The Anonymous Widower

Westbury Station – 30th July 2020

I went to Westbury station today and took these pictures.

I found Westbury station to be a station in extremely good condition.

It also had a buffet, where I was able to purchase a delicious ice cream.

Passenger Services Through Westbury Station

I was at the station for about an hour and several trains passed through.

Great Western Railway services through the station include.

  • One train per two hour (tp2h) – London Paddington and Exeter St. Davids – Stops
  • One tp2h – London Paddington and Penzance – Passes through
  • One tp2h – London Paddington and Plymouth – Passes through
  • One train per hour (tph) – Cardiff Central and Portsmouth Harbour – Stops
  • One tp2h – Great Malvern and Westbury
  • One tp2h – Gloucester and Weymouth – Stops
  • One tp2h – Swindon and Westbury

Train classes included Class 800 trains and Class 166 trains.

South Western Railway services through the station include.

  • Five trains per day – Salisbury and Bristol Temple Meads – Stops

Train classes include Class 159 trains.

Battery Trains Through Westbury

Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, is described in this infographic from the company.

The proposed 90 km or 56 mile range could even be sufficient take a train between Westbury and Bristol Temple Meads stations on a return trip.

Many of the trains through Westbury go to the same stations.

Distances are as follows.

  • Bristol Temple Meads – 28 miles
  • Newbury – 42 miles
  • Salisbury – 24 miles
  • Swindon – 32.5 miles
  • Taunton – 47 miles

It looks like all of these places should be in range of an electric train with a battery capability, providing there is a charging facility at the other end.

An Electrification Island At Westbury Station

I have been advocating an island of electrification around Westbury station for some time and feel about a dozen miles of electrification through the station would be sufficient for Class 800 trains with a battery capability to bridge the gap.

  • At Newbury, trains would access the current electrification into London Paddington.
  • Between Exeter and Taunton, the rail route runs alongside the M5, so why not electrify this stretch, as the wires will not be so noticeable?

Looking at Westbury, to my untrained eye, it would appear that a short section of electrification around the station, would not be the most challenging of projects.

I believe that discontinuous electrification between Newbury and Exeter would be possible and could gradually be extended across Devon and Cornwall.

It should also be noted that one of Hitachi’s Regional Battery Trains has a range of 56 miles, so that these places from Westbury could be an return trip on batteries, with a well-driven train with excellent energy management.

  • Bath Spa – 17 miles
  • Bradford-on-Avon – 7 miles
  • Bristol Temple Meads – 28 miles
  • Chippenham – 16 miles
  • Frome – 6 miles
  • Salisbury – 24 miles
  • Trowbridge – 4 miles
  • Warminster – 9 miles

Obviously, the number of stops and the terrain will play a part.

Freight Might Drive Full Electrification Through Westbury Station

As the pictures show, there are heavy freight trains going through the area, which bring long and weighty loads of stone from the Mendips to London.

  • There are regularly two or three stone trains in an average hour of the day.
  • Like in the picture, I suspect they are usually hauled by a noisy, smelly, polluting and carbon-dioxide emitting Class 66 Locomotive. Not all of these, are as clean and well-maintained, as the one in the picture.
  • Some trains start at Merehead Quarry, which is about fifteen miles from Westbury station.

I believe that we must decarbonise freight trains.

But freight and electric haulage is not a simple subject.

  • I once had extensive talks with a Senior Crane Driver at the Port of Felixstowe during an Ipswich Town Away match. Ports don’t like overhead wires, as containers do get dropped and fall off rail wagons.
  • Suppose a historic line without electrification, like the Settle and Carlisle has a serious land-slip, which it did a couple of years ago. How do you haul in the materials for repair?
  • Because freight can be of a random and unpredictable nature, to electrify freight, you probably need to electrify the whole rail network.

For these and other reasons, we need independently-powered freight locomotives and I feel that a new freight locomotive will develop, that will be needed by the rail industry all over the world.

There are several solutions.

Biodiesel

Biodiesel is the simplest solution and would mean that the current diesel locomotives could be used.

In Grant Shapps Announcement On Friday, I talked about Government support for an industrial process, that has been developed by Oxford University and their spin-off company; Velocys, from the the Fischer-Tropsch Process, which can produce, the following fuels from household and industrial waste.

  • Aviation biofuel.
  • Biodiesel.

A plant to process 500,000 tonnes per year of Lincolnshire finest waste is now being built at Immingham to create 50,000,000 litres of fuel, by Altalto, which is a partnership between Velocys, British Airways and Shell.

If nothing else, waste-to-fuel is the interim solution to the decarbonisation of tricky sectors like heavy rail freight, rail construction, large diesel-powered machines, ships or long-distance aviation.

This fuel could be ideal to haul the heavy stone trains from the Mendips.

Hydrogen

I did think, it would be hydrogen powered, but I’m not so sure now, as hydrogen trains and locomotives seem to have a slow development cycle.

Although, there is one factor, that might influence the use of hydrogen as a fuel, which I wrote about in Thirsty High-Rollers … Mining’s Heavy Haulers Prime Candidates For Hydrogen Conversion.

Mining and quarrying don’t have a good green image, but converting mines and quarries to hydrogen power, would surely have operational and good public relational advantages.

It would also ensure a plentiful and convenient supply of hydrogen, for any hydrogen-powered locomotives.

Hydrogen-powered locomotives, with their electric transmissions, would probably be able to use electrification for traction power, so they would put pressure on the Government to electrify between Westbury and Newbury stations, so that there was a fully-electrified route between the Mendips and London.

Rolls-Royce’s Staggering Development

Staggering is not my word, but that of Paul Stein, who is Rolls-Royce’s Chief Technology Officer.

He used the word in a press release, which I discuss in Our Sustainability Journey.

To electrify aviation, Rolls-Royce has developed a 2.5 MW generator, based on a small gas-turbine engine, which Paul Stein describes like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

This generator is designed for flight and the data sheet for the gas-turbine engine is available on the Internet.

  • It has a weight of under a couple of tonnes compared to the thirteen tonnes of the diesel engine and generator in a Class 68 locomotive.
  • It is also more powerful than the diesel.
  • It looks to be as frugal, if not more so!
  • Rolls-Royce haven’t said if this gas-turbine can run on aviation biofuel, but as many of Rolls-Royce’s large engines can, I would be very surprised if it couldn’t!

Rolls-Royce’s German subsidiary is a large producer of rail and maritime diesel engines, so the company has the expertise to customise the generator for rail applications.

I can see this generator ending up in a high-powered heavy independently-powered electric locomotive for hauling stone and inter-modal container trains.

As with hydrogen-powered locomotives, this new breed of gas-turbine locomotive with its electric transmission, will be able to use electrification, where it exists.

So would locomotive developments drive the electrification through Westbury and especially between Westbury and Newbury?

I would rate is likely, that in the future, increasingly rail locomotives will have sophisticated electric transmissions, between their prime motive power of diesel, hydrogen, gas-turbine or whatever and their traction system. All of these locomotives will have pantographs and/or third-rail shoes to access electrification, where it exists.

These locomotives will surely add to pressure to electrify between Westbury and Newbury.

Biodiesel is surely the interim freight solution, if one is needed.

Future Zero-Carbon Passenger Services

Passenger services through Westbury can be divided into three groups.

Great Western Railway’s Services Between London Paddington And Devon And Cornwall

From Beeching Reversal projects put forward over the last few months, it looks like these services will increase and stop at several new and refurbished stations.

I can see discontinuous electrification being used to create a series of electrification islands to allow Class 800 trains, with a battery capability reach the Far South West of Cornwall.

Electrification islands could be at places like

  • Around Westbury station.
  • Between Taunton and Exeter St. Davids stations alongside the M5.
  • Between Plymouth station and the Royal Albert bridge.
  • Around Bodmin Parkway station
  • Around Truro station
  • At Newquay station
  • At Penzance station

Obviously, the number and type of the various installations will depend on the methods used and the engineering required.

I do believe that with Hitachi trains, that meet their specification, that trains will be able to travel between Paddington and Penzance without touching a drop of diesel.

Great Western Railway’s Cardiff Central And Portsmouth Harbour Service

The service can be split into the following legs.

  • Cardiff Central and Filton Junction – 33 miles – Electrified
  • Filton Junction and Bristol Temple Meads – 5 miles – Not Electrified
  • Bristol Temple Meads and Westbury – 28 miles – Not Electrified
  • Westbury and Salisbury – 24 miles – Not Electrified
  • Salisbury and Southampton Central – 15 miles – Not Electrified
  • Southampton Central and Portsmouth Harbour – 26 miles – Electrified

It would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave the Great Western Main Line at Filton Junction with a full battery.
  • It can leave the electrification at Westbury station with a full battery.
  • It can leave Southampton Central station with a full battery.
  • Third-rail shoes are fitted for working between Southampton Central and Portsmouth Harbour stations.

Recharging batteries at Bristol Temple Meads and Salisbury stations, although probably welcome, are not necessary.

I can envisage Hitachi Class 800 and Class 385 trains being able to fulfil this role, along with Bombardier Electrostars and Aventras and Siemens Desiros.

As Great Western Railway have forty-five Class 387 trains, conversion of some of these to battery electric operation must be a possibility.

Great Western Railway’s Gloucester and Weymouth Service

The service can be split into the following legs.

  • Gloucester and Bristol Temple Meads – 39 miles – Not Electrified
  • Bristol Temple Meads and Westbury – 28 miles – Not Electrifield
  • Westbury and Dorchester Junction – 52 miles – Not Electrified
  • Dorchester Junction and Weymouth – 4 miles – Electrified

It would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave Gloucester station with a full battery.
  • It can leave Bristol Temple Meads with a full battery.
  • It can leave Westbury with a full battery.
  • It can leave the South Western Main Line at Dorchester Junction with a full battery.

It would be a tight trip for a battery electric train and I suspect, that there would be some extra electrification between Westbury and Dorchester Junction or perhaps charging facilities at Frome or Yeovil Pen Mill stations.

The alternative would be to fit larger batteries on the train.

As to the train to be used, a Class 387 train with a battery capability would surely be ideal.

Great Western Railway’s Swindon and Westbury Service

The service can be split into the following legs.

  • Swindon and Chippenham – 16 miles – Electrified
  • Chippenham and Westbury- 16 miles – Not Electrified

It would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave Chippenham station with a full battery.

This would have sufficient charge to do the thirty-two mile round trip from Chippenham to Westbury and back.

As to the train to be used, a Class 387 train with a battery capability would surely be ideal.

South Western Railway’s Bristol Temple Meads and Salisbury Service

The service can be split into the following legs.

  • Bristol Temple Meads and Westbury – 28 miles – Not Electrified
  • Westbury and Salisbury- 24 miles – Not Electrified

t would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave Bristol Temple Meads station with a full battery.
  • It can leave Westbury with a full battery.
  • It can leave Salisbury with a full battery.

But, I do wonder, if with a slightly larger battery, a well-driven train could work the route with only charging the battery at Westbury station?

Conclusion

Could Westbury station develop into a zero-carbon rail transport hub for Wiltshire?

  1. It has an hourly train service between London Paddington and Exeter St. Davids.
  2. It has an hourly service between Bristol Temple Meads and Weymouth.
  3. There are hourly services to stations like Bath Spa, Bradford-on-Avon, Bristol Temple Meads, Chippenham, Dorchester, Frome, Swindon, Taunton, Trowbridge and Yeovil

It could be electrified to charge battery electric trains as they pass through.

 

July 30, 2020 - Posted by | Energy Storage, Hydrogen, Transport | , , , , , , , , , , , , ,

1 Comment »

  1. […] Westbury Station – 30th July 2020, I discussed the development of Westbury […]

    Pingback by Beeching Reversal – Shepton Mallet (Mendip Vale) « The Anonymous Widower | August 1, 2020 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.