The Anonymous Widower

BBC Click On Batteries

This weekend’s Click on the BBC is a cracker and it’s all about batteries.

Electric Mountain

It starts with pictures of the UK’s largest battery at Dinorwig Power Station or Electric Mountain, as it is colloquially known.

The pumped storage power station was completed in 1984 and with a peak generating capacity  of 1.6 GW, it was built to satisfy short term demand, such as when people make a cup of tea in advert breaks in television programs. Under Purpose of the Wikipedia entry for Dinorwig Power Station, there is a very good summary of what the station does.

To build Dinorwig was a wonderful piece of foresight by the CEGB, over forty years ago.

Would environmentalists allow Dinorwig Power Station to be built these days?

That is a difficult question to answer!

On the one hand it is a massive development in an outstanding area of natural beauty and on the other Dinorwig and intermittent power sources like solar and wind power, is a marriage made in heaven by quality engineering.

As solar and wind power increase we will need more electric mountains and other ways of storing considerable amounts of electricity.

Close to Electric Mountain, another much smaller pumped storage power station of 100 MW capacity is being proposed in disued slate quarries at Glyn Rhonwy. This article on UK Hillwalking, is entitled Opinion: Glyn Rhonwy Hydro is Causing a Stir.

The article was written in 2015 and it looks like Planning Permission for the new pumped storage power station at Glyn Rhonwy has now been given.

The UK’s particular problem with pumped storage power stations, is mainly one of geography, in that we lack mountains.

However Electric Mountain is in the top ten pumped storage power stations on this list in Wikipedia.

I doubt in today’s economy, Electric Mountain would be built, despite the fact that it is probably needed more than ever with all those intermittent forms of electricity generation.

The Future Of Pumped Storage Technology

But if you read Wikipedia on pumped-storage technology, there are some interesting and downright wacky technologies proposed.

I particular like the idea of underwater storage, which if paired with offshore wind farms could be the power of the future. That idea is a German project called StEnSea.

Better Batteries

Click also talks about work at the Warwick Manufacturing Group about increasing the capacity of existing lithium-ion batteries for transport use by improved design of the battery package. Seventy to eighty percent increases in capacity were mentioned, by a guy who looked serious.

I would reckon that within five years, that electric vehicle range will have doubled, just by increments in chemistry, design and manufacture.

Batteries will also be a lot more affordable.

Intelligent Charging

Warwick Manufacturing Group are also working on research to create an intelligent charging algorithm, as a bad charging regime can reduce battery life and performance.

I rate this as significant, as anything that can improve performance and reduce cost is certainly needed in battery-powered transport.

The program reclons it would improve battery performance by ten percent in cars.

Surely, this would be most applicable to buses or trains, running on a regular route, as predicting energy use would be much easier, especially if the number of passengers were known.

In Technology Doesn’t Have To Be Complex, I discussed how Bombardier were using the suspension to give a good estimate of the weight of passengers on a Class 378 train. I suspect that bus and train manufacturers can use similar techniques to give an estimate.

So a bus or train on a particular route could build a loading profile, which would be able to calculate, when was the optimum time for the battery to be charged.

As an example, the 21 bus, that can be used from Bank station to my house, is serviced by hybrid new Routemasters. It has a very variable passenger load and sometimes after Old Street, it can be surprisingly empty.

Intelligent charging must surely offer advantages on a bus route like this, in terms of battery life and the use of the onboard diesel engine.

But is on trains, where intelligent charging can be of most use.

I believe that modern trains like Aventras and Hitachi’s Class 800 trains are designed to use batteries to handle regenerative braking.

If you take a Class 345 train running on Crossrail, the battery philosophy might be something like this.

  • Enough energy is stored in the battery at all times, so that the train can be moved to a safe place for passenger evacuation in case of a complete power failure.
  • Enough spare capacity is left in the battery, so that at the next stop, the regnerative braking energy can be stored on the train.
  • Battery power would be used where appropriate to reduce energy consumption.
  • The control algorithm would take inputs from route profile and passenger loading.

It may sound complicated, but philosophies like this have been used on aircraft for around forty years.

Reusing Vehicle Batteries In Homes

Click also had detailed coverage about how vehicles batteries could be remanufactured and used in homes. Especially, when solar panels are fitted.

Other Batteries

On the on-line version, the program goes on to look at alternative new ideas for batteries.

Inside Electric Mountain

The on-line version, also gives a tour of Electric Mountain.

Conclusion

The future’s electric, with batteries.

 

 

 

 

October 1, 2017 - Posted by | Travel, World | , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s