The Anonymous Widower

What Happened To The Class 158/159 Bi-Mode Study?

In Class 158/159 Bi-Modes?, I discussed the possibility of turning South Western Railway‘s Class 158 and Class 159 trains into bi-modes.

I said this.

In the March 2018 Edition of Modern Railways, there is a short news item, which is entitled Bi-Mode Study For SWR DMUs.

The Class 158 and Class 159 diesel multiple units used by South Western Railway are diesel-hydraulic units.

Under their franchise agreement, South Western Railway, agreed to perform a study, to see if the multiple units could be converted from diesel-hydraulic to diesel-electric transmission.

If this is successful, then the plan would be to fit a third-rail capability to the trains, so they could use the electrification between Basingstoke and Waterloo on services to Salisbury and Exeter.

Could the conversion also raise the operating speed of the trains from their current 90 mph to a more timetable-friendly 100 mph?

It looks like it could be a feasible , especially as the article states they might re-use redundant modern traction equipment from Class 455 trains, which are due for replacement.

It sounded a sensible plan to do a study.

But we’ve heard nothing since.

  • Has the late delivery of the Class 701 trains, pushed the availability of the Class 455 trains, that wioll donate the traction system, too far into the future?
  • Has the Covids delayed another project?
  • Would First Group prefer more Hitachi trains as five of their companies use them or have them on order?
  • Is the 90 mph speed of the diesel trains, too slow for the busy London Waterloo and Basingstoke route?

Or could it be that Alstom, CAF, Hitachi, Stadler or another manufacturer have a much better zero-carbon plan?

September 13, 2021 Posted by | Transport | , , , | 2 Comments

GWR To Test Battery Train On Branch Line

The title of this post, is the same as that of this article on Rail Business UK.

This is the first paragraph.

Great Western Railway has invited expressions of interest in trialling a battery powered train on the 4 km non-electrified branch line from West Ealing to Greenford in west London.

The article says that Vivarail have made a previous proposal, but other companies are also likely to declare their interest.

I feel some unexpected proposals could turn up.

The reason would be commercial,.

This is the last paragraph of the article, which says this.

The challenge on Great Western is we’ve got branches like Greenford, Windsor, Marlow and Henley along the Thames valley, and then in the West Country we’ve got St Ives, Falmouth, Newquay, Looe, Gunnislake and so on’, said Hopwood. ‘If we don’t electrify those could we fit the trains with a battery?’ The ideal solution may be a train that fast charges either at one end of the route or possibly at both ends, or on a route like Marlow, Gunnislake or Looe, where the trains reverse during their journey, could the charge point even be on that part of the branch?’

Note.

  1. Mark Hopwood is now the Managing Director of GWR.
  2. Nine branches are mentioned, so with spare trains and maintenance, it could be a good-sized order.

But this project could be even bigger.

South Western Railway are a sister company of Great Western Railway and in August 2020, I wrote Special Train Offers A Strong Case For Reopening Fawley Line about the plans to open the Fawley Line.

This was a section, I wrote about trains that might work the line.

South Western Railway’s Innovative Train Plan

This is another quote from the article.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

This is the same Mark Hopwood, who is now Managing Director of GWR.

These pictures show the current status of one of the twenty-four Class 456 train.

In Converting Class 456 Trains Into Two-Car Battery Electric Trains I discuss this conversion in detail.

Conclusion

Twenty-four battery-electric Class 456 trains would probably go a long way to satisfy GWR’s needs.

June 24, 2021 Posted by | Transport | , , , , , , | 1 Comment

The Proposal For Stonehenge And Wilton Junction Station

This article on the Salisbury Journal is entitled Wilton Railway Project On Track As Bid Submitted.

It starts with this paragraph.

An application to reopen the railway station in Wilton has reached the third round of the Restoring Your Railway Ideas Fund.

There are also more details in the February 2021 Edition of Modern Railways.

The following sections give more information and some of my thoughts.

Station Name

The station appears to be called Stonehenge and Wilton Junction in all the articles and reports.

Station Location

This page on the TransWilts web site, says this about the station.

Wilton is at the junction between the Salisbury to Bristol line and the Salisbury to Exeter line.
It is 7 miles to Stonehenge Visitor Centre. A consultants report by Atkins shows an economic case and a developer for housing at the site has been identified. Station cost is in the order of £15m.

This Google Map shows the area.

Note.

  1. The Wilton Park-and-Ride site at the top of the Map.
  2. The railway going South-East and North-West across the map is the Wessex Main Line, that links Salisbury and Bristol.
  3. The railway going South-East and West across the map is the West of England Main Line, that links Salisbury and Exeter.
  4. Both routes are double track.

It would appear that the new station would have platforms on both rail lines through the station.

Station Design

If Atkins reckon the station can be built for £15 million as I quoted earlier, it can’t be a very grand station.

The Modern Railways article says this about the station.

A park-and-ride facility at the station would reduce congestion in the centre of Salisbury. Improving London services in the proposal improves the cost-benefit ratio, so what is now envisaged is a four-platform station, with platforms on both the TransWilts and the Yeovil to London lines. The thinking is that the new station could work in tandem with the lengthening of the Tisbury loop and other proposals for possible expansion on the South Western route to Exeter that was floated in the latest Network Rail Continuous Modular Strategy.

My feelings are that a radical approach could yield an efficient station with a smaller number of platforms.

Train services through the station could include.

  • GWR – Cardiff Central and Portsmouth Harbour – Hourly – Transwilts Lines – Also calls at Salisbury
  • GWR – Great Malvern and Brighton or Southampton – Hourly – Transwilts Lines – Also calls at Salisbury
  • SWR – London Wareloo and Exeter – Hourly – Yeovil and London Lines – Also calls at Salisbury

There is also talk of extending the Transwilts hourly service between Swindon and Westbury to Salisbury and then on to Southampton via Romsey.

This would do the following.

  • Create a link to Southampton Airport.
  • Give the new station a Turn-Up-And-Go service to Salisbury.
  • The fourth service would mean that three services called on the Transwilts platforms and one service called on the Yeovil and London platforms.

So why not have one large platform between the two pairs of lines?

  • It would have a tunnel connecting it to the buses and the car parking.
  • One large lift would take passengers with limited mobility to the platform.
  • The Southern face of the platform, would handle all trains running on the Yeovil and London line. A single platform can easily handle an hourly fast service in both directions.
  • The Northern face of the platform, would handle all trains running on the Transwilts.
  • Three trains per hour (tph) in both directions, could probably be handled with some innovation and a long platform.

Why complicate everything with four platforms?

Link To Stonehenge

I haven’t been to Stonehenge since the 1950s, although I have observed it from traffic jams on nearby roads many times.

Surely, there is a chance here to connect the new station and the World Heritage Site with a zero-carbon battery or hydrogen bus.

As the distance between the station and Stonehenge is only about seven miles, it would probably be the easiest way to get large number of visitors to the unique site.

We probably need more well-planned zero-carbon bus links to historic, tourist and other important sites.

 

 

 

March 12, 2021 Posted by | Transport | , , , , | 5 Comments

Shooter Urges Caution On Hydrogen Hubris

The title of this post is the same as that of an article in the January 2021 Edition of Modern Railways.

This is the first paragraph.

Vivarail Chairman Adrian Shooter has urges caution about the widespread enthusiasm for hydrogen technology. In his keynote speech to the Golden Spanner Awards on 27 November, Mr. Shooter said the process to create ‘green hydrogen’ by electrolysis is ‘a wasteful use of electricity’ and was skeptical about using electricity to create hydrogen to then use a fuel cell to power a train, rather than charging batteries to power a train. ‘What you will discover is that a hydrogen train uses 3.5 times as much electricity because of inefficiencies in the electrolysis process and also in the fuel cells’ said Mr. Shooter. He also noted the energy density of hydrogen at 350 bar is only one-tenth of a similar quantity of diesel fuel, severely limiting the range of a hydrogen-powered train between refuelling.

Mr. Shooter then made the following points.

  • The complexity of delivering hydrogen to the railway depots.
  • The shorter range available from the amount of hydrogen that can be stored on a train compared to the range of a diesel train.
  • He points out limitations with the design of the Alstom Breeze train.

This is the last paragraph.

Whilst this may have seemed like a challenge designed purely to promote the battery alternatives that Vivarail is developing, and which he believes to be more efficient, Mr. Shooter explained: ‘I think that hydrogen fuel cell trains could work in this country, but people just need to remember that there are downsides. I’m sure we’ll see some, and in fact we should because competition improves the breed.’

i think Mr. Shooter may have made several good points.

These are my thoughts.

Creating Green Hydrogen

I haven’t done an analysis of the costs of creating green hydrogen from electrolysis, but I have a feeling, that electrolysis won’t be the only way to create large amounts of carbon-free hydrogen, in a few years.

These methods are currently available or under development or construction.

  • The hydrogen tram-buses in Pau have a personal electrolyser, that provides hydrogen at 350 bar.
  • London’s hydrogen buses will be provided with hydrogen from an electrolyser at Herne Bay by truck. Will the trucks be hydrogen-powered?

Some industrial processes like the Castner-Kellner process create hydrogen as a by-product.

In Shell Process To Make Blue Hydrogen Production Affordable, I describe the Shell Blue Hydrogen Process, which appears to be a way of making massive amounts of carbon-free hydrogen for processes like steel-making and cement production. Surely some could be piped or transported by truck to the rail depot.

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I describe how ITM Power and Ørsted plan to create the hydrogen off shore and bring it by pipeline to the shore.

Note.

  1. The last two methods could offer savings in the cost of production of carbon-free hydrogen.
  2. Surely, the delivery trucks if used, must be hydrogen-powered.
  3. The Shell Blue Hydrogen Process uses natural gas as a feedstock and converts it to hydrogen using a newly-developed catalyst. The carbon-dioxide is captured and used or stored.
  4. If the local gas network has been converted to hydrogen, the hydrogen can be delivered to the depot or filling station through that gas network.

I very much feel that affordable hydrogen can be supplied to bus, train, tram or transport depot. For remote or difficult locations. personal electrolysers, powered by renewable electricity, can be used, as at Pau.

Hydrogen Storage On Trains

Liquid hydrogen could be the answer and Airbus are developing methods of storing large quantities on aircraft.

In What Size Of Hydrogen Tank Will Be Needed On A ZEROe Turbofan?, I calculated how much liquid hydrogen would be needed for this ZEROe Turbofan.

I calculate that to carry the equivalent amount of fuel to an Airbus A320neo would need a liquid hydrogen tank with a near 100 cubic metre capacity. This sized tank would fit in the rear fuselage.

I feel that in a few years, a hydrogen train will be able to carry enough liquid hydrogen in a fuel tank, but the fuel tank will be large.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I calculated how much liquid hydrogen would be needed to provide the same amount of energy as that carried in a full diesel tank on a Class 68 locomotive.

The locomotive would need 19,147 litres or 19.15 cubic metres of liquid hydrogen, which could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.

Hydrogen Locomotives Or Multiple Units?

We have only seen first generation hydrogen trains so far.

This picture shows the Alstom Coradia iLint, which is a conversion of a Coradia Lint.

It is a so-so train and works reasonably well, but the design means there is a lot of transmission noise.

This is a visualisation of an Alstom Breeze or Class 600 train.

Note that the front half of the first car of the train, is taken up with a large hydrogen tank. It will be the same at the other end of the train.

As Mr. Shooter said, Alstom are converting a three-car train into a two-car train. Not all conversions live up to the hype of their proposers.

I would hope that the next generation of a hydrogen train designed from scratch, will be a better design.

I haven’t done any calculations, but I wonder if a lighter weight vehicle may be better.

Hydrogen Locomotives

I do wonder, if hydrogen locomotives are a better bet and easier to design!

  • There is a great need all over the world for zero-carbon locomotives to haul freight trains.
  • Powerful small gas-turbine engines, that can run on liquid hydrogen are becoming available.
  • Rolls-Royce have developed a 2.5 MW gas-turbine generator, that is the size of a beer-keg.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I wondered if the Rolls-Royce generator could power a locomotive, the size of a Class 68 locomotive.

This was my conclusion.

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

In the UK, it might be possible to convert some existing locomotives to zero-carbon, using either liquid hydrogen, biodiesel or aviation biofuel.

Perhaps, hydrogen locomotives could replace Chiltern Railways eight Class 68 locomotives.

  • A refuelling strategy would need to be developed.
  • Emissions and noise, would be reduced in Marylebone and Birmingham Moor Street stations.
  • The rakes of carriages would not need any modifications to use existing stations.

It could be a way to decarbonise Chiltern Railways without full electrification.

It looks to me that a hydrogen-powered locomotive has several advantages over a hydrogen-powered multiple unit.

  • It can carry more fuel.
  • It can be as powerful as required.
  • Locomotives could work in pairs for more power.
  • It is probably easier to accommodate the hydrogen tank.
  • Passenger capacity can be increased, if required by adding more coaches.

It should also be noted that both hydrogen locomotives and multiple units can build heavily on technology being developed for zero-carbon aviation.

The Upward Curve Of Battery Power

Sparking A Revolution is the title an article in Issue 898 of Rail Magazine, which is mainly an interview with  Andrew Barr of Hitachi Rail.

The article contains a box, called Costs And Power, where this is said.

The costs of batteries are expected to halve in the next years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2030 and £47/kWh in 3030.

United Kingdom Research and Innovation (UKRI) are predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1400 Wh/l in 2-35, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg to 12 kW/kg in 2035.

These are impressive improvements that can only increase the performance and reduce the cost of batteries in all applications.

Hitachi’s Regional Battery Train

This infographic gives the specification of Hitachi Regional Battery Train, which they are creating in partnership with Hyperdrive Innovation.

Note that Hitachi are promising a battery life of 8-10 years.

Financing Batteries

This paragraph is from this page on BuyaCar, which is entitled Electric Car Battery Leasing: Should I Lease Or Buy The Batteries?

When you finance or buy a petrol or diesel car it’s pretty simple; the car will be fitted with an engine. However, with some electric cars you have the choice to finance or buy the whole car, or to pay for the car and lease the batteries separately.

I suspect that battery train manufacturers, will offer similar finance models for their products.

This paragraph is from this page on the Hyperdrive Innovation web site.

With a standardised design, our modular product range provides a flexible and scalable battery energy storage solution. Combining a high-performance lithium-ion NMC battery pack with a built in Battery Management System (BMS) our intelligent systems are designed for rapid deployment and volume manufacture, supplying you with class leading energy density and performance.

I can envisage that as a battery train ages, every few years or so, the batteries will get bigger electrically, but still be the same physical size, due to the improvements in battery technology, design and manufacture.

I have been involved in the finance industry both as a part-owner of a small finance company and as a modeller of the dynamics of their lending. It looks to me, that train batteries could be a very suitable asset for financing by a fund. But given the success of energy storage funds like Gore Street and Gresham House, this is not surprising.

I can envisage that battery electric trains will be very operator friendly, as they are likely to get better with age and they will be very finance-friendly.

Charging Battery Trains

I must say something about the charging of battery trains.

Battery trains will need to be charged and various methods are emerging.

Using Existing Electrification

This will probably be one of the most common methods used, as many battery electric services will be run on partly on electrified routes.

Take a typical route for a battery electric train like London Paddington and Oxford.

  • The route is electrified between London Paddington and Didcot Junction.
  • There is no electrification on the 10.4 miles of track between Didcot Junction and Oxford.

If a full battery on the train has sufficient charge to take the train from Didcot Junction to Oxford and back, charging on the main line between London Paddington and Didcot Junction, will be all that will be needed to run the service.

I would expect that in the UK, we’ll be seeing battery trains using both 25 KVAC overhead and 750 VDC third rail electrification.

Short Lengths Of New Strategic Electrification

I think that Great Western Railway would like to run either of Hitachi’s two proposed battery electric trains to Swansea.

As there is 45.7 miles pf track without .electrification, some form of charging in Swansea station, will probably be necessary.

The easiest way would probably be to electrify Swansea station and perhaps for a short distance to the North.

This Google Map shows Swansea station and the railway leading North.

Note.

  1. There is a Hitachi Rail Depot at the Northern edge of the map.
  2. Swansea station is in South-West corner of the map.
  3. Swansea station has four platforms.

Swansea station would probably make an excellent battery train hub, as trains typically spend enough time in the station to fully charge the batteries before continuing.

There are other tracks and stations of the UK, that I would electrify to enable the running of battery electric trains.

  • Leeds and York, which would enable carbon-free London and Edinburgh services via Leeds and help TransPennine services. This is partially underway.
  • Leicester and East Midlands Parkway and Clay Cross North Junction and Sheffield – These two sections would enable EMR InterCity services to go battery electric.
  • Sheffield and Leeds via Meadowhall, Barnsley Dearne Valley and the Wakefield Line, which would enable four trains per hour (tph) between Sheffield and Leeds and an extension of EMR InterCity services to Leeds.
  • Hull and Brough, would enable battery electric services to Hull and Beverley.
  • Scarborough and Seamer, would enable electric services services to Scarborough and between Hull and Scarborough.
  • Middlesbrough and Redcar, would enable electric services services to Teesside.
  • Crewe and Chester and around Llandudno Junction station – These two sections would enable Avanti West Coast service to Holyhead to go battery electric.
  • Shrewsbury station – This could become a battery train hub, as I talked about for Swansea.
  • Taunton and Exeter and around Penzance, Plymouth and Westbury stations – These three sections would enable Great Western Railway to cut a substantial amount of carbon emissions.
  • Exeter, Yeovil Junction and Salisbury stations. – Electrifying these three stations would enable South Western Railway to run between London and Exeter using Hitachi Regional Battery Trains, as I wrote in Bi-Modes Offered To Solve Waterloo-Exeter Constraints.

We will also need fast chargers for intermediate stations, so that a train can charge the batteries on a long route.

I know of two fast chargers under development.

I believe it should be possible to battery-electrify a route by doing the following.

  • Add short lengths of electrification and fast charging systems as required.
  • Improve the track, so that trains can use their full performance.
  • Add ERTMS signalling.
  • Add some suitable trains.

Note.

  1. I feel ERTMS  signalling with a degree of automatic train control could be used with automatic charging systems, to make station stops more efficient.
  2. In my view, there is no point in installing better modern trains, unless the track is up to their performance.

January 4, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Syon Lane Station – 7th December 2020

The step-free footbridge at Syon Lane station has been completed and open for some time now.

I took these pictures today.

Note.

  1. The footbridge only has one lift on Platform 2.
  2. The step-free route to Platform 1 is a level footpath, which leads to the bus stop.
  3. There are three sets of stairs, two to Platform 2 and one to Platform 1.
  4. There is also a seat designed for Covid-19.

My first post on this project was Syon Lane Station To Go Step-Free, which was posted on April 30, 2019.

These smaller rail projects must be built in a more timely manner.

December 7, 2020 Posted by | Health, Transport | , , , | 1 Comment

Greener And Brighter Stations Across Hampshire And Surrey

The title of this post. is the same as that of this article on Rail Technology Magazine.

These are the first two paragraphs.

Network Rail hope to save 25% in electricity by rewiring and relighting their Wessex Route stations.

Worcester Park and Andover stations are two of the latest stations to be rewired, forming part of the drive to replace old and inefficient electrical equipment and incandescent lights at 32 stations in Hampshire and Surrey.

As Worcester Park station is Freedom Pass territory, I went to have a look.

Note.

  1. It appears that all the original light fittings have been updated with some form of LED conversion.
  2. The LEDs are clearly visible in some of the pictures.

The whole project is called Rewire and Relight and is due to be finished in 2024.

Conclusion

I suspect Network Rail can apply these techniques to a lot more places, than just 32 stations in Hampshire and Surrey.

 

November 3, 2020 Posted by | Transport | , , , , , | Leave a comment

Replacement Of South Western Railway’s Class 158/159 Trains

South Western Railway use Class 158 and Class 159 trains on the following routes.

  • London Waterloo and Salisbury (and Yeovil Pen Mill)
  • London Waterloo and Exeter St Davids
  • Romsey and Salisbury
  • Salisbury and Bristol Temple Meads

The two types of train are very similar, with the Class 159 trains being converted from Class 158 trains.

  • There are ten two-car Class 158 trains in service with South Western Railway. which have a capacity of around 140 seats
  • There are thirty three-car Class 159 trains in service with South Western Railway, which have a capacity of 196 seats
  • Each car has a diesel engine driving two axles through a hydraulic transmission.
  • Both trains have an operating speed of 90 mph.
  • The trains are all around thirty years old.

I took these pictures on my trip to Basingstoke station on Friday, when I rode in nine-car formation of three Class 159 trains both ways.

Note.

  1. For much of the route between Clapham Junction and Basingstoke, the trains were doing just a few mph short of ninety on the 100 mph route.
  2. The interiors are fairly spacious and I got a table seat both ways.

As diesel multiple units go, there are worse ones in service in the UK. And I don’t mean Pacers.

Replacement Possibilities

Ideally, these trains should be replaced with zero-carbon trains.

As most of the routes, on which the trains run are not-electrified, there must either be a lot of new third-rail electrification or battery electric trains must be used.

These are my thoughts for the various trains.

Two-Car Class 158 Train

These trains have the following specification.

  • Length – 46 metres
  • Seats – 140
  • Operating Speed – 90 mph

In Converting Class 456 Trains Into Two-Car Battery Electric Trains, I stated that these Class 456 battery electric trains would have the following specification.

  • Seats – 113
  • Range on Battery Power – 30-40 miles
  • Operating Speed – 75 mph

I also felt that as the trains would receive a new AC traction system, that the operating speed could be increased to perhaps 90 mph.

I wouldn’t be surprised to find, that a professional conversion capitalising on Alstom’s work to create the Class 600 hydrogen train, could turn a Class 456 train into a battery electric replacement for a two-car Class 158 train.

Three-Car Class 159 Train

These trains have the following specification.

  • Length – 69 metres
  • Seats – 196
  • Operating Speed – 90 mph

Could these be replaced with a three-car Class 456 battery electric train, lengthened by the addition of a Trailer Car from a Class 321 train, that has been converted to a Class 600 hydrogen train?

As most Class 159 trains probably work in longer formations, this could be a possibility, to replace units working alone.

Two Three-Car Class 159 Trains Working As A Six-Car Formation

These trains have the following specification.

  • Length – 138 metres
  • Seats – 392
  • Operating Speed – 90 mph

This formation would be impossible for Class 456 battery electric trains, so it must be a case for calling up the heavy brigade, in the shape of Hitachi’s Regional Battery Train, which is described in this Hitachi infographic.

A five-car version of this train could have the following specification.

  • Length – 130 metres
  • Seats – 326
  • Range on battery power – 56 miles
  • Operating Speed – 100 mph
  • It would probably be able to work with both 25 KVAC overhead and 750 VDC third-rail electrification.

Note.

  1. More seats could probably be fitted if needed.
  2. Platforms where the trains would work can already accept nine-car Class 159 trains, which are 207 metres long.
  3. The trains would charge the batteries using the electrification between London Waterloo and Basingstoke.
  4. Fast Charge facilities would also be needed at some intermediate and terminal stations like Bristol Temple Meads, Exeter St. Davids, Salisbury, Westbury and Yeovil Junction.
  5. These trains would be ten mph faster than the Class 159 trains and this may enable the saving of a few minutes between London Waterloo and Basingstoke stations.

A six-car version would be possible, if more capacity is needed.

Three Three-Car Class 159 Trains Working As A Nine-Car Formation

These trains have the following specification.

  • Length – 207 metres
  • Seats – 588
  • Operating Speed – 90 mph

An eight-car version of Hitachi’s Regional Battery Train could have the following specification.

  • Length – 208 metres
  • Seats – 522
  • Range on battery power – 56 miles
  • Operating Speed – 100 mph
  • It would probably be able to work with both 25 KVAC overhead and 750 VDC third-rail electrification.

Note.

  1. More seats could probably be fitted if needed.
  2. Platforms where the trains would work can already accept nine-car Class 159 trains, which are 207 metres long.
  3. The trains would charge the batteries using the electrification between London Waterloo and Basingstoke.
  4. Fast Charge facilities would also be needed at some intermediate and terminal stations like Bristol Temple Meads, Exeter St. Davids, Salisbury, Westbury and Yeovil Junction.
  5. These trains would be ten mph faster than the Class 159 trains and this may enable the saving of a few minutes between London Waterloo and Basingstoke stations.

A nine-car version would be possible, if more capacity is needed.

More Capacity Between London Waterloo And Basingstoke

London Waterloo and Basingstoke was very busy before COVID-19 and it needed more capacity.

  • All the express passenger trains are capable of 100 mph, with the exception of the diesel Class 158 and Class 159 trains, which can only do 90 mph.
  • If these diesel trains were to be replaced by Hitachi’s Regional Battery Trains, these trains will be able to do 100 mph on battery power.

This speed increase will enable faster journey times and increase capacity.

  • But between London Waterloo and Basingstoke, they will be using the third-rail electrification.
  • Class 800 and Class 801 trains, which are cousins of the Regional Battery Train are currently able to do 125 mph between London Paddington and Swindon and London Kings Cross and Doncaster.
  • London and Doncaster is being upgraded to 140 mph running.

So will we see 125 mph running between London Waterloo and Basingstoke? I will be very surprised if we didn’t, before 2030.

Charging The Batteries

Much of the charging of batteries will be performed whilst running on electrified lines.

But as I indicated there will need to be Fast Charge facilities at intermediate and terminal stations.

The Need For A Universal Fast Charge Facility For All Battery Electric Trains

If you look at Salisbury for example, the facility would need to be able handle all types of battery electric trains. So the Government, Network Rail and the Office of Road and Rail must come up with a universal design of charging facility that can be used by all battery electric trains.

Standard UK electrification, which can be either 25 KVAC overhead or 750 VDC third-rail, can obviously be used, as all battery electric trains will be designed to be able to charge the batteries, whilst running on electrified lines.

But a Universal Fast Charge system is surely needed, that can charge every battery electric train running on the UK rail network.

Splash-and-Dash At Yeovil Junction Station

But I believe that trains like Hitachi’s Regional Battery Train, when working long routes like Salisbury and Exeter will need the equivalent of Formula One’s Splash-and-Dash, where a fast pit-stop enabled cars to complete the race in the most economic manner.

If you look at timings between Salisbury and Exeter on Real Time Trains, you find the following.

  • Salisbury and Exeter is 88.5 miles
  • Salisbury and Yeovil Junction is 39 miles
  • Yeovil Junction and Exeter St. Davids is 50 miles
  • Trains seem to be timed to wait between 8-14 minutes at Yeovil Junction station.
  • At several times during the day the Westbound and Eastbound services pass at Yeovil Junction station.

I would assume the wait and the passing, are so that trains can safely navigate the sections of single-track line, that are a legacy of British Rail’s policy of saving money, that affectively ruined the efficiency of sections of the network.

It would appear that a well-designed Universal Fast Charge facility at Yeovil Junction station could enable battery electric trains to run between Salisbury and Exeter St Davids stations, without any adjustment to the existing timetable.

This Google Map shows Yeovil Junction station.

Note.

  1. Yeovil Junction station is in the South West corner of the map.
  2. The West of England Main Line passes East-West through the station.
  3. The station has two platforms.
  4. The two lines running North to Yeovil Pen Mill and Westbury stations.
  5. The line running between the North side and the South-East corner of the map is the Heart of Wessex Line, between Yeovil Pen Mill in the North and Weymouth in the South.
  6. Most links between the West of England Main Line and the Heart of Wessex Line have been removed.

The station doesn’t appear short of space.

Great Western Railway’s Gloucester And Weymouth Service

If a link between Yeovil Junction station and the Heart of Wessex Line towards Weymouth, this would enable Great Western Railway’s Gloucester and Weymouth service to call at both Yeovil stations, with a reverse at Yeovil Junction.

It would surely, improve the train service for the town of Yeovil.

If in the future, it was desired to run the Gloucester and Weymouth service using a battery electric train, Yeovil Junction station could be used to charge the train’s batteries.

Vivarail’s Fast Charge System

Vivarail’s Fast Charge system has been patented and demonstrated and this could be used with both the battery electric Class 456 train and Hitachi’s Regional Battery Train.

So it could be used as an initial design for a Universal Fast Charge system.

Conclusion

A mix of these battery electric trains could probably replace the Class 158 and 159 trains.

  • Two-car Class 456 train
  • Three-car Class 456 train
  • Five-car Hitachi Regional Battery Train
  • Eight-car Hitachi Regional Battery Train

Note.

  1. Universal Fast Charge facilities would also be needed at some intermediate and terminal stations like Bristol Temple Meads, Exeter St. Davids, Romsey, Salisbury, Westbury and Yeovil Junction.
  2. Services between London Waterloo and Basingstoke could be faster.

These rebuilt and new trains would fully decarbonise South Western Railway.

 

 

August 16, 2020 Posted by | Energy Storage, Transport | , , , , , , , , | 4 Comments

Beeching Reversal – Unlocking Capacity And Services Through Bramley (Hants)

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

Bramley Station

Bramley (Hants) station is on the  Reading-Basingstoke Line, which is 15.5 miles long.

  • The line is double-track.
  • Bramley station is the nearest one to Basingstoke station.
  • The two stations are about five miles apart.
  • The basic local service is two trains per hour (tph), with trains taking a few minutes under half-an-hour.
  • The speed limit is listed in Wikipedia at 75 mph and my Class 165 train was travelling at about 60 mph on both journeys between Basingstoke and Bramley stations.

This Google Map shows Bramley station.

Note the level crossing, just to the North of the station.

These are some pictures, that I took, whilst I spent about thirty minutes at Bramley station.

Note

  1. In the thirty minutes, I was at the station, two long freight trains and three passenger trains came through.
  2. The level crossing barriers were going up and down like a whore’s drawers.
  3. Each level crossing closure resulted in long queues at the barriers.

It reminded me how bad the level crossing at Brimsdown station used to be in the Peak in 1966, when I crossed it twice every day to go to and from work at Enfield Rolling Mills. At least I was on two wheels and it gave me a break from pedalling!

There is more on the problems of the level crossing on this article on the Bramley Parish Council web site, which is entitled Living With Our Level Crossing.

Current Future Plans For the Reading-Basingstoke Line

The Wikipedia entry for the Reading-Basingstoke Line has a Future section, where this is said.

The railway is listed with Network Rail as part of route 13, the Great Western main line, and was due to be electrified with 25 kV overhead wiring by 2017 as part of the modernisation of the main line.[8] In July 2007, plans were agreed to build a station in Reading south of Southcote Junction in the Green Park business park, serving the southern suburbs of Reading and also the Madejski Stadium. Construction of Reading Green Park railway station was expected to be completed in 2010; the plans were suspended in 2011, but were reinstated in 2013. It is now set to open by the end of 2020[9], with electrification along the line at a later date.

It is my view, that the new Reading Green Park station will probably mean that four tph between Reading and Basingstoke stations will be needed. especially if a second new station were to be built at Chineham.

But four tph would probably be impossible, without improving the traffic of both rail and road through Bramley.

Solving The Level Crossing Problem

Ideally, the level crossing should be closed and the road diverted or put on a bridge,

If you look at a wider map of the area, building a by-pass to enable road traffic to avoid the crossing will be difficult if not impossible.

But this is not an untypical problem on rail networks and not just in the UK.

I suspect that with precise train control using digital ERTMS  signalling, trains and level crossing closures can be timed to improve traffic on both road and rail.

Consider.

  • If trains crossed on the level crossing and they were under precise control, this would reduce the number of level crossing closures per hour.
  • If the line speed was higher and the trains ran faster, this should ease timetabling, as there could be more train paths per hour.
  • Faster accelerating electric trains would save time too, by shortening station dwell times.
  • A third track might be laid in places.
  • The signalling could possibly drive the train or tell the driver exactly what speed to travel, so trains passed on the crossing or in the station.

As Network Rail and their contractors roll-out ERTMS, they’ll discover better and more intelligent ways to deploy the system.

Electric Trains Would Help

Electric trains accelerate faster and if they use regenerative braking to batteries, this cuts station dwell times.

But powering them by electrification would mean the connecting lines between the Reading and Basingstoke Lines and the nearest electrified lines would also have to be electrified.  This would make the scheme excessively expensive.

But Battery Electric Trains Could Be Better!

I believe that battery electric trains, would be a more-than-viable alternative.

  • You still get the performance advantages of electric trains.
  • With charging at just one end of the route, a battery electric train could run a round trip on battery power.

The big advantage, would be that the only new electrification infrastructure needed would be to charge the trains.

Charging Battery Electric Trains At Reading Station

Reading is a fully electrified station and the shuttle trains to and from Basingstoke station, appear to use Platform 2.

This Google Map shows electrification gantries over Platforms 1, 2 and 3 at Reading station.

Note.

  1. The route between Reading station and Southcote junction, where the Basingstoke and Newbury routes divide, may be under two miles, but it is fully electrified.
  2. Trains take three minutes to travel between Reading station and Southcote junction.
  3. Trains wait for up to twenty minutes in the platform at Reading station.

It would appear that trains get enough time at Reading to fully charge the batteries.

Charging Battery Electric Trains At Basingstoke Station

The shuttle trains between Reading and Basingstoke stations, appear to use Platform 5 in Basingstoke station.

This Google Map shows Platform 5 at Basingstoke station.

Platform 5 is towards the top of the map and contains a two-car train.

These pictures show the platform.

Note.

  1. There would appear to be space on the North side of Platform 5 to install another platform, if one should be needed.
  2. It appears from the Google Map, that Platform 5 could take a four-car train.
  3. The platform is wide and spacious for passengers.
  4. I suspect a Fast Charge system of some sort could be installed in this platform.

As at Reading, trains can take around twenty minutes to turn back at Basingstoke, which would be ideal for a battery charge.

What Trains Could Work The Shuttle?

After South Western Railway‘s interim Managing Director; Mark Hopwood’s comments, that led me to write Converting Class 456 Trains Into Two-Car Battery Electric Trains, these trains must be a possibility.

I also think, that as both South Western Railway and Great Western Railway are both First Group companies, there won’t be too much argument about who supplies the trains for the shuttle.

CrossCountry Trains Between Reading And Basingstoke

CrossCountry will need to replace their Class 220 trains with electric or bi-mode trains soon, to meet the dates for decarbonisation.

The prime candidate must be a dual-voltage version of Hitachi’s Regional Battery Train, which could easily work the 15.5 miles between Reading and Basingstoke on battery power, after charging up on the electrification at both ends.

The trains could also be easily fitted with the ERTMS signalling equipment that will be required to go smoothly along the line.

Freight Trains Between Reading And Basingstoke

We might see this section of the UK rail network, electrified for freight, but as it would require lots of connecting electrification, I think it is more likely that freight locomotives will be powered by an alternative fuel like hydrogen or bio-diesel. This would cut electrification needs, but still reduce carbon emissions.

Freight locomotives are already being fitted with the required ERTMS signalling equipment.

 

Conclusion

I am absolutely sure, that there’s a technological solution in there, that can increase the number of trains through Bramley.

But diverting the road traffic and clossing the level crossing would appear to be difficult.

 

 

August 14, 2020 Posted by | Transport | , , , , , , , , , | 3 Comments

Converting Class 456 Trains Into Two-Car Battery Electric Trains

Mark Hopwood is the interim Managing Director of South Western Railway and in Special Train Offers A Strong Case For Reopening Fawley Line, I quote him as saying the following about the trains for the Fawley Branch Line.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

Mark Hopwood is so right about using old diesels.

  • Where possible new and refurbished trains should be zero-carbon.
  • Diesel is to be banned by 2035 in Scotland and 2040 in England and Wales.
  • Diesel trains and hydrogen trains for that matter need to refuelled.
  • Get the diagrams right and battery electric trains can be charged on existing electrification or automatic Fast Charging systems, when they turn back at terminal stations.
  • Electric trains attract passengers.
  • Battery electric trains are mouse-quiet!

Who would use anything else other than electric trains with a battery option for sections without electrification?

The Class 456 Train

These pictures show some of the twenty-four Class 456 trains, that are in South Western Railway’s fleet.

This is the specification of a Class 456 train.

  • Two cars
  • Operating speed – 75 mph.
  • Capacity – 152 seats – Although the plate on the train says 113!
  • Built 1990-1991
  • Ability to work in pairs.

Most trains seem to be used to lengthen trains from eight to ten cars, as some of the pictures shows. As these 4+4+2 formations will be replaced with new 10-car Class 701 trains or pairs of five-car Class 701 trains, the trains will be looking for a new role.

Does this explain Mark Hopwood’s statement?

It should be noted that the Class 456 trains are members of the Mark 3 family, and bare a strong resemblance to the Class 321 train, which are shown in these pictures.

Note that I have included the side view, as it shows the amount of space under these trains.

Some Class 321 trains are being converted to Class 600 hydrogen trains, by Alstom at Widnes. Others have been given a life-extending Renatus upgrade.

Are The Driver Cars Of Class 456 and Class 321 Trains Identical?

The trains may look similar, but does the similarity go deeper?

Could Alstom Use Class 600 Hydrogen Train Technology To Create A Class 456 Train With a Battery Capability?

Consider.

  • Alstom are positioning themselves as Train Upgrade Specialists in the UK. They have already signed a near billion pound deal to upgrade and maintain Avanti West Coast’s fleet of Class 390 trains.
  • Alstom are creating the Class 600 hydrogen train from withdrawn Class 321 trains.
  • A hydrogen-powered  train is basically a battery electric train with a hydrogen tank and fuel cell to charge the batteries.
  • The Class 600 train doesn’t appear to be making fast progress and is still without an order.
  • One possible hydrogen route must surely be London Waterloo and Exeter, so I suspect Alstom are talking to South Western Railway.
  • The Class 456 trains are owned by Porterbrook, who would probably like to extend the useful life of the trains.

Could it be that the battery core and AC traction package of Alstom’s hydrogen system for the Class 600 train can turn old British Rail-era electric multiple units into battery electric multiple units with a useful range?

It is certainly a possibility and one that is also within the capability of other companies in the UK.

Could The Class 456 Trains Receive a Class 321 Renatus Interior And Traction Package?

As Class 321 and Class 456 trains were built around the same time, the two trains must share components.

These pictures show the current interior of a Class 456 train.

This is excellent for a two-car electric multiple unit, built thirty years ago! Although, the refurbishment is more recent from 2014-15.

  • Note the wheelchair space and the copious rubbish bins.
  • I also spotted a stowed wheel-chair ramp on the train. It can be seen if you look hard in the picture that shows the wheelchair space.
  • Some might feel that toilets should be provided.

These pictures show the interior of a Class 321 train, that has been given the Renatus upgrade.

What is not shown is the more efficient AC traction package.

I have been told or read, that the Renatus interior will be used in the conversion of a Class 321 train to an Alstom Class 600 or Breeze hydrogen train.

On the other hand, the current Class 456 interior would probably be ideal for a branch line, where one of initial aims would be to attract passengers.

Could A Class 456 Train Have a Lightweight Traction Package?

Consider.

  • The Class 456 train will access electrification that is only 750 VDC third-rail.
  • Batteries work in DC.
  • The new traction motors will work in AC, if they follow the practice in the Class 321 Renatus and the Class 600 train.
  • Regenerative braking will charge the batteries in both trains.
  • Air-conditioning and other hotel services can work in DC.

Some components needed to run from 25 KVAC like a transformer could be left out to save weight and improve acceleration.

I would suspect that a Class 456 train with batteries could use a slimmed-down traction system from the Class 600 train.

On both Class 456 and 600 trains a core system, that would power the train, might contain.

  • The traction battery or batteries.
  • The traction motors that both drive and brake the train,
  • Third-rail electrification shoes, so that the batteries could be charged in a station, as required.
  • A clever computer system, that controls the acceleration, braking and charging as required.

On the Class 600 train, there would also be the following.

  • Hydrogen tanks and fuel cells to provide an independent power source to charge the batteries.
  • A pantograph to access 25 KVAC overhead electrification.
  • Extra electrical gear to access the electrification.

I think it would be possible to design the Class 456 train with batteries as the basic train and just add the extra  hydrogen and electrical gubbins to make it a Class 600 train.

Could A Class 456 Train Be Modified To Use 25 KVAC Overhead Electrification?

As I said, there are a lot of similarities between Class 456 trains and Class 321 trains.

As the Class 321 trains are equipped to use 25 KVAC Overhead Electrification, I suspect train modification specialists could create a Class 456 train, that could use overhead electrification.

What Battery Range And Size Would Be Needed In A Class 456 Train?

These are typical branch line lengths for South Western Railway.

  • Fawley Branch – 8 miles
  • Wareham and Swanage – 11 miles
  • Lymington Branch – 5.6 miles
  • Reading and Basingstoke – 15.5 miles

I would suspect that a range of thirty miles on battery power would be sufficient for a Class 456 train with batteries.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So applying that formula gives battery capacity of between 180 kWh and 300 kWh.

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

This picture of the Driver Car of a Class 321 train, shows that there is quite a bit of space under those trains.

Are the Class 456 trains similar? This is the best picture I have got so far.

It does appear that space is similar to that under a Class 321 train.

If we assume that the Class 456 train can have the following specification.

  • Battery capacity of 200 kWh in both cars.
  • Regenerative braking to battery.
  • Power consumption of 4 kWh per vehicle mile.

I think we could be approaching a range of fifty miles on a route without too many energy-consuming stops.

Charging The Batteries

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Class 456 Train With Batteries And Class 600 Train Compared

The following sub-sections will compare the trains in various areas.

Lightweight Design

As I suspect that the basic structure of the Class 456 and Class 600 trains are similar, systems like toilets, air-conditioning, traction motors and seats will be chosen with saving weight in mind.

Every kilogram saved will mean faster acceleration.

Operating Speed

The current Class 321 train is a 100 mph train, whilst the current Class 456 train is only a 75 mph train.

I wonder if applying the modern traction package of the Class 321 Renatus to the Class 456 train could speed the shorter train up a bit?

Range Away From Electrification

Alstom have quoted ranges of hundreds of miles for the Class 600 train on one filling of hydrogen, but I can’t see the Class 456 train with batteries doing much more than fifty miles on a full charge.

But using a Fast Charge system, I can see the Class 456 train with batteries fully-charging in under ten minutes.

Fast Charge systems at Romsey and Salisbury stations would surely enable the Class 456 trains with batteries to run the hourly service over the thirty-eight mile route between the two stations.

Passenger Capacity

The current Class 456 trains have a capacity of 152 seats.

In Orders For Alstom Breeze Trains Still Expected, I said this.

The three-car Alstom Breeze is expected to have a similar capacity to a two-car diesel multiple unit.

But until I see one in the flesh, I won’t have a better figure.

If South Western Railway were wanting to replace a two-car diesel Class 158 train, they’d probably accept something like 180 seats.

Increasing Passenger Capacity

There are compatible trailer cars around from shortening Class 321 trains from four to three cars and there may be more from the creation of the Class 600 trains.

I suspect that these could be added to both Class 456 and Class 600 trains to increase capacity by fifty percent.

As a two-car train, the Class 456 train might be a bit small, but putting in a third car, which had perhaps slightly more dense seating and possibly a toilet and even more batteries could make the train anything the operator needed.

Suitability For London Waterloo and Exeter via Salisbury

This is South Western Railway’s big need for a zero emission train.

  1. It is around 170 miles
  2. Only 48 miles are electrified.
  3. It is currently worked by three-car Class 159 trains working in pairs.
  4. Class 159 trains are 90 mph trains.

I have believed for some time, that with fast charging, a battery electric train could handle this route.

But, I would feel that.

  • Class 456 trains would be too slow and too small for this route.
  • Class 600 trains would be too small for this route.

On the other hand, I believe that Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, which is described in this infographic from the company, could be ideal for the route.

The proposed 90 km or 56 mile range could even be sufficient take a train between Salisbury and Exeter with a single intermediate charge at Yeovil Junction station, where the trains wait up to ten minutes anyway.

There are other reasons for using Hitachi’s Regional Battery Train rather than Class 600 trains.

  • First Group have a lot of experience of running Hitachi Class 80x trains, through their various subsidiaries.
  • They could share depot facilities at Exeter.
  • No specialist facilities would be needed.
  • A five-car Class 801 with batteries would have a convenient 300 seats.
  • I suspect they could be delivered before Alstom’s Class 600 train.

As the only new infrastructure required would be Fast Charge facilities at Salisbury and Yeovil Junction stations, I feel that Hitachi’s Regional Battery Train, should be a shoe-in for this route.

First Delivery

The Wikipedia entry for the Class 600 train, says introduction into traffic could be in 2024. Given, the speed with which Greater Anglia’s Class 321 trains were updated to the Renatus specification, we could see Class 456 trains with a battery capability and new interiors running well before 2024.

A Few Questions

These questions have occurred to me.

Could The Technology Be Used To Create A Class 321 Battery Electric Train?

I don’t see why not!

I believe a Class 321 battery electric train could be created with this specification.

  • Three or four cars. Remember the Class 320 train is a three-car Class 321 train.
  • 100 mph operating speed.
  • Regenerative braking to the batteries.
  • Renatus or operator-specified interior.
  • Toilet as required.
  • Electrification as required.
  • Battery range of around sixty miles.
  • Ability to use a Fast Charge system, that can easily be installed in a terminal platform.

Trains could be tailored to suit a particular route and/or operator.

Any Other Questions?

If you have any other questions, send them in and I’ll add them to this section.

Conclusion

It does appear that if the Class 456 trains, were to be fitted with a battery capability, that they would make a very useful two-car battery electric train, with the following specification.

  • Two cars
  • Operating speed – 75 mph. This might be a bit higher.
  • Capacity – 152 seats
  • Ability to work in pairs.
  • Modern interior
  • Range of 45-50 miles on batteries.
  • Ability to charge batteries in ten minutes in a station.
  • Ability to charge batteries on any track with 750 VDC third-rail electrification.

This is the sort of train, that could attract other operators, who don’t have any electrification, but want to electrify short branch lines.

 

 

 

August 12, 2020 Posted by | Energy Storage, Hydrogen, Transport | , , , , , , , , , , | 12 Comments

Special Train Offers A Strong Case For Reopening Fawley Line

The title of this post is the same as that of an article in Issue 911 of Rail Magazine.

This is the opening paragraph.

On July 28, a South Western Railway train ran along the Fawley Branch Line. to make the case for reopening to passenger services after a 54-year gap.

On board were the Rail Minister; Chris Heaton-Harris, Network Rail Chairman; Sir Peter Hendy, Managing Director of South Western Railway; Mark Hopwood and Lord Montagu of Beulieu.

The article reports the trip and fills in more of the details, that make more sense of my sketchy post called Reintroduction Of Passenger Rail Services On The Waterside Line.

These are some points from the article.

The Infrastructure Needs Updating

This is a quote from the article.

The route has a line speed of 30 mph, with lower speed restrictions at level crossings, some of which are still hand-operated. Semaphore signals operated from by mechanical levers from Marchwood remain in use. A token is given to the driver to allow the train to run towards Fawley. All this would require updating.

Elsewhere the article says there are ten level crossings.

Housing Is The Game Changer

This is another quote from the article.

The big change is urban sprawl. In the half century since passenger services ended, housing estates for thousands of people have been built alongside the line. mostly for commuters into Southampton and the surrounding conurbation.

Up to 5,000 further new homes are planned, including an all-new small town on the site of the former Fawley power station on the southern tip of Southampton Water. Planning permission for at least 1,300 homes was granted the very evening before the Fawley train ran.

This Google Map shows the the town of Hythe and the giant Fawley Refinery.

Note.

  1. Hythe is towards the top of the map on Southampton Water.
  2. The refinery is the large beige blob in the middle on Southampton Water.
  3. The Fawley Branch runs close to the water and finishes inside the secure fence of the refinery.
  4. There will be stations at Marchwood, Hythe Town and Hythe & Fawley Parkway.
  5. The parkway station will be to the North of the refinery.
  6. The major housing site is on the former Fawley power station site, which is the Southernmost beige blob.
  7. The blue dot towards the West indicates the National Motor Museum at Beaulieu.

It looks to me, that an electric shuttle bus between Hythe & Fawley Parkway, Beaulieu and the various housing sites would be a good idea.

The Cost Of The Scheme

This is another quote from the article.

The campaign to open the line has been spearheaded by the Three Rivers Community Rail Partnership.

Chairman Nick Farthing says:

“For £45m, you get the track, signalling and level crossings sorted. You get a 60 mph railway with three stations = upgrading Marchwood, a new station for Hythe, and Fawley park-and-ride (just beyond Holbury, where Hardley Halt used to be).

“Three Rivers commissioned a level crossing study from Network Rail, so we know what has to be done. We’ve used a rail-approved contractor to work out how much the three stations will cost.

Three Rivers have also identified some affordable diesel rolling stock.

South Western Railway’s Innovative Train Plan

This is another quote from the article.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

Converting Class 456 Trains Into Two-Car Battery Electric Trains discusses this conversion in detail.

Conclusion

This plan seems to be coming together strongly.

All the partners like Three Rivers Community Rail Partnership, Network Rail, South Western Railway and other local interests seem to be acting together and very professionally.

 

 

August 11, 2020 Posted by | Transport | , , , , , , , | 6 Comments