The Anonymous Widower

The Northern Ends Of The Platforms At Kings Cross Station

These pictures show the Northern ends of the platforms at Kings Cross station.

The two trains are both nine-car Hitachi Class 800 or Class 801 trains and I was standing in line with their noses.

I wonder what is the maximum length of trains that can be handled in these platforms.

  • They can certainly handle ten-car trains, as LNER run these to Leeds.
  • Hitachi have designed the trains, so they can be up to twelve-cars, which are 312 metre long trains.
  • Looking at maps, I suspect that eleven-car trains would be the largest that can be handled.

But surely to maximum the number of passengers handled in the station, the platforms should be able to handle the longest Hitachi trains.

  • Unless, the capacity of an individual train is limited by the gate-lines and Network Rail have said that ten-car trains are the longest allowed.
  • Or would twelve-car trains be two far to walk with lots of luggage.

But ten-car trains would allow Lumo to double-up trains to increase capacity selectively, when perhaps, there is an important sporting event.

So when say the Culcutta Cup is taking place, an early morning train to the match and a late evening return could be doubled to add another four hundred seats.

But the current Lumo timetable only shows just two trains on a Saturday.

  • London King’s Cross – Edinburgh, which leaves at 10:25 and arrives at 14:57.
  • Edinburgh – London King’s Cross, which leaves at 08:49 and arrives at 13:17.

Not very good to go to the rugby or a birthday lunch with your mum.

But realtimetrains reveals two early morning paths allocated to Lumo.

  • London King’s Cross – Edinburgh, which leaves at 05:45 and arrives at 10:06.
  • Edinburgh – London King’s Cross,  which leaves at 05:36 and arrives at 10:04.

So you can get to the other capital, but is there a later last train back?

Oh! Yes there is! And again they are revealed by realtimetrains.

  • London King’s Cross – Edinburgh, which leaves at 18:27 and arrives at 22:56.
  • Edinburgh – London King’s Cross, which leaves at 17:56 and arrives at 22:29.

Is the Southbound service earlier, as Murrayfield is closer to Waverly station, than Twickenham is to King’s Cross?

If the return was fifty pounds and the trains were doubles, that could be revenue of around  £ 40,000. There would be more electricity and track access charges, and they’d need extra train crew, but Lumo would surely be quids in!

Lumo’s financial model has several nice little earners.

 

October 25, 2021 Posted by | Finance, Sport, Transport/Travel | , , , , , | 2 Comments

LNER’s Middlesbrough And London Service Starts On December 13th

Tucked at the bottom of the article entitled LNER Tickets For Christmas Getaway in Edition 939 of Rail Magazine, there is this paragraph separated from the article by a sole bullet point.

LNER has confirmed that from December 13 it will run a new weekday service between London King’s Cross and Middlesbrough.

It has already made an appearance on Real Time Trains and I can find the following details.

  • There will be one train per day (tpd)
  • Intermediate stops will be at Thornaby and York.
  • The Middlesbrough and London service will leave Middlesbrough from Platform 1 at 07:08 and arrive in King’s Cross at 10:22.
  • The London and Middlesbrough service will leave King’s Cross at 15:25 and arrive in Middlesbrough in Platform 2 at 18:18.

These are my thoughts.

Trains Per Day

One train per day, is obviously an introductory service and like services to Harrogate and Lincoln, the number of services will ramp up to perhaps four or five tpd, if the demand is there and the paths and trains are available.

Journey Times

Consider

  • The Southbound journey takes three hours and fourteen minutes with a time of two hours and nine minutes between York and King’s Cross
  • The Northbound journey takes two hours and fifty-three minutes with a time of one hour and fifty-six minutes between King’s Cross and York.
  • Some services between King’s Cross and York are as fast as one hour and forty-eight minutes.
  • Middlesbrough and York seems to take around 52-58 minutes.
  • These Middlesbrough and York timings are consistent with TransPennine Express.
  • Digital signalling could offer savings in journey time between York and London.

I think it is very likely as the timetable improves, that timings between Middlesbrough and London could be around two hours and forty minutes.

Electrification

The route is fully electrified except for between Middlesbrough and Longlands Junction, where it joins the electrification of the East Coast Main Line, which is a distance of twenty-two miles.

Hitachi are developing a battery-train, which they call the Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Note.

  1. LNER’s current Class 800 trains will probably be able to be converted to this train.
  2. A range on battery power of upwards of forty miles would be expected.

If the range on battery-power can be stretched to perhaps sixty miles, this train should be capable of serving Middlesbrough without the need for any extra charging at the terminus.

I am sure Hitachi would like to see their battery-electric trains running between King’s Cross and Middlesbrough, as it would be an ideal route on which to show the trains to prospective customers, given that their factory is at Newton Aycliffe.

Conclusion

This could be good demonstration battery-electric service for Hitachi and LNER.

 

September 12, 2021 Posted by | Transport/Travel | , , , , , , , | 2 Comments

LNER To Serve Cleethorpes

Under the proposed new LNER timetable, which will start in May 2022, there will be a new train service between London Kings Cross and Cleethorpes.

According to this article on the Lincolnite, which is entitled Direct Cleethorpes To London Rail Link ‘Close’ To Getting Go Ahead, there will be one service per day.

It will leave Cleethorpes at 06:24 and Grimsby Town at 06:32 before arriving at King’s Cross at 09:25.

The return will leave King’s Cross at 16:10 and arrive in Grimsby Town at 19:05 and Cleethorpes at 19:20.

The August 2021 Edition of Modern Railways makes these points about the service.

  • The larger Azuma fleet makes this extension possible.
  • ,A more regular service would require additional trains.
  • LNER is examining whether other intermediate stations east of Lincoln could be served.

I would have thought, that Market Rasen station could be a possibility for an intermediate stop.

I have a few thoughts.

Extra Services

This single service is ideal for though living in Lincolnshire, but it doesn’t suit those people, who perhaps need to go to the area from London for business or family reasons.

  • Lincoln appears to get around five or six trains per day in each direction to and from King’s Cross.
  • Services are roughly one train per two hours.
  • I suspect the Lincoln service can be run by a single train, that shuttles between King’s Cross and Lincoln stations.

I believe, that Cleethorpes needs at least a pair of services to and from London, so that travellers can spend a day in North-East Lincolnshire.

  • This would probably need more trains.
  • Services would go via Lincoln and Lincoln may get extra services to London.
  • Selected services could stop at intermediate stations, like Market Rasen.

There are surely possibilities for a integrated timetable between King’s Cross and Lincoln, Market Rasen, Grimsby Town and Cleethorpes.

Battery-Electric Operation

Consider.

  • LNER’s Class 800 trains are prime candidates for conversion to Hitachi Intercity Tri-Mode Battery Trains, so they can run away from the overhead wires of the East Coast Main Line to places like Lincoln, by the use of battery power.
  • These battery trains could charge using the electrification between King’s Cross and Newark North Gate stations.
  • The distance between Lincoln Central station and the East Coast Main Line is 16.6 miles.
  • In Plans To Introduce Battery Powered Trains In Scotland, I quote Hitachi, as saying they expect a sixty mile range for battery trains.

I am sure, that these trains would have sufficient range on battery to be able to work King’s Cross and Lincoln services without using diesel.

But could the Hitachi trains reach Cleethorpes with some well-positioned charging?

  • The distance between Lincoln and Cleethorpes stations is 47.2 miles.
  • In Solving The Electrification Conundrum, I describe Hitachi’s solution to running battery-electric trains, by using well-placed short lengths of 25 KVAC overhead electrification controlled by an intelligent power system.

With a range of sixty miles on batteries and charging at Lincoln and Cleethorpes stations, it would appear that battery electric operation of Class 800 trains between King’s Cross and Cleethorpes is a distinct possibility.

Lincoln Station

Lincoln station has three operational through platforms and I suspect all would need to be electrified, so that trains could be charged as they passed through.

These are distances from Lincoln station.

  • Cleethorpes – 47.2 miles
  • Doncaster – 36.9 miles
  • Nottingham – 33.9 miles
  • Peterborough – 56.9 miles
  • Sheffield – 48.5 miles

It does appear that if Lincoln station were to be electrified, most services from the city could be run using battery-electric trains.

Cleethorpes Station

This picture shows Cleethorpes station with two TransPennine Express Class 185 trains in the station.

Note.

  1. The Class 185 trains are diesel, but could be replaced by Hitachi Class 802 trains, which could be converted to battery-electric operation.
  2. Cleethorpes and Doncaster are 52.1 miles apart, which could be in range of Hitachi’s battery-electric trains.
  3. It doesn’t look to be too challenging to electrify a couple of platforms to charge the battery-electric trains.
  4. Cleethorpes station could surely charge both the LNER and the TransPennine Express trains.
  5. The Cleethorpes and Barton-on-Humber service which is under fifty miles for a round trip could also be replaced with battery-electric trains.

Cleethorpes station could be totally served by battery-electric trains.

Battery-Electric Trains For Lincolnshire

At the present time, there is a surplus of good redundant electrical multiple units and the rolling stock leasing companies are looking for places where they can be used.

Porterbrook are already looking to convert their fleet of Class 350 trains to battery-electric operation and I am certain, that now that Hitachi and others have solved the charging problem, a lot more trains will be converted.

Most would appear to be four-car 100 mph trains, which will be very convenient and should fit most platforms.

Conclusion

Running battery-electric Class 800 trains to Lincoln, Grimsby Town and Cleethorpes could be the start of decarbonisation of Lincolnshire’s railways.

What would battery-electric trains do for the economy of Lincolnshire?

 

 

 

August 7, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | 5 Comments

Approaching Kings Cross – 5th July 2021

I took these pictures approaching Kings Cross.

Reports say most of the work of the remodelling is now complete. Although, it did look to me that in places more tracks could be laid.

The Length Of The Long Platforms At Kings Cross

This repeat of the last picture in the gallery shows the length of the nine long platforms.

Note.

  1. The train is in Platform 3.
  2. The train is an eight-car Class 700 train.
  3. Eight-car units are 162 metres long.
  4. Twelve-car units are 242.6 metres long.

Platform 3 is obviously long enough to take the following trains.

This Google Map shows the ends of the platforms at Kings Cross.

Note.

  1. The long platforms at the right are 2 and 3.
  2. Platform 2 and 3 are wide.
  3. Two LNER Azumas are in Platforms 5 and 6.

It looks to me that whilst all platforms can probably handle the standard British Rail length of 240 metres, those on the right may be able to handle longer trains. But what trains? These are my thoughts.

Longer LNER Azumas

This document on the Hitachi Rail web site is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

The document says that Class 80x trains have a sophisticated Train Control and Management System (TCMS).

The document says that this is one of the functions of the TCMS.

To simplify the rearrangement and management of train configurations, functions are provided for
identifying the train (Class 800/801), for automatically determining the cars in the trainset and its total length,
and for coupling and uncoupling up to 12 cars in normal and 24 cars in rescue or emergency mode.

I would assume that with the purchase of extra cars, that it might be possible to lengthen trains to up to twelve cars.

Lengths would be as follows.

  • Ten-car Class 80x train – 260 metres.
  • Eleven-car Class 80x train – 276 metres.
  • Twelve-car Class 80x train – 312 metres.

To add extra capacity on the routes to Leeds and Edinburgh services, there must be a balance between these factors.

  • The cost of extra cars.
  • The cost of platform lengthening.

There must of course be space for any platform lengthening.

It would seem to me, that common sense should allow twelve-car trains to be handled at King’s Cross, as this must be one of the best ways of adding capacity to East Coast Main Line services.

Caledonian Sleeper

The Caledonian Sleeper doesn’t normally run into King’s Cross, but during the rebuilding Euston for High Speed Two, it may be necessary to provide an alternative platform.

Unfortunately, the sixteen-car Caledonian sleeper trains are 352 metres long. So it would appear that Kings Cross would not be a temporary alternative.

But given the amount of money being invested in sleeper trains in Europe by the likes of Midnight Trains and NightJet, I can see that the Caledonian Sleeper might have another problem – success and the need for more capacity.

So I wouldn’t rule out an East Coast Main Line sleeper train between London Kings Cross and Edinburgh.

It might call at Stevenage, Newcastle and Berwick to widen its passenger base, just as the current sleeper calls at Watford, Carlisle and Carstairs.

The train could be extended to Aberdeen, to simplify services in Scotland.

Obviously, traffic and finance would decide, but I wouldn’t rule out the Caledonian Sleeper running to and from King’s Cross for a few years yet.

A Night Light Freight Terminal

In Is This The Shape Of Freight To Come?, I wrote about the new generation of fast electric freight trains, based on redundant electric multiple units.

  • If you look at Real Time Trains, you will find that few trains use King’s Cross station between two and five in the morning.
  • Platforms can take a twelve-car version of these electric freight trains.
  • The new platforms are wide and level.
  • Local delivery could use electric vehicles and bikes.

I think King’s Cross has possibilities for handling goods like food, parcels and shop supplies.

The Short Platforms At Kings Cross

When I was a child, King’s Cross had four short suburban platforms, where N2 steam tank engines hauled suburban services in and out of the station.

The suburban platforms have now been reduced to two platforms, that fit in with the current uses of the station.

  • The two platforms are numbered 9 and 10.
  • They can handle an eight-car Class 700 train, which is 162 metres long.
  • They can handle a five-car Class 800 train, which is 130 metres long.
  • Some five-car services run by the new Hitachi trains use these platforms.

These pictures show the platforms.

Note.

  1. The platforms are wide.
  2. The picture of the Azuma in Platform 9 was taken before the centre track was removed recently.
  3. Today, one LNER Azuma departed from Platform 9 to go to Lincoln, but both platforms were busy with Great Northern services to Cambridge, Ely and Kings Lynn.

I do wonder if the platforms could be used for light freight, during the night.

Conclusion

King’s Cross is not just one of the UK’s finest railway stations, which is recognised by its Grade I Listed status, but it is now moving towards an efficient, high-capacity station that works around the clock!

 

 

July 6, 2021 Posted by | Design, Transport/Travel | , , , , , , , | Leave a comment

800009 – John Charles

On my way to Wales on Tuesday, I travelled in the Class 800 train, that is numbered 800009 and named after the great Welsh footballer; John Charles at one end.

I actually saw him play for Leeds in a match against Spurs at White Hart Lane. Leeds played in a blue kit in those days and I am fairly sure John Charles played up front.

I suspect, it likely, that it must have been the  1956-57 season as it would be the only season where Leeds were in the First Division, before John Charles left in 1957 to go to Juventus.

I wonder how many people, who saw John Charles play, have actually ridden in the train named after him?

It was good to see that Great Western Railway have also put his Italian nickname; Il Gigante Buono on the train.

 

June 11, 2021 Posted by | Sport, Transport/Travel | , , , , , , , | 1 Comment

Hitachi Class 800 Train Or Pendelino?

I have had several day trips on hot days on Hitachi Class 800 trains or similar since the pandemic started to places like Bristol, Cardiff, Doncaster, Grantham, Hull and Westbury.

I’ve done a couple of trips in Pendelinos or Class 390 trains to Birmingham and Liverpool.

In addition, I’ve taken a couple of trips on other trains to Corby, Ipswich, Sheffield and Southampton.

It must have been sometime in 2018, when I took one of the first Pendelinos to Blackpool after that station was first electrified.

It was a journey on which I first noticed being unwell on a Pendelino. I travelled in First and remember complaining to the steward and said that some taff didn’t like the trains after their recent air-conditioning upgrade.

Perhaps, Virgin Trains chose a system that would be cheaper to run and it is not on a par with the quality systems used by Bombardier and Hitachi?

I have been testing the atmosphere in trains like a Class 345, 378 or 800 and the temperature is usually 25-26 °C and a humidity around 40-60 %. I haven’t tested a Pendolino yet!

I must say, I’ve never ended up in hospital after a trip out of London, except after a recent trip on a Pendelino to Birmingham, that I wrote about in A Mysterious Attack On My Body.

In that post, I also said this about the Pendelinos.

I had travelled between Euston  and Wolverhampton on my least favourite trains – Alstom’s Class 390 trains.

    • The seats don’t align well with the windows.
    • The trains are cramped because of all the tilting mechanism.

These trains must a nightmare for anybody taller than my 1.70 metres or heavier than my sixty-two kilos.

But the biggest problem of these Pendolino trains is that Alstom updated the air-conditioning a few years ago for Virgin a few years ago and I find the air inside too dry.

So in future, I won’t be travelling on a Pendelino, unless I travel in First!

I also can’t wait until Avanti West Coast get new Hitachi Class 807 trains on the Euston and Liverpool route!

June 11, 2021 Posted by | Transport/Travel | , , | 1 Comment

Thoughts On Train Times Between London Paddington And Cardiff Central

I went to Cardiff from Paddington on Tuesday.

These were the journey details.

  • Distance – Paddington and Cardiff – 145.1 miles
  • Time – Paddington and Cardiff – 110 minutes – 79.1 mph
  • Time – Cardiff and Paddington- 114 minutes – 76.4 mph

There were four stops. Each seemed to take between two and three minutes.

I do feel though, that the trains are still running to a timetable, that could be run by an InterCity 125.

I watched the Speedview app on my phone for a lot of both journeys.

  • There was quite an amount of 125 mph running on the route.
  • Some stretches of the route seemed to be run at a line speed of around 90 mph.
  • The Severn Tunnel appears to have a 90 mph speed.
  • Coming back to London the train ran at 125 mph until the Wharncliffe Viaduct.

These are my thoughts.

Under Two Hour Service

The current service is under two hours, which is probably a good start.

Improving The Current Service

It does strike me that the current timetable doesn’t take full advantage of the performance of the new Hitachi Class 80x trains.

  • Could a minute be saved at each of the four stops?
  • Could more 125 mph running be introduced?
  • Could the trains go faster through the Severn Tunnel?
  • If two trains per hour (tph) were to be restored, would that allow a more efficient stopping pattern?
  • The route has at least four tracks between Paddington and Didcot Parkway and the Severn Tunnel and Cardiff.

I would reckon that times of between one hour and forty minutes and one hour and forty-five minutes are possible.

These times correspond to average speeds of between 87 and 83 mph.

Application of In-Cab Digital Signalling

Currently, a typical train leaving Paddington completes the 45.7 miles between Hanwell and Didcot Parkway with a stop at Reading in 28 minutes, which is an average speed of 97.9 mph.

This busy section of the route is surely an obvious one for In-cab digital signalling., which would allow speeds of up to 140 mph.

  • Services join and leave the route on branches to Bedwyn, Heathrow, Oxford and Taunton.
  • The Heathrow services are run by 110 mph Class 387 trains.
  • There are slow lines for local services and freight trains.

If an average speed of 125 mph could be attained between Hanwell and Didcot Parkway, this would save six minutes on the time.

Would any extra savings be possible on other sections of the route, by using in-cab digital signalling?

I suspect on the busy section between Bristol Parkway and Cardiff Central stations several minutes could be saved.

Would A Ninety Minute Time Between Paddington And Cardiff Be Possible?

To handle the 145.1 miles between Paddington and Cardiff Central would require an average speed including four stops of 96.7 mph.

This average speed is in line with the current time between Hanwell and Didcot Parkway with a stop at Reading, so I suspect that with improvements to the timetable, that a ninety minute service between Paddington and Cardiff Central is possible.

It may or may not need in-cab digital signalling.

My Control Engineer’s nose says that this signalling upgrade will be needed.

Would A Sixty Minute Time Between Paddington And Cardiff Be Possible?

A journey time of an hour between Paddington and Cardiff Central would surely be the dream of all politicians the Great Western Railway and many of those involved with trains.

To handle the 145.1 miles between Paddington and Cardiff Central would require an average speed including four stops of 145.1 mph.

It would probably be difficult to maintain a speed a few mph above the trains current maximum speed for an hour.

  • How many minutes would be saved with perhaps a single intermediate stop at Bristol Parkway station?
  • Perhaps the Cardiff service could be two tph in ninety minutes and one tph in sixty minutes.
  • Full in-cab digital signalling would certainly be needed.
  • Faster trains with a maximum speed of up to 155-160 mph would certainly be needed.
  • There may be a need for some extra tracks in some places on the route.

A journey time of an hour will be a few years coming, but I feel it is an achievable objective.

The Extended Route To Swansea

Cardiff Central and Swansea is a distance of 45.7 miles

A typical service takes 55 minutes with three stops, at an average speed of 49.8 mph.

This would be an ideal route for a Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

It would probably be needed to be charged at Swansea station, to both enable return to Cardiff Central or extend the service to the West of Swansea.

Conclusion

Big improvements in journey times between Paddington and Cardiff Central are possible.

 

June 10, 2021 Posted by | Transport/Travel | , , , , , , , , | 6 Comments

What Would Be The Ultimate Range Of A Nine-Car Class 800 Train?

In Thoughts On Batteries On A Hitachi Intercity Tri-Mode Battery Train, I had a section, which was called The Ultimate Battery Train.

I said this.

I think it would be possible to put together a nine car battery-electric train with a long range.

  • It would be based based on Hitachi Intercity Tri-Mode Battery Train technology, which would be applied to a Class 800 or Class 802 train.
  • It would have two driver cars without batteries.
  • It would have seven intermediate cars with 600 kWh batteries.
  • It would have a total battery capacity of 4200 kWh.
  • The train would be optimised for 100 mph running.
  • My estimate in How Much Power Is Needed To Run A Train At 125 Or 100 mph?,   said it would need 2.19 kWh per vehicle mile to cruise at 100 mph.

That would give a range of over 200 miles.

If the batteries were only 500 kWh, the range would be 178 miles.

Aberdeen, Inverness, Penzance and Swansea here we come.

Note that I have ignored energy lost in the station stops.

Energy Use And Recovery In A Station Stop

The station stop will be handled something like this.

The train will be happily trundling along at 100 mph.

At the right moment, the driver will apply the brakes and the train will stop in the station.

With trains like these Hitachi trains and many others, braking is performed by turning the traction motors into generators and the kinetic energy of the train will be turned into electricity.

Normally with this regenerative braking, the electricity is returned to the track, but these trains are not running on electrified track, so the electricity will be stored in the traction batteries on the train. This is often done in battery-electric road vehicles.

After the stop, the train will use battery power to accelerate back to 100 mph.

What kinetic energy will a Class 800 train have at 100 mph?

  • The basic weight of a nine-car Class 800 train is 438 tonnes.
  • I am assuming that the batteries are no heavier than the diesel engines they replace.
  • The trains hold 611 passengers.
  • I will assume each weighs 80 Kg with baggage, bikes and buggies, which gives a weight of 48.9 tonnes.
  • This gives a total train weight of 486.9 tonnes.

Using Omni’s Kinetic Energy Calculator, gives a kinetic energy of 135.145 kWh.

When I first saw figures like this, I felt I had something wrong, but after checking time and time again, they still appear.

At each stop a proportion of the train’s kinetic energy will not be recovered.

These figures show the extra energy needed at each stop with different regenerative braking efficiencies.

  • 100 % – 0 kWh
  • 90 % – 13.51 kWh
  • 80 % – 27.03 kWh
  • 70 % – 40.54 kWh
  • 60 % – 54.06 kWh

Obviously, the more efficient the regenerative braking, the less energy that needs to be added at each stop.

Edinburgh And Aberdeen

I am using Edinburgh and Aberdeen as an example.

Consider.

  • I am assuming the train is cruising at 100 mph along the route.
  • There are seven stations to the North of Haymarket station.
  • If I assume 60 % regenerative braking efficiency, then each stop will need 54.06 kWh of electricity from the batteries.
  • This gives a total of 378.4 kWh for the stops. Let’s call it 400 kWh.
  • This effectively reduces the usable battery size to 3800 kWh
  • Take off 200 kWh to make sure there’s always space for regenerative braking energy and useable battery size is 3600 kWh.

This can then be divided by the number of cars and 2.19 kWh per vehicle mile, to get the range.

This gives a range of over 180 miles.

With 500 kWh batteries the distance is just under 180 miles.

It certainly appears that a battery-electric train with seven 500-600 kWh batteries should be able to run between Edinburgh and Aberdeen.

Obviously, charging would be needed at Aberdeen.

What Would Be The Ultimate Range Of A Five-Car Class 800 Train?

What kinetic energy will a five-car Class 800 train have at 100 mph?

  • The basic weight of a five-car Class 800 train is 243 tonnes.
  • I am assuming that the batteries are no heavier than the diesel engines they replace.
  • The trains hold 302 passengers.
  • I will assume each weighs 80 Kg with baggage, bikes and buggies, which gives a weight of 25.6 tonnes.
  • This gives a total train weight of 268.6 tonnes.

Using Omni’s Kinetic Energy Calculator, gives a kinetic energy of 74.6 kWh.

I will now use Edinburgh and Aberdeen as an example.

Consider.

  • I am assuming the train is cruising at 100 mph along the route.
  • I am assuming that the three intermediate cars have 600 kWh batteries.
  • There are seven stations to the North of Haymarket station.
  • If I assume 60 % regenerative braking efficiency, then each stop will need 29.84 kWh of electricity from the batteries.
  • This gives a total of 208.9 kWh for the stops. Let’s call it 210 kWh.
  • This effectively reduces the usable battery size to 1590 kWh
  • Take off 100 kWh to make sure there’s always space for regenerative braking energy and useable battery size is 1490 kWh.

This can then be divided by the number of cars and 2.19 kWh per vehicle mile, to get the range.

This gives a range of over 136 miles.

With 500 kWh batteries the distance is around 110 miles.

It looks to me, that from these calculations that a nine-car train with battery packs in all the intermediate cars has a longer range than a five-car train with battery packs in all the intermediate cars.

What Would Be The Range Of a Five-Car Class 803 Train Equipped With Batteries?

What kinetic energy will a five-car Class 803 train have at 100 mph?

  • The basic weight of a five-car Class 803 train is 228.5 tonnes.
  • Three 600 kWh batteries could add 18 tonnes
  • The trains hold 400 passengers.
  • I will assume each weighs 80 Kg with baggage, bikes and buggies, which gives a weight of 32 tonnes.
  • This gives a total train weight of 278.5 tonnes.

Using Omni’s Kinetic Energy Calculator, gives a kinetic energy of 77.3 kWh.

As before, I will now use Edinburgh and Aberdeen as an example.

Consider.

  • I am assuming the train is cruising at 100 mph along the route.
  • I am assuming that the three intermediate cars have 600 kWh batteries.
  • There are seven stations to the North of Haymarket station.
  • If I assume 60 % regenerative braking efficiency, then each stop will need 30.92 kWh of electricity from the batteries.
  • This gives a total of 216.4 kWh for the stops. Let’s call it 220 kWh.
  • This effectively reduces the usable battery size to 1580 kWh
  • Take off 100 kWh to make sure there’s always space for regenerative braking energy and useable battery size is 1480 kWh.

This can then be divided by the number of cars and 2.19 kWh per vehicle mile, to get the range.

This gives a range of over 135 miles.

With 500 kWh batteries the distance is around 110 miles.

 

June 2, 2021 Posted by | Transport/Travel | , , , | Leave a comment

What Is Possible On The East Coast Main Line?

In the Wikipedia entry for the Class 91 locomotive, there is an amazing story.

This picture shows one of these locomotives at Kings Cross.

Note.

  1. They have a design speed of 140 mph.
  2. They have a power output of 4.8 MW.
  3. They were built around 1990 by British Rail at Crewe.

They were designed to run services between London King’s Cross and Edinburgh as fast as possible, as the motive power of the InterCity 225 trains.

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Note.

  1. For the British locomotive speed record, locomotive was actually pushing the train and going backwards, as the driving van trailer (DVT) was leading.
  2. How many speed records of any sort, where the direction isn’t part of the record, have been set going backwards?
  3. I feel that this record could stand for many years, as it is not very likely anybody will build another 140 mph locomotive in the foreseeable future. Unless a maverick idea for a high speed freight locomotive is proposed.

I have a few general thoughts on the record run between Kings Cross and Edinburgh in three-and-a-half hours.

  • I would assume that as in normal operation of these trains, the Class 91 locomotive was leading on the run to the North.
  • For various reasons, they would surely have had at least two of British Rail’s most experienced drivers in the cab.
  • At that time, 125 mph InterCity 125 trains had been the workhorse of East Coast Main Line for well over ten years, so British Rail wouldn’t have been short of experienced high speed drivers.
  • It was a Thursday, so they must have been running amongst normal traffic.
  • On Monday, a typical run between Kings Cross and Edinburgh is timetabled to take four hours and twenty minutes.
  • High Speed Two are predicting a time of three hours and forty-eight minutes between Euston and Edinburgh via High Speed Two and  the West Coast Main Line.

The more you look at it, a sub-three-and-and-a-half hour time, by 1980s-technology on a less-than-perfect railway was truly remarkable.

So how did they do it?

Superb Timetabling

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I talk about how Network Rail and Greater Anglia created a fast service between Liverpool Street and Norwich.

I suspect that British Rail put their best timetablers on the project, so that the test train could speed through unhindered.

Just as they did for Norwich-in-Ninety and probably will be doing to the East Coast Main Line to increase services and decrease journey times.

A Good As ERTMS Signalling

Obviously in 1991, there was no modern digital in-cab signalling and I don’t know the standard of communication between the drivers and the signallers.

On the tricky sections like Digswell Viaduct, through Hitchin and the Newark Crossing were other trains stopped well clear of any difficult area, as modern digital signalling can anticipate and take action?

I would expect the test train got a signalling service as good as any modern train, even if parts of it like driver to signaller communication may have been a bit experimental.

There may even have been a back-up driver in the cab with the latest mobile phone.

It must have been about 1991, when I did a pre-arranged airways join in my Cessna 340 on the ground at Ipswich Airport before take-off on a direct flight to Rome. Air Traffic Control had suggested it to avoid an intermediate stop at say Southend.

The technology was arriving and did it help the drivers on that memorable run North ensure a safe and fast passage of the train?

It would be interesting to know, what other equipment was being tested by this test train.

A Possible Plan

I suspect that the plan in 1991 was to use a plan not unlike one that would be used by Lewis Hamilton, or in those days Stirling Moss to win a race.

Drive a steady race not taking any chances and where the track allows speed up.

So did British Rail drive a steady 125 mph sticking to the standard timetable between Kings Cross and Edinburgh?

Then as the Wikipedia extract indicated, at several times during the journey did they increase the speed of the train to 140 mph.

And the rest as they say was an historic time of 3 hours, 29 minutes and 30 seconds. Call it three-and-a-half-hours.

This represented a start-to-stop average speed of 112.5 mph over the 393 miles of the East Coast Main Line.

Can The Current Trains Achieve Three-And-A-Half-Hours Be Possible Today?

Consider.

  • The best four hours and twenty minutes timings of the Class 801 trains, represents an average speed of 90.7 mph.
  • The Class 801 trains and the InterCity 225 trains have similar performance.
  • There have been improvements to the route like the Hitchin Flyover.
  • Full ERTMS in-cab signalling is being installed South of Doncaster.
  • I believe ERTMS and ETC could solve the Newark Crossing problem! See Could ERTMS And ETCS Solve The Newark Crossing Problem?
  • I am a trained Control Engineer and I believe if ERTMS and ETC can solve the Newark Crossing problem, I suspect they can solve the Digswell Viaduct problem.
  • The Werrington Dive Under is being built.
  • The approaches to Kings Cross are being remodelled.

I can’t quite say easy-peasy. but I’m fairly certain the Kings Cross and Edinburgh record is under serious threat.

  • A massive power supply upgrade to the North of Doncaster is continuing. See this page on the Network Rail web site.
  • ERTMS and ETC probably needs to be installed all the way between Kings Cross and Edinburgh.
  • There may be a need to minimise the number of slower passenger trains on the East Coast Main Line.
  • The Northumberland Line and the Leamside Line may be needed to take some trains from the East Coast Main Line.

Recent Developments Concerning the Hitachi Trains

There have been several developments  since the Hitachi Class 800 and Class 801 trains were ordered.

  • Serious engineers and commentators like Roger Ford of Modern Railways have criticised the lugging of heavy diesel engines around the country.
  • Network Rail have upgraded the power supply South of Doncaster and have recently started to upgrade it between Doncaster and Edinburgh. Will this extensive upgrade cut the need to use the diesel power-packs?
  • Hitachi and their operators must have collected extensive in-service statistics about the detailed performance of the trains and the use of the diesel power-packs.
  • Hitachi have signed an agreement with Hyperdrive Innovation of Sunderland to produce battery-packs for the trains and two new versions of the trains have been announced; a Regional Battery Train and an Intercity Tri-Mode Battery Train.
  • East Coast Trains have ordered five five-car Class 803 trains, each of which will have a small battery for emergency use and no diesel power-packs.
  • Avanti West Coast have ordered ten seven-car Class 807 trains, each of which have no battery or diesel power-packs.

And these are just the ones we know about.

The Class 807 Trains And Liverpool

I find Avanti West Coast’s Class 807 trains the most interesting development.

  • They have been partly financed by Rock Rail, who seem to organise train finance, so that the train operator, the train manufacturer all get the best value, by finding good technical solutions.
  • I believe that these trains have been designed so they can run between Euston and Liverpool Lime Street stations in under two hours.
  • Does the absence of battery or diesel power-packs save weight and improve performance?
  • Euston and Liverpool Lime Street in two hours would be an average of only 96.8 mph.
  • If the Class 807 trains could achieve the same start-stop average of 112.5 mph achieved by the InterCity 225 test run between Kings Cross and Edinburgh, that would mean a Euston and Liverpool Lime Street time of one hour and forty-three minutes.
  • Does Thunderbird provision on the West Coast Main Line for the Class 390 trains mean that the Class 807 trains don’t need emergency power?
  • Have diesel power-packs been rarely used in emergency by the Hitachi trains?

I believe the mathematics show that excellent sub-two hour times between Euston and Liverpool Lime Street are possible by Avanti West Coast’s new Class 807 trains.

The Class 803 Trains And Edinburgh

East Coast Trains ordered their Class 803 trains in March 2019,  nine months before Avanti West Coast ordered their Class 807 trains.

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, I outlined brief details of the trains and the proposed service.

  • FirstGroup is targeting the two-thirds of passengers, who fly between London and Edinburgh.
  • They are also targeting business passengers, as the first train arrives in Edinburgh at 10:00.
  • The trains are five-cars.
  • The trains are one class with onboard catering, air-conditioning, power sockets and free wi-fi.
  • Stops will be five trains per day with stops at Stevenage, Newcastle and Morpeth.
  • The trains will take around four hours.
  • The service will start in Autumn 2021.

I also thought it would be a successful service

As I know Edinburgh, Liverpool and London well, I believe there are similarities between the Euston-Liverpool Lime Street and Kings Cross-Edinburgh routes.

  • Both routes are between two cities known all over the world.
  • Both routes are fully-electrified.
  • Both routes have the potential to attract passengers from other transport modes.

The two services could even be run at similar speeds.

  • Euston-Liverpool Lime Street in two hours will be at 96.8 mph
  • Kings Cross-Edinburgh in four hours will be at 98.3 mph.

Does this explain the similar lightweight trains?

Could Lightweight Trains Help LNER?

There is one important factor, I haven’t talked about in detail in this post. Batteries and diesel power-packs on the Hitachi trains.

I have only mentioned them in the following circumstances.

  • When trains are not fitted with battery and/or diesel power-packs.
  • When battery developments are being undertaken.

Let’s consider the LNER fleet.

  • LNER has thirteen nine-car Class 800 trains, each of which has five diesel power-packs
  • LNER has ten five-car Class 800 trains, each of which has three diesel power-packs
  • LNER has thirty nine-car Class 801 trains, each of which has one diesel power-pack
  • LNER has twelve five-car Class 801 trains, each of which has one diesel power-pack

There are sixty-five trains, 497 coaches and 137 diesel power-packs.

And look at their destinations.

  • Aberdeen – No Electrification from Edinburgh
  • Alnmouth – Fully Electrified
  • Berwick-upon-Tweed – Fully Electrified
  • Bradford Forster Square – Fully Electrified
  • Darlington – Fully Electrified
  • Doncaster – Fully Electrified
  • Durham – Fully Electrified
  • Edinburgh – Fully Electrified
  • Glasgow – Fully Electrified
  • Grantham – Fully Electrified
  • Harrogate – No Electrification from Leeds – Possible Battery Destination
  • Huddersfield – No Electrification from Leeds – Possible Battery Destination – Probable Electrification
  • Hull – No Electrification from Temple Hirst Junction – Possible Battery Destination
  • Inverness – No Electrification from Stirling
  • Leeds – Fully Electrified
  • Lincoln – No Electrification from Newark North Gate – Possible Battery Destination
  • Middlesbrough – No Electrification from Northallerton – Possible Battery Destination
  • Newcastle – Fully Electrified
  • Newark North Gate – Fully Electrified
  • Northallerton – Fully Electrified
  • Peterborough – Fully Electrified
  • Skipton – Fully Electrified
  • Retford – Fully Electrified
  • Stevenage – Fully Electrified
  • Stirling – Fully Electrified
  • Sunderland – No Electrification from Northallerton – Possible Battery Destination
  • Wakefield Westgate – Fully Electrified
  • York – Fully Electrified

The destinations can be summarised as followed.

  • Not Electrified – 2
  • Possible Battery Destination – 6
  • Fully Electrified – 20

This gives a total of 28.

Could the trains be matched better to the destinations?

  • Some routes like Edinburgh, Glasgow, Newcastle and Stirling could possibly be beneficially handled by lightweight trains without any diesel or battery power-packs.
  • Only Aberdeen and Inverness can’t be reached by all-electric or battery-electric trains.
  • In LNER Seeks 10 More Bi-Modes, I proposed a hydrogen-electric flagship train, that would use hydrogen North of the existing electrification.

There certainly appear to be possibilities.

Example Journey Times To Edinburgh

This table shows the various time for particular start-stop average speeds between Kings Cross and Edinburgh.

  • 80 mph – 4:54
  • 85 mph – 4:37
  • 90 mph – 4:12
  • 98.2 mph – 4:00
  • 100 mph – 3:56
  • 110 mph – 3:34
  • 120 mph – 3:16
  • 125 mph – 3:08

Note.

  • Times are given in h:mm.
  • A few mph increase in average speed reduces journey time by a considerable amount.

The figures certainly show the value of high speed trains and of removing bottlenecks, as average speed is so important.

Decarbonisation Of LNER

LNER Seeks 10 More Bi-Modes was based on an article in the December 2020 Edition of Modern Railways, with the same title. These are the first two paragraphs of the article.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast main line services.

In a Prior Information Notice published on 27 October, the operator states it is seeking trains capable of operating under 25kW overhead power with ‘significant self-power capability’ for operation away from overhead wires. ‘On-board Energy Storage for traction will be specified as a mandatory requirement to reduce, and wherever practical eliminate, diesel usage where it would otherwise be necessary, although LNER anticipates some degree of diesel traction may be required to meet some self-power requirements. Suppliers tendering are asked to detail their experience of designing and manufacturing a fleet of multi-mode trains with a range of traction options including battery-electric, diesel-electric, hydrogen-electric, battery-diesel, dual fuel and tri-mode.

From this, LNER would appear to be serious about decarbonisation and from the destination list I published earlier, most services South of the Scottish Central Belt can be decarbonised by replacing diesel-power packs with battery power-packs.

That last bit, sounds like a call for innovation to provide a solution to the difficult routes to Aberdeen and Inverness. It also looks as if it has been carefully worded not to rule anybody out.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

It announces the Hitachi Intercity Tri-mode Battery Train, which is described in this Hitachi infographic.

As the Hitachi press release is dated the 15th of December 2020, which is after the publication of the magazine, it strikes me that LNER and Hitachi had been talking.

At no point have Hitachi stated what the range of the train is on battery power.

To serve the North of Scotland these gaps must be bridged.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

It should also be noted that distances in Scotland are such, that if these gaps could be bridged by battery technology, then probably all of the North of Scotland’s railways could be decarbonised. As Hitachi are the major supplier of Scotland’s local and regional electric trains, was the original Prior Information Notice, written to make sure Hitachi responded?

LNER run nine-car Class 800 trains on the two long routes to Aberdeen and Inverness.

  • These trains have five diesel power-packs under coaches 2,3, 5, 7 and 8.
  • As five-car Class 800 trains have diesel power-packs under coaches 2, 3 and 4, does this mean that Hitachi can fit diesel power-packs under all cars except for the driver cars?
  • As the diesel and battery power-packs appear to be interchangeable, does this mean that Hitachi could theoretically build some very unusual trains?
  • Hitachi’s trains can be up to twelve-cars in normal mode and twenty-four cars in rescue mode.
  • LNER would probably prefer an all Azuma fleet, even if a few trains were a bit longer.

Imagine a ten-car train with two driver and eight intermediate cars, with all of the intermediate cars having maximum-size battery-packs.

Supposing, one or two of the battery power-packs were to be replaced with a diesel power-pack.

There are a lot of possibilities and I suspect LNER, Hitachi and Hyperdrive Innovation are working on a train capable of running to and from the North of Scotland.

Conclusion

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

 

 

 

May 15, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Hitachi Targets Next Year For Testing Of Tri-Mode IET

The title of this post, is the same as that of this article on Rail Magazine.

This is the first two paragraphs.

Testing of a five-car Hitachi Class 802/0 tri-mode unit will begin in 2022, and the train could be in traffic the following year.

It is expected that the train will save more than 20% of fuel on Great Western Railway’s London Paddington-Penzance route.

This is the Hitachi infographic, which gives the train’s specification.

I have a few thoughts and questions.

Will The Batteries Be Charged At Penzance?

Consider.

  • It is probably not a good test of customer reaction to the Intercity Tri-Mode Battery Train, if it doesn’t work on batteries in stations through Cornwall.
  • Every one of the eight stops in Cornwall will need an amount of battery power.
  • London trains seem to take at least half-an-hour to turn round at Penzance.
  • London trains seem to take around 7-13 minutes for the stop at Plymouth.

So I think, that batteries will probably need to be charged at Penzance and possibly Plymouth, to achieve the required battery running,

There is already sufficient time in the timetable.

A charging facility in Penzance station would be a good test of Hitachi’s method to charge the trains.

Will Hyperdrive Innovation’s Battery Pack Be A Simulated Diesel Engine?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

How Many Trains Can Eventually Be Converted?

Great Western Railway have twenty-two Class 802/0 trains.

  • They are five-cars.
  • They have three diesel engines in cars 2, 3 and 4.
  • They have a capacity of 326 passengers.
  • They have an operating speed of 125 mph on electrification.
  • They will have an operating speed of 140 mph on electrification with in-cab ERTMS digital signalling.
  • They have an operating speed of 110 mph on diesel.
  • They can swap between electric and diesel mode at line speed.

Great Western Railway also have these trains that are similar.

  • 14 – nine-car Class 802/1 trains
  • 36 – five-car Class 800/0 trains
  • 21 – nine-car Class 800/3 trains

Note.

  1. The nine-car trains have five diesel engines in cars 2,3, 5, 7 and 8
  2. All diesel engines are similar, but those in Class 802 trains are more powerful, than those in Class 800 trains.

This is a total of 93 trains with 349 diesel engines.

In addition, there are these similar trains in service or on order with other operators.

Note.

  1. Class 801 trains have one diesel engine for emergency power.
  2. Class 803 trains have no diesel engines, but they do have a battery for emergency power.
  3. Class 805 trains have an unspecified number of diesel engines. I will assume three.
  4. Class 807 trains have no batteries or diesel engines.
  5. Class 810 trains have four diesel engines.

This is a total  of 150 trains with 395 diesel engines.

The Rail Magazine finishes with this paragraph.

Hitachi believes that projected improvements in battery technology, particularly in power output and charge, could enable diesel engines to be incrementally replaced on long-distance trains.

Could this mean that most diesel engines on these Hitachi trains are replaced by batteries?

Five-Car Class 800 And Class 802 Trains

These trains are mainly regularly used to serve destinations like Bedwyn, Cheltenham, Chester, Harrogate, Huddersfield, Hull, Lincoln, Oxford and Shrewsbury, which are perhaps up to fifty miles beyond the main line electrification.

  • They have three diesel engines, which are used when there is no electrification.
  • I can see many other destinations, being added to those reached by the Hitachi trains, that will need similar trains.

I suspect a lot of these destinations can be served by five-car Class 800 and Class 802 trains, where a number of the diesel engines are replaced by batteries.

Each operator would add a number of batteries suitable for their routes.

There are around 150 five-car bi-mode Hitachi trains in various fleets in the UK.

LNER’s Nine-Car Class 800 Trains

These are mainly used on routes between London and the North of Scotland.

In LNER Seeks 10 More Bi-Modes, I suggested that to run a zero-carbon service to Inverness and Aberdeen, LNER might acquire rakes of carriages hauled by zero-carbon hydrogen electric locomotives.

  • Hydrogen power would only be used North of the current electrification.
  • Scotland is looking to have plenty of hydrogen in a couple of years.
  • No electrification would be needed to be erected in the Highlands.
  • InterCity 225 trains have shown for forty years, that locomotive-hauled trains can handle Scottish services.
  • I also felt that the trains could be based on a classic-compatible design for High Speed Two.

This order could be ideal for Talgo to build in their new factory at Longannet in Fife.

LNER’s nine-car Class 800 trains could be converted to all-electric Class 801 trains and/or moved to another operator.

There is also the possibility to fit these trains with a number of battery packs to replace some of their five engines.

If the planned twenty percent fuel savings can be obtained, that would be a major improvement on these long routes.

LNER’s Class 801 Trains

These trains are are all-electric, but they do have a diesel engine for emergencies.

Will this be replaced by a battery pack to do the same job?

  • Battery packs are probably cheaper to service.
  • Battery packs don’t need diesel fuel.
  • Battery packs can handle regenerative braking and may save electricity.

The installation surely wouldn’t need too much test running, as a lot of testing will have been done in Class 800 and Class 802 trains.

East Coast Trains’ Class 803 Trains

These trains have a slightly different powertrain to the Class 801 trains. Wikipedia says this about the powertrain.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

The trains are in the process of being built, so I suspect batteries can be easily fitted.

Could it be, that all five-car trains are identical body-shells, already wired to be able to fit any possible form of power? Hitachi have been talking about fitting batteries to their trains since at least April 2019, when I wrote, Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

  • I suspect that Hitachi will use a similar Hyperdrive Innovation design of battery in these trains, as they are proposing for the Intercity Tri-Mode Battery Train.
  • If all trains fitted with diesel engines, use similar MTU units, would it not be sensible to only use one design of battery pack?
  • I suspect, that as the battery on a Class 803 train, will be mainly for emergency use, I wouldn’t be surprised to see that these trains could be the first to run in the UK, with a battery.
  • The trains would also be simpler, as they are only battery-electric and not tri-mode. This would make the software easier to develop and test.

If all trains used the same battery pack design, then all features of the pack, would be available to all trains to which it was fitted.

Avanti West Coast’s Class 805 Trains

In Hitachi Trains For Avanti, which was based on an article with the same time in the January 2020 Edition of Modern Railways, I gave this quote from the magazine article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Note.

  1. Hitachi use diesel engines with different ratings in Class 800 and Class 802 trains, so can probably choose something suitable.
  2. The Class 805 trains are scheduled to be in service by 2022.
  3. As they are five-cars like some Class 800 and Class 802 trains will they have the same basic structure and a powertrain with three diesel engines in cars 2, 3 and 4?

I think shares a basic structure and powertrain will be very likely, as there isn’t enough time to develop a new train.

I can see that as Hitachi and Great Western Railway learn more about the performance of the battery-equipped Class 802 trains on the London and Penzance route, that batteries could be added to Avanti West Coast’s Class 805 trains. After all London Euston and North Wales and London Paddington and Cornwall are routes with similar characteristics.

  • Both routes have a high speed electrified section out of London.
  • They have a long section without electrification.
  • Operating speeds on diesel are both less than 100 mph, with sections where they could be as low as 75 mph.
  • The Cornish route has fifteen stops and the Welsh route has seven, so using batteries in stations will be a welcome innovation for passengers and those living near the railway.

As the order for the Avanti West Coast trains was placed, whilst Hitachi were probably designing their battery electric upgrade to the Class 800 and Class 802 trains, I can see batteries in the Class 805 trains becoming an early reality.

In Hitachi Trains For Avanti, I also said this.

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Note.

  1. The extract says that they are expected savings not an objective for some years in the future.
  2. I have not done any calculations on how it might be achieved, as I have no data on things like engine size and expected battery capacity.
  3. Hitachi are aiming for 20 % fuel and carbon savings on London Paddington and Cornwall services.
  4. Avanti West Coast will probably only be running Class 805 trains to Chester, Shrewsbury and North Wales.
  5. The maximum speed on any of the routes without electrification is only 90 mph. Will less powerful engines be used to cut carbon emissions?

As Chester is 21 miles, Gobowen is 46 miles, Shrewsbury is 29.6 miles and Wrexham General is 33 miles from electrification, could these trains have been designed with two diesel engines and a battery pack, so that they can reach their destinations using a lot less diesel.

I may be wrong, but it looks to me, that to achieve the expected reduction in CO2 emissions, the trains will need some radical improvements over those currently in service.

Avanti West Coast’s Class 807 Trains

In the January 2020 Edition of Modern Railways, is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric Class 807 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

I believe that these trains have been designed to be able to go between London Euston and Liverpool Lime Street stations in under two hours.

I show how in Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Consider.

  • Current London Euston and Liverpool Lime Street timings are two hours and thirteen or fourteen minutes.
  • I believe that the Class 807 trains could perhaps be five minutes under two hours, with a frequency of two trains per hour (tph)
  • I have calculated in the linked post, that only nine trains would be needed.
  • The service could have dedicated platforms at London Euston and Liverpool Lime Street.
  • For comparison, High Speed Two is promising one hour and thirty-four minutes.

This service would be a Marketing Manager’s dream.

I can certainly see why they won’t need any diesel engines or battery packs.

East Midland Railway’s Class 810 Trains

The Class 810 trains are described like this in their Wikipedia entry.

The Class 810 is an evolution of the Class 802s with a revised nose profile and facelifted end headlight clusters, giving the units a slightly different appearance. Additionally, there will be four diesel engines per five-carriage train (versus three on the 800s and 802s), and the carriages will be 2 metres (6.6 ft) shorter.

In addition, the following information has been published about the trains.

  • The trains are expected to be capable of 125 mph on diesel.
  • Is this speed, the reason for the fourth engine?
  • It is planned that the trains will enter service in 2023.

I also suspect, that like the Class 800, Class 802 and Class 805 trains, that diesel engines will be able to be replaced with battery packs.

Significant Dates And A Possible Updating Route For Hitachi Class 80x Trains

I can put together a timeline of when trains are operational.

  • 2021 – Class 803 trains enter service.
  • 2022 – Testing of prototype Intercity Tri-Mode Battery Train
  • 2022 – Class 805 trains enter service.
  • 2022 – Class 807 trains enter service.
  • 2023 – First production Intercity Tri-Mode Battery Train enters service.
  • 2023 – Class 810 trains enter service.

Note.

  1. It would appear to me, that Hitachi are just turning out trains in a well-ordered stream from Newton Aycliffe.
  2. As testing of the prototype Intercity Tri-Mode Battery Train proceeds, Hitachi and the operators will learn how, if batteries can replace some or even all of the diesel engines, the trains will have an improved performance.
  3. From about 2023, Hitachi will be able to design tri-mode trains to fit a customer’s requirements.
  4. Could the powertrain specification of the Class 810 trains change, in view of what is shown by the testing of the prototype Intercity Tri-Mode Battery Train?
  5. In parallel, Hyperdrive Innovation will be building the battery packs needed for the conversion.

Batteries could be fitted to the trains in three ways,

  • They could be incorporated into new trains on the production line.
  • Batteries could be fitted in the depots, during a major service.
  • Trains could be returned to Newton Aycliffe for battery fitment.

Over a period of years as many trains as needed could be fitted with batteries.

Conclusion

I believe there is a plan in there somewhere, which will convert many of Hitachi’s fleets of trains into tri-mode trains with increased performance, greater efficiency and less pollution and carbon emissions.

 

 

January 8, 2021 Posted by | Transport/Travel | , , , , , , , | 3 Comments