotive

Suppose an operator needed a battery locomotive to go between Southampton and Cardiff, that would be a straight replacement for a Class 66 locomotive.

The proposed battery locomotive  would need to be able to supply the 2500 kW of the Class 66 locomotive for two hours to handle the route between Reading and Southampton.

So it would need a battery capacity of around 5000 kWh, which is twice the size of the American test locomotive. A battery this size would probably weigh around fifty tonnes.

I am probably being conservative here, as regenerative braking would probably reduce the amount of energy needed to move the train.

The electro-diesel Class 88 locomotive would probably weigh around eighty tonnes without the diesel engine. So would it be possible to design an electric locomotive incorporating a 5000 kWh battery, with a weight of perhaps one hundred and thirty tonnes.

  • It would be about the weight of a Class 70 locomotive.
  • It would probably need to be a Co-Co locomotive, to reduce the axle-loading, to that of a Class 70 locomotive.
  • It might need to be longer than other comparable locomotives to have enough space for the battery.
  • The battery would handle the energy generated by the regenerative braking.
  • It could have the 4000 kW power of a Class 88  locomotive.
  • It should probably be designed with a 100 mph top speed and the ability to haul passenger trains
  • It would be able to use both 25 KVAC overhead and 750 VDC third-rail electrification.

If it is not possible now, as battery energy densities improve, it will be in a few years time.

Other countries other than the UK need a locomotive with a similar specification and I am certain at least one manufacturer in Europe will build a locomotive to this or a similar specification.

A Battery/Electric Locomotive And Felixstowe

Handling the Felixstowe Branch Line would entail the following.

  • The locomotive must enter the branch with a battery containing enough energy for the sixty minute run to the Port.
  • As the locomotive would probably have hauled a train from London or Haughley Junction using the existing electrification, a full enough battery probably wouldn’t be difficult.
  • In the Port, there could be a charging station for the locomotive, where they would connect to a short length of 25 KVAC overhead electrification.
  • On leaving the Port, the locomotive would start with a full battery, which would be enough power to reach the Great Eastern Main Line.
  • Trains going South to London would run on electrification as far as they could and would arrive in London with a full battery.
  • Trains going West to Peterborough, would hopefully be able to top up their battery between Ipswich and Haughley Junction, where they would enter the section without electrification to Peterborough, which takes between two and two-and-a half hours.

It should be noted that, freight trains often wait at Ely in a passing loop alongside the station, to keep out of the way of passenger trains. As Ely is electrified with 25 KVAC, this loop could be electrified, so that locomotives could sneak a top-up during the wait.

I am fairly certain, that a 4000 kW electric locomotive fitted with a 5000 kWh battery could handle all freight services to and from the Port of Felixstowe, at least as far as London and Peterborough.

A Battery/Electric Locomotive Between Peterborough And Nuneaton

How would a battery/electric locomotive handle this important route between Felixstowe and the Midlands and North?

Currently freight trains between Peterborough and Nuneaton have a timing on the section without electrification between Werrington Junction and Nuneaton of a few minutes under two hours.

This should be possible, given the battery range and power of the locomotive.

It would also mean that the battery/electric locomotive could haul a train between the West Coast Main Line and Felixstowe.

A Battery/Electric Locomotive And Southampton

Trains hauled by a battery/electric locomotive on this route, could probably take advantage of the third-rail electrification to top-up the battery as required, which would make it very likely that a 4000 kW electric locomotive fitted with a 5000 kWh battery could handle the route with ease.

A Battery/Electric Locomotive Between ReadingAnd The Midlands And The North

From Reading routes to Bristol, Cardiff and London are fairly easy, but the problems start, if trains need to go to Oxford, Birmingham or the Midlands and the North.

This is where the Electric Spine would have been useful

I have traced some trains from Southampton to the Midlands and the North.

  • Southampton to Birch Coppice – There is a three hour section without electrification from Didcot to Birch Coppice.
  • Southampton to Birmingham Freightliner Terminal – There is a two-and-a half hour section without electrification from Didcot to the terminal.
  • Southampton to Castle Bromwich Jagiuar – There is a two-and-a-half-hour section without electrification from Didcot to Castle Bromwich Jaguar.
  • Southampton to Liverpool – There is a two hour section without electrification from Didcot to Coventry.

All of these services are routed through Didcot, Oxford and Banbury. Extending the planned electrification between Didcot and Oxford to Banbury would probably reduce the amount of time on battery power by around thirty minutes.

TransPennine Passenger Services

TransPennine Express will soon be running services between Liverpool Lime Street and Newcastle using rakes of Mark 5 coaches, that will be hauled by a Class 68 diesel locomotive, which has a power of 2800 kW and a maximum speed of 100 mph.

On the TransPennine route, the current service takes seventy-one minutes between the electrified stations of Manchester Victoria and York.

The proposed battery/electric locomotive could handle this with ease to provide a flagship electrically-hauled service across the Pennines without any difficult electrification.

The locomotive would be charged on the current electrification between Liverpool and Manchester Victoria and along the East Coast Main Line.

Chiltern Main Line Passenger Services

Chiltern Main Line passenger services between London Marylebone and Birmingham, are another route, where a rake of coaches are hauled by a Class 68 locomotive.

The problem is that there is no electrification on this route and although a charging station could be provided at Marylebone and Moor Street, it is questionable, if enough power could be taken on during turnround.

But I said earlier, that to ease the passage of freight from Soiuthampton to the Midlands, that Didcot to Banbury should be electrified.

So could this electrification be continued all the way to Birmingham?

This would mean that the battery/electric locomotives would only need to be able to handle the hour-long journey to and from Marylebone, which would have 25 KVAC electrication over the platforms to top up the battery.

The solution is not as easy as TransPennine, but Chiltern Main Line to Birmingham would become an electric service.

The Stadler Class 88 Battery/Electric Locomotive

As Stadler seem to have a monopoly of new locomotives in the UK at present, I will look at their proven Class 88 locomotive.

  • It has a power of 4,000 kW on electricity.
  • It has a power of 700 kW using an onboard diesel.
  • It has a top speed of 100 mph.
  • The Caterpillar C27 diesel engine weighs around seven tonnes.
  • The locomotive has regenerative braking.

The locomotive is certainly no weakling on electricity, although performance, when pulling a heavy freight train on diesel might be desired to be better. This article on Rail Magazine is entitled Inside Direct Rail Services. This is an extract about the pulling ability of the Class 88 locomotive.

Sample performances over the northern section of the West Coast Main Line (Preston –Carlisle–Mossend) demonstrate that Class 88 can operate the same train weight to the same schedule as Class 68 using 15% less energy. Alternatively, it offers a 45-minute time advantage over a ‘68’ and 80 minutes for Class 66. This gives a competitive edge because a significant proportion of movement costs are absorbed by fuel.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode. Taken together, all these factors helped Class 88 win the Rail Freight Group ‘Rail Freight Project of the Year’ Award in the Innovation and Technical Development category this year.

The locomotive doesn’t appear to be a wimp.

But could the Class 88 locomotive be fitted with a battery?

Current energy storage technology seems to be able to store about 100Wh/kg. So on this basis a seven tonne battery would store about 700 kWh.

I think in a few years it would be possible to build a version of a Class 88 locomotive with no diesel engine and a battery with a 1000 kWh capacity.

But even so, the 1000 kWh battery may be too small.

Would it be able to handle these important routes with a full-length freight train?

  • Haughley Junction to Peterborough
  • Peterborough to Doncaster via Lincoln
  • Peterborough to Nuneaton.
  • Southampton to Reading
  • Immingham to Doncaster

However, Stadler and Direct Rail Services will be able to extensively model the performance of a battery/electric Class 88 locomotive pulling various weights of freight train on different routes in the UK.

The modelling would show how much battery capacity would be needed for various routes.

Suppose though the battery capacity needed was say 2400 kWh, as I suspect has been specified by the Americans for their locomotive. This would be too heavy and large for the small Class 88 locomotive

But just as the Americans are using their battery/electric locomotive in combination with a diesel locomotive, why not run the battery-electric Class 88 locomotive as a pair with a standard electro-diesel Class 88 locomotive?

TransPennine Passenger Services With A Class 88 Battery/Electric Locomotive

Currently electrification is planned or very likely on the Liverpool to Newcastle route between.

  • Manchester Victoria and Stalybridge
  • Leeds and Colton Junction on the East Coast Main Line.

This would mean that only around forty minutes of the entire Liverpool to Newcastle route would be without electrification.

Would a battery/electric locomotive with a 1000 kWh battery be able to bridge the gap in the wires between Stalybridge and Leeds?

The battery would be fully charged, at both Stalybridge and Leeds, as the locomotive would have been running under the wires for some time.

It is a very interesting and in my view, a totally feasible possibility.

Conclusion

My modelling experience says that there is at least one solution in there.

  • A new build battery/electric locomotive could be designed.
  • A battery/electric version of the Class 88 locomotive must be possible and it could work alone or with the current electro-diesel Class 88 locomotive.

I am sure that Jo Johnson’s dream of removing diesel from UK railways will take a big step forward in the next decade, when a battery/electric locomotive with sufficient performance becomes available.

I also believe that short lengths of electrification like Oxford to Banbury, may usefully increase the range of an electric/battery locomotive.

 

October 22, 2018 Posted by | Transport | , , , | Leave a comment