The Anonymous Widower

Giant Batteries Will Provide Surge Of Electricity Storage

The title of this post, is the same as that of this article on The Times.

These are the first two paragraphs.

Britain’s capacity to store electricity in giant batteries is set to double after dozens of new projects won contracts through a government scheme to keep the lights on.

Developers of battery storage projects with a total output capacity of at least 3.3 gigawatts won contracts to operate from winter 2025-26 through the government’s “capacity market” auction, according to Cornwall Insight, the consultancy.

Note that Hinckley Point C is only 3.26 GW.

The biggest battery in these contracts is a giant that Intergen will be building at the London Gateway.

When the battery got planning permission in November 2020, Intergen published this press release, which is entitled InterGen Gains Consent To Build One Of The World’s Largest Battery Projects In Essex.

These are three bullet points at the head of the press release.

  • Edinburgh-headquartered energy company InterGen has been granted planning consent to build the UK’s largest battery storage project at DP World London Gateway on the Thames Estuary.
  • £200m project is set to provide at least 320MW/640MWh of capacity, with the potential to expand to 1.3GWh – more than ten times the size of the largest battery currently in operation in the UK and set to be one of the world’s largest.
  • The battery will provide fast-reacting power and system balancing with an initial two-hour duration, and is a significant piece of infrastructure on the UK’s journey to net zero.

As Cilla might have said. “What a lorra lorra lot of lithium!”

But it’s not just lithium-ion batteries that are getting large.

In The Power Of Solar With A Large Battery, I talked about a Highview Power CRYOBattery with a capacity of 50MW/500MWh, that is being built in the Atacama desert in Chile.

The Essex battery is a giant battery and it’s bigger than the one in Chile, but I’m fairly sure Highview Power could build a battery bigger than the one InterGen are building. You just add more liquid air tanks and turbomachinery.

February 24, 2022 Posted by | Energy, Energy Storage | , , , , , | Leave a comment

Black Mass One Of The Hottest Issues In Battery Recycling

The title of this post, is the same as that of this article on Recycling Magazine.

It gives a good description of black mass.

February 6, 2022 Posted by | World | , , | Leave a comment

Glencore & Strategic Partner Britishvolt Strengthen Relationship And Agree To Build Battery Recycling Ecosystem In The UK

The title of this post is the same as that of this press release from Glencore.

These are the first two paragraphs.

Glencore is proud to have entered an industry-leading battery recycling joint venture with strategic partner and battery pioneer Britishvolt, the UK’s foremost investor in battery cell technologies and R&D.

The joint venture will develop a world-leading ecosystem for battery recycling in the UK. This ecosystem will be anchored at a new recycling plant located at the Britannia Refined Metals operation (BRM-located in Northfleet), a Glencore company. BRM will continue with its current production and trading operations.

These appear to be some of Glencore’s objectives for the project.

  • They intend to recycle a minimum of 10,000 tonnes of lithium-ion batteries per year, including but not limited to valuable battery manufacturing scrap, portable electronics batteries and full EV packs.
  •  They intend to recycle Britishvolt’s scrap.
  • They intend to be up and running by mid-2023.
  • They intend to be 100 % powered by renewable energy in the longer term.

It all seems admirable.

These are my thoughts.

Britannia Refined Metals

This Google Map shows the Britannia Refined Metals site at Northfleet.

Note.

  1. Britannia Refined Metals is indicated by the red arrow.
  2. The Port of Tilbury is on the other side of the Thames.

This second Google Map shows the site in more detail.

Note.

  1. It is not a very large site.
  2. There doesn’t appear to be much space for expansion.
  3. They appear to have a wharf on the river.

I’ve found this company video from the 1980s on the Internet.

They do seem to have developed a sophisticated process for recycling lead-acid batteries.

Renewable Energy

There are these offshore wind farms in the Thames Estuary.

Two of these could be extended.

I am sure that there could be more space in the Thames Estuary for more wind power.

Recycling Batteries

I have found this article on the BBC, which is entitled As The World looks To Electrify Vehicles And Store Renewable Power, One Giant Challenge Looms: What Will Happen To All The Old Lithium Batteries?.

This is the third paragraph.

While this may sound like the ideal path to sustainable power and road travel, there’s one big problem. Currently, lithium (Li) ion batteries are those typically used in EVs and the megabatteries used to store energy from renewables, and Li batteries are hard to recycle.

The article talks about possible solutions.

  • Don’t treat the batteries as disposable.
  • Increasing the number of batteries recycled from the measly five percent.
  • Automate the recycling process, which currently is labour intensive.
  • Give the cathode, anode and other parts a second life in new batteries, by refurbishment.
  • Batteries that degrade on command.

But the idea, I like is described in this paragraph from the article.

The next step for scientists pushing direct recycling of Li batteries forward is working with battery manufacturers and recycling plants to streamline the process from build to breakdown.

In context with the tie-up between Glencore and Britishvolt, you can imagine engineers from both companies, getting together to improve the design of the battery, so that manufacturing and recycling of batteries are two mutually efficient and complimentary processes.

I can also see some very sophisticated logistics systems being developed to return batteries to an approved recycler, who may be in another country.

But then we are dealing with something that could have a substantial value.

Deals Between Battery Manufacturers And Recyclers

I can see more deals like this between battery manufacturers and recyclers.

  • It could reduce the cost of batteries.
  • It could impress governments seeking to reduce the about of batteries going into landfill.
  • It would reduce the amount of new metals to be mined.

It may even help, in the protection of intellectual property rights, that are concerned with battery manufacture and recycling.

A Second Similar Glencore Deal

There is also a second deal about battery recycling mentioned in a press release on the Glencore web site, which is entitled Glencore & Managem Set Up Partnership For Moroccan Production Of Cobalt From Recycled Battery Materials.

  • The press release was issued only a few days before the one announcing the deal with Britishvolt.
  • It is for 12,000 tonnes of recycling.
  • The press release mentions renewable power.

I do wonder, if Glencore or one of their companies has developed a new process.

February 6, 2022 Posted by | Energy Storage, Transport/Travel | , , , , , , , , , | 1 Comment

Gigafactory Gets A Financial Boost From abrdn

The title of this post, is the same as that of this article on The Times.

It looks like Britishvolt is limping towards the start line.

January 21, 2022 Posted by | Energy Storage, Transport/Travel | , | 1 Comment

When Will Energy Storage Funds Take The Leap To New Technology?

This article on the Motley Fool is entitled 3 UK Dividend Shares To Buy Yielding 6%.

This is a paragraph from the article.

The first company on my list is the Gore Street Energy Storage Fund (LSE: GSF). With a dividend yield of just over 6%, at the time of writing, I think this company looks incredibly attractive as an income investment. It is also an excellent way for me to build exposure to the green energy industry.

Just as everybody has a fridge in their house to stop food being wasted, electricity networks with a lot of intermittent resources like wind and solar, needs a device to store electricity, so that it isn’t wasted.

Gore Street Energy Storage Fund is being very safe and conservative at the current time, often using batteries from one of Elon Musk’s companies.

You can’t fault that, but they are only barely making a dent in the amount of batteries that will be needed.

If we are generating tens of GW of wind energy, then we need batteries at the GWh level, whereas at the moment a typical battery in Gore Street’s portfolio has only an output of a few megawatts. They don’t state the capacity in MWh.

There is this statement on their web site, about the technology they use.

Although the projects comprising the Seed Portfolio utilise lithium-ion batteries and much of the pipeline of investments identified by the Company are also expected to utilise lithium-ion batteries, the Company is generally agnostic about which technology it utilises in its energy storage projects. The Company does not presently see any energy storage technology which is a viable alternative to lithium-ion batteries. However, there are a number of technologies which are being researched which if successfully commercialised, could prove over time more favourable and the Company will closely monitor such developing technologies.

They say they are agnostic about technology and are looking around, but they are sticking with lithium-ion technology.

That technology works, is safe and gives a good return.

But they are at least thinking about moving to new technology.

In the rail industry, it is common for rail leasing companies to get together with train manufacturers or remanufacturers to develop new trains.

As an example, Eversholt Rail and Alstom formed a partnership to develop a hydrogen-powered train for the UK, which I wrote about in Alstom And Eversholt Rail Sign An Agreement For The UK’s First Ever Brand-New Hydrogen Train Fleet.

Worldwide, there are probably upwards of a dozen very promising energy storage technologies, so I am very surprised that energy storage funds, like Gore Street and Gresham House have not announced any development deals.

Conclusion

Energy storage funds could benefit from using some of the financing methods used by rolling stock leasing companies.

December 13, 2021 Posted by | Energy, Energy Storage, Finance | , , , , , , , | 1 Comment

Breakthrough Energy Storage And R&D Company SuperDielectrics Expands At Chesterford Research Park

The title of this post, is the same as that of this article on Cambridge Network.

This is the first paragraph.

Chesterford Research Park is delighted to announce the expansion of an existing occupier, SuperDielectrics, into new laboratory and write up space within the Emmanuel Building.

But it does flag up progress by one of Cambridge’s new companies; SuperDielectrics.

Superdielectrics’ mission is to develop high energy density, low cost, low environmental impact electrical energy storage devices that will help create a clean and sustainable global energy and transportation system. Superdielectric’s storage devices (supercapacitors) are not only safe, rapidly rechargeable and have a long life, they contain no rare materials or conflict metals and have the added benefit of reducing pollution and waste with no end-of-life recycling issues.

I believe they are a company to watch, as supercapacitors can take over some applications of lithium-ion batteries.

September 28, 2021 Posted by | Energy Storage | , , , | 1 Comment

Form Energy’s New Low-Cost, Iron-Air Battery Runs For 100 Hours

The title of this post, is the same as that of this article on the Singularity Hub.

This paragraph sums up the genesis of the battery.

A secretive startup backed by Bill Gates’ Breakthrough Energy Ventures thinks it may have the answer, though. Form Energy, which was co-founded by the creator of Tesla’s Powerwall battery, Mateo Jaramillo, and MIT battery guru Yet-Ming Chiang, has unveiled a new battery design that essentially relies on a process of “reversible rusting” to provide multi-day energy storage at ultra-low costs.

And this paragraph describes the operation of the battery.

The company’s batteries are each about the size of a washing machine, and are filled with iron pellets and a water-based electrolyte similar to that used in AA batteries. To discharge, the battery breathes in oxygen from the air, converting the pellets to iron oxide, or rust, and producing electricity in the process. To charge, the application of a current converts the rust back into iron and expels the oxygen.

It’s all very fascinating and leads to a battery made from very affordable materials.

The article quotes between $50 to $80 per kilowatt-hour for lithium-ion batteries and around $20 per kilowatt-hour for Form Energy’s battery.

Conclusion

The article is definitely a must-read.

I feel that Form Energy should be added to my list of viable batteries.

August 3, 2021 Posted by | Energy, Energy Storage | , , , | 2 Comments

The Complex Web At Sunderland

This article on the BBC is entitled Nissan Announces Major UK Electric Car Expansion.

This is the first few paragraphs.

Nissan has announced a major expansion of electric vehicle production at its car plant in Sunderland which will create 1,650 new jobs.

The Japanese carmaker will build its new-generation all-electric model at the site as part of a £1bn investment that will also support thousands of jobs in the supply chain.

And Nissan’s partner, Envision AESC, will build an electric battery plant.

I think there is more to this than meets the eye!

We wait several years for a battery gigafactory to come along and then two come along in a month or two; Blyth and Sunderland. On television today, a BBC reporter talked of eight possible battery gigafactories in the UK.

Lithium Supply

Where do they all think the lithium will come from, as some say there’s a world-wide shortage?

The only explanation, is that the UK government and the gigafactory owners have bought into a secure source of lithium, that is convenient for or easily transported to the North-East.

I am very suspicious that Cornish Lithium or British Lithium have found something bigger than anybody expected.

The numbers don’t add up otherwise!

Lithium Refining

On the other hand, it appears that lithium needs a lot of electricity to extract the metal from the ores, as electrolysis is used.

But with all the windpower being developed off the North-East Coast, there could be more than enough to refine the lithium.

Remember too, that lithium has applications in defence and aerospace applications, when alloyed with magnesium and aluminium.

So could a substantial lithium refining capability be built in the North-East?

The Chinese View

In The Times, Lei Zhang, who is chief executive of Envision also said he liked our masses of offshore wind power, so perhaps the Chinese want to produce green batteries in Sunderland after refining the lithium in the North-East?

Conclusion

We probably need battery-electric cars built from green steel, fitted with green batteries and charged with green electricity.

Is the Gigawatts of offshore wind electricity in the North-East luring the battery and car makes to the area.

Could we also see green steel manufacturing on Teesside?

 

July 1, 2021 Posted by | Transport/Travel | , , , , , , | 6 Comments

Gresham House Unveils 45-MW Battery Storage Purchase

The title of this post, is the same as that of this article on Renewables Now.

This is the introductory paragraph.

Gresham House Energy Storage Fund plc (LON:GRID) has acquired a 45-MW portfolio of battery storage systems in England, growing its operational fleet to 395 MW.

Gresham House are certainly growing.

As a Control Engineer and mathematical modeller, I certainly like what they are doing.

Modelling the cash-flow and earnings from all these batteries are is one of the sort of multi-variable problems, that I cut my teeth on, in early 1970s.

If I was starting out on my own now, as I did in 1972, Gresham House would be one of the companies I’d approach.

Their latest purchase is interesting in that it includes a 35 MW battery with a twelve year control to load balance for the National Grid.

There must also be a business model emerging for the developers of energy storage.

  • Design and build an energy storage system to satisfy a company or local area’s need.
  • Show it is working successfully for a period of time.
  • Add a nice lucrative contract if you can!

The whole setup is then sold to someone like Gresham House.

At present, Gresham House has a portfolio, which is all lithium-ion storage. I don’t think, it will be a long time before other types of storage are added.

February 2, 2021 Posted by | Energy, Energy Storage | , , | Leave a comment

Gresham House Energy Storage Fund Has Staying Power

The title of this post, is the same as that of this article in the Tempus column of The Times.

It is a good explanation of how energy storage funds like Gresham House work.

I believe they are very much the future.

Some of the new forms of energy storage, that I talk about on this blog tick all of the boxes and may even satisfy an extreme supporter of Extinction Rebellion.

  • Extremely environmentally friendly.
  • Higher energy-density than lithium-ion
  • Lower cost per GWh, than lithium-ion
  • Much longer life than lithium-ion.
  • Safe to install in built up areas.
  • GWh-scale storage in a football pitch space or smaller.

The UK’s largest battery is the 9.1 GWh Electric Mountain pumped storage system in Snowdonia and there is talk about over 100 GW of offshore wind turbines in UK waters. There will be masses of energy storage built in the UK in the next forty years to support these wind turbines.

Conclusion

Companies like Gresham House Energy Fund seem to have developed a model, that could provide the necessary energy storage and a safe reliable home for the billions of pounds in the UK, that is invested in pension funds.

Lithium-ion batteries will be reserved for mobile applications.

September 2, 2020 Posted by | Energy, Energy Storage | , , , | 2 Comments