The Anonymous Widower

Stevenage Station’s New Fifth Platform Opened A Year Early

The title of this post, is the same as that of this article on Rail Engineer.

This is the introductory paragraph.

A new £40 million platform and track at Stevenage station has been completed more than a year ahead of schedule.

Yesterday, it appears that the first scheduled train left Stevenage for Moorgate at 0502.

Will This Be Good For Travellers?

A few thoughts!

Stevenage Hospital

One of my old school friends lives in Cuffley. From that part of Hertfordshire, the hospital, patients use is in Stevenage. He can drive, but not everybody can!

LNER

Currently, LNER run an hourly service between Stevenage and Leeds, with an hourly service between Stevenage and Lincoln or York via Newark.

North From Enfield, Palmers Green, Southgate, Winchmore Hill and Wood Green

If you live in Enfield or the old London boroughs of Southgate or Wood Green, it could be easier to pick up trains for the North from Stevenage, rather than Kings Cross.

Not Bad For Me Too!

Even, where I live now, which is a mile or so East of Highbury & Islington station, if the timing is right, I can walk or get a bus for four stops to Essex Road station and get a train to Stevenage and then change for Leeds and the North.

East Coast Trains

East Coast Trains will be starting a fast, low-cost London Kings Cross and Edinburgh service, which will call at Stevenage.

Grand Central Trains

Grand Central Trains are currently shut down because of COVID-19, but will they call at Stevenage station, when they restart?

Hull Trains

Some Hull Trains services between London Kings Cross and Hull, call at Stevenage.

Hitachi’s Class 80x Trains

LNER, East Coast Trains and Hull Trains, all run versions of Hitachi’s Class 800 trains or similar.

These trains are built for performance and an extra stop at Stevenage station can probably be incorporated in the timetable without any penalty.

So will we see more trains stopping at Stevenage, if the train operators think it will be worthwhile?

Could Some Services From The North Terminate At Stevenage?

The Digswell Viaduct and the double-track section through Welwyn North station are the major bottleneck on the East Coast Main Line.

But a train returning North at Stevenage wouldn’t go over the viaduct.

Stevenage already has or could have excellent connections to the following.

  • Cambridge, Stansted Airport and East Anglia
  • Moorgate and the City of London and Crossrail.
  • North East London

If keen pricing can encourage travellers to use Stevenage instead of Kings Cross, I can see operators wanting to run extra services, that could start at Stevenage.

I can also see Greater Anglia getting in on the act.

Could Greater Anglia’s Ipswich and Cambridge service be extended to Stevenage via the planned Cambridge South and Royston stations?

Could the service be timed to offer cross-platform interchange with their Norwich and Stansted Airport, at Cambridge South station?

Four important extra services would be created with a step-free interchange.

  • Ipswich and Stansted Airport – 106 minutes – Step-free walk across at Cambridge South station
  • Ipswich and Stevenage – 115 minutes – New direct service
  • Norwich and Stansted Airport – 107 minutes – Existing service
  • Norwich and Stevenage – 116 minutes – Step-free walk across at Cambridge South station.

A large number East Anglian rail journeys would be simpler.

Car Parking

Will there be enough car parking at Stevenage station?

I suppose, it would be possible to build a Stevenage Parkway station between Stevenage and Watton-at-Stone stations.

This Google Map shows the area.

Note, that the railway seems to mark the development limit for the town.

The high performance of the Class 717 trains, would probably mean, that there would be no lengthened journey times.

Conclusion

This project appears to have been well-thought through!

 

 

August 4, 2020 Posted by | Transport | , , , , , , , , , , , | 2 Comments

Westbury Station – 30th July 2020

I went to Westbury station today and took these pictures.

I found Westbury station to be a station in extremely good condition.

It also had a buffet, where I was able to purchase a delicious ice cream.

Passenger Services Through Westbury Station

I was at the station for about an hour and several trains passed through.

Great Western Railway services through the station include.

  • One train per two hour (tp2h) – London Paddington and Exeter St. Davids – Stops
  • One tp2h – London Paddington and Penzance – Passes through
  • One tp2h – London Paddington and Plymouth – Passes through
  • One train per hour (tph) – Cardiff Central and Portsmouth Harbour – Stops
  • One tp2h – Great Malvern and Westbury
  • One tp2h – Gloucester and Weymouth – Stops
  • One tp2h – Swindon and Westbury

Train classes included Class 800 trains and Class 166 trains.

South Western Railway services through the station include.

  • Five trains per day – Salisbury and Bristol Temple Meads – Stops

Train classes include Class 159 trains.

Battery Trains Through Westbury

Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, is described in this infographic from the company.

The proposed 90 km or 56 mile range could even be sufficient take a train between Westbury and Bristol Temple Meads stations on a return trip.

Many of the trains through Westbury go to the same stations.

Distances are as follows.

  • Bristol Temple Meads – 28 miles
  • Newbury – 42 miles
  • Salisbury – 24 miles
  • Swindon – 32.5 miles
  • Taunton – 47 miles

It looks like all of these places should be in range of an electric train with a battery capability, providing there is a charging facility at the other end.

An Electrification Island At Westbury Station

I have been advocating an island of electrification around Westbury station for some time and feel about a dozen miles of electrification through the station would be sufficient for Class 800 trains with a battery capability to bridge the gap.

  • At Newbury, trains would access the current electrification into London Paddington.
  • Between Exeter and Taunton, the rail route runs alongside the M5, so why not electrify this stretch, as the wires will not be so noticeable?

Looking at Westbury, to my untrained eye, it would appear that a short section of electrification around the station, would not be the most challenging of projects.

I believe that discontinuous electrification between Newbury and Exeter would be possible and could gradually be extended across Devon and Cornwall.

It should also be noted that one of Hitachi’s Regional Battery Trains has a range of 56 miles, so that these places from Westbury could be an return trip on batteries, with a well-driven train with excellent energy management.

  • Bath Spa – 17 miles
  • Bradford-on-Avon – 7 miles
  • Bristol Temple Meads – 28 miles
  • Chippenham – 16 miles
  • Frome – 6 miles
  • Salisbury – 24 miles
  • Trowbridge – 4 miles
  • Warminster – 9 miles

Obviously, the number of stops and the terrain will play a part.

Freight Might Drive Full Electrification Through Westbury Station

As the pictures show, there are heavy freight trains going through the area, which bring long and weighty loads of stone from the Mendips to London.

  • There are regularly two or three stone trains in an average hour of the day.
  • Like in the picture, I suspect they are usually hauled by a noisy, smelly, polluting and carbon-dioxide emitting Class 66 Locomotive. Not all of these, are as clean and well-maintained, as the one in the picture.
  • Some trains start at Merehead Quarry, which is about fifteen miles from Westbury station.

I believe that we must decarbonise freight trains.

But freight and electric haulage is not a simple subject.

  • I once had extensive talks with a Senior Crane Driver at the Port of Felixstowe during an Ipswich Town Away match. Ports don’t like overhead wires, as containers do get dropped and fall off rail wagons.
  • Suppose a historic line without electrification, like the Settle and Carlisle has a serious land-slip, which it did a couple of years ago. How do you haul in the materials for repair?
  • Because freight can be of a random and unpredictable nature, to electrify freight, you probably need to electrify the whole rail network.

For these and other reasons, we need independently-powered freight locomotives and I feel that a new freight locomotive will develop, that will be needed by the rail industry all over the world.

There are several solutions.

Biodiesel

Biodiesel is the simplest solution and would mean that the current diesel locomotives could be used.

In Grant Shapps Announcement On Friday, I talked about Government support for an industrial process, that has been developed by Oxford University and their spin-off company; Velocys, from the the Fischer-Tropsch Process, which can produce, the following fuels from household and industrial waste.

  • Aviation biofuel.
  • Biodiesel.

A plant to process 500,000 tonnes per year of Lincolnshire finest waste is now being built at Immingham to create 50,000,000 litres of fuel, by Altalto, which is a partnership between Velocys, British Airways and Shell.

If nothing else, waste-to-fuel is the interim solution to the decarbonisation of tricky sectors like heavy rail freight, rail construction, large diesel-powered machines, ships or long-distance aviation.

This fuel could be ideal to haul the heavy stone trains from the Mendips.

Hydrogen

I did think, it would be hydrogen powered, but I’m not so sure now, as hydrogen trains and locomotives seem to have a slow development cycle.

Although, there is one factor, that might influence the use of hydrogen as a fuel, which I wrote about in Thirsty High-Rollers … Mining’s Heavy Haulers Prime Candidates For Hydrogen Conversion.

Mining and quarrying don’t have a good green image, but converting mines and quarries to hydrogen power, would surely have operational and good public relational advantages.

It would also ensure a plentiful and convenient supply of hydrogen, for any hydrogen-powered locomotives.

Hydrogen-powered locomotives, with their electric transmissions, would probably be able to use electrification for traction power, so they would put pressure on the Government to electrify between Westbury and Newbury stations, so that there was a fully-electrified route between the Mendips and London.

Rolls-Royce’s Staggering Development

Staggering is not my word, but that of Paul Stein, who is Rolls-Royce’s Chief Technology Officer.

He used the word in a press release, which I discuss in Our Sustainability Journey.

To electrify aviation, Rolls-Royce has developed a 2.5 MW generator, based on a small gas-turbine engine, which Paul Stein describes like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

This generator is designed for flight and the data sheet for the gas-turbine engine is available on the Internet.

  • It has a weight of under a couple of tonnes compared to the thirteen tonnes of the diesel engine and generator in a Class 68 locomotive.
  • It is also more powerful than the diesel.
  • It looks to be as frugal, if not more so!
  • Rolls-Royce haven’t said if this gas-turbine can run on aviation biofuel, but as many of Rolls-Royce’s large engines can, I would be very surprised if it couldn’t!

Rolls-Royce’s German subsidiary is a large producer of rail and maritime diesel engines, so the company has the expertise to customise the generator for rail applications.

I can see this generator ending up in a high-powered heavy independently-powered electric locomotive for hauling stone and inter-modal container trains.

As with hydrogen-powered locomotives, this new breed of gas-turbine locomotive with its electric transmission, will be able to use electrification, where it exists.

So would locomotive developments drive the electrification through Westbury and especially between Westbury and Newbury?

I would rate is likely, that in the future, increasingly rail locomotives will have sophisticated electric transmissions, between their prime motive power of diesel, hydrogen, gas-turbine or whatever and their traction system. All of these locomotives will have pantographs and/or third-rail shoes to access electrification, where it exists.

These locomotives will surely add to pressure to electrify between Westbury and Newbury.

Biodiesel is surely the interim freight solution, if one is needed.

Future Zero-Carbon Passenger Services

Passenger services through Westbury can be divided into three groups.

Great Western Railway’s Services Between London Paddington And Devon And Cornwall

From Beeching Reversal projects put forward over the last few months, it looks like these services will increase and stop at several new and refurbished stations.

I can see discontinuous electrification being used to create a series of electrification islands to allow Class 800 trains, with a battery capability reach the Far South West of Cornwall.

Electrification islands could be at places like

  • Around Westbury station.
  • Between Taunton and Exeter St. Davids stations alongside the M5.
  • Between Plymouth station and the Royal Albert bridge.
  • Around Bodmin Parkway station
  • Around Truro station
  • At Newquay station
  • At Penzance station

Obviously, the number and type of the various installations will depend on the methods used and the engineering required.

I do believe that with Hitachi trains, that meet their specification, that trains will be able to travel between Paddington and Penzance without touching a drop of diesel.

Great Western Railway’s Cardiff Central And Portsmouth Harbour Service

The service can be split into the following legs.

  • Cardiff Central and Filton Junction – 33 miles – Electrified
  • Filton Junction and Bristol Temple Meads – 5 miles – Not Electrified
  • Bristol Temple Meads and Westbury – 28 miles – Not Electrified
  • Westbury and Salisbury – 24 miles – Not Electrified
  • Salisbury and Southampton Central – 15 miles – Not Electrified
  • Southampton Central and Portsmouth Harbour – 26 miles – Electrified

It would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave the Great Western Main Line at Filton Junction with a full battery.
  • It can leave the electrification at Westbury station with a full battery.
  • It can leave Southampton Central station with a full battery.
  • Third-rail shoes are fitted for working between Southampton Central and Portsmouth Harbour stations.

Recharging batteries at Bristol Temple Meads and Salisbury stations, although probably welcome, are not necessary.

I can envisage Hitachi Class 800 and Class 385 trains being able to fulfil this role, along with Bombardier Electrostars and Aventras and Siemens Desiros.

As Great Western Railway have forty-five Class 387 trains, conversion of some of these to battery electric operation must be a possibility.

Great Western Railway’s Gloucester and Weymouth Service

The service can be split into the following legs.

  • Gloucester and Bristol Temple Meads – 39 miles – Not Electrified
  • Bristol Temple Meads and Westbury – 28 miles – Not Electrifield
  • Westbury and Dorchester Junction – 52 miles – Not Electrified
  • Dorchester Junction and Weymouth – 4 miles – Electrified

It would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave Gloucester station with a full battery.
  • It can leave Bristol Temple Meads with a full battery.
  • It can leave Westbury with a full battery.
  • It can leave the South Western Main Line at Dorchester Junction with a full battery.

It would be a tight trip for a battery electric train and I suspect, that there would be some extra electrification between Westbury and Dorchester Junction or perhaps charging facilities at Frome or Yeovil Pen Mill stations.

The alternative would be to fit larger batteries on the train.

As to the train to be used, a Class 387 train with a battery capability would surely be ideal.

Great Western Railway’s Swindon and Westbury Service

The service can be split into the following legs.

  • Swindon and Chippenham – 16 miles – Electrified
  • Chippenham and Westbury- 16 miles – Not Electrified

It would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave Chippenham station with a full battery.

This would have sufficient charge to do the thirty-two mile round trip from Chippenham to Westbury and back.

As to the train to be used, a Class 387 train with a battery capability would surely be ideal.

South Western Railway’s Bristol Temple Meads and Salisbury Service

The service can be split into the following legs.

  • Bristol Temple Meads and Westbury – 28 miles – Not Electrified
  • Westbury and Salisbury- 24 miles – Not Electrified

t would appear that a train with the performance and range on batteries of Hitachi’s Regional Battery Train should be able to handle the route, provided the following conditions are met.

  • It can leave Bristol Temple Meads station with a full battery.
  • It can leave Westbury with a full battery.
  • It can leave Salisbury with a full battery.

But, I do wonder, if with a slightly larger battery, a well-driven train could work the route with only charging the battery at Westbury station?

Conclusion

Could Westbury station develop into a zero-carbon rail transport hub for Wiltshire?

  1. It has an hourly train service between London Paddington and Exeter St. Davids.
  2. It has an hourly service between Bristol Temple Meads and Weymouth.
  3. There are hourly services to stations like Bath Spa, Bradford-on-Avon, Bristol Temple Meads, Chippenham, Dorchester, Frome, Swindon, Taunton, Trowbridge and Yeovil

It could be electrified to charge battery electric trains as they pass through.

 

July 30, 2020 Posted by | Energy Storage, Hydrogen, Transport | , , , , , , , , , , , , | 1 Comment

Speeding Down To Bristol By Train

On Wednesday, I went to Bristol to take a few photographs.

I took these pictures, where the electrification ran out at Chippenham station.

There is some half-hearted erection of electrification going on between Chippenham station and Box Tunnel, but despite the fact, that the iconic tunnel is ready for wires, construction work seemed noticeable by its absence.

Line Speed Observations

I had my personal dynamometer car connected for much of the journey.

  • Between Southall and Slough we were at times running at only a few miles short of 130 mph. Are Great Western Railway starting to wind up the speed.
  • Most of the journey, when well clear of stations, we were at around 125 mph until Chippenham station.
  • At Chippenham, it was noticeable that the diesel engine under my seat kicked in.
  • Onwards from Chippenham, we were at around 100 mph on diesel.

I suspect that London and Bristol services could be improved and/or speeded up.

  • Timings could be reduced between London Paddington and Reading by running at faster speeds under digital ERTMS signalling. The train certainly felt comfortable at 128 mph.
  • Any increase in electrification past Chippenham station will increase the the reach of a Class 800 train with a battery capability on a mile-for-mile basis.
  • Trains should be able to increase speed towards 125 mph for some of the twelve miles between Chippenham and Bath Spa stations.
  • As trains would not be swapping between diesel and electricity in Chippenham station, would panning up and down happen automatically  further West?
  • It might be possible to fit in a third London Paddington and Bristol service, that doesn’t stop at Chippenham station.

None of these improvements would need the line through Bath Spa station to be electrified.

 

July 30, 2020 Posted by | Transport | , , , , , | 2 Comments

Bristol Temple Meads Station – 28th July 2020

I took these pictures of Bristol Temple Meads station, when I visited.

Note.

  1. The station is Listed to the highest level of Grade 1.
  2. London services seem to use Platforms 15 and 16.
  3. There is quite a fair bit of space between the tracks.

.Do Network Rail need all the hassle of full electrification of one of Brunel’s most famous creations?

Bristol Temple Meads Station And Trains With a Battery Capability

Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, is described in this infographic from the company.

The proposed 90 km or 56 mile range would even be sufficient take a train between Chippenham and Bristol Temple Meads stations on a return trip. So this means that one of these trains could work the London Paddington and Bristol Temple Meads stations service via Bath Spa using the electrification between London Paddington and Chippenham stations.

But where could trains reach, if they were able to leave Bristol Temple Meads station with a fully-charged battery?

  • Bristol Parkway – 6 miles
  • Cardiff Central – 5 miles to the electrified Great Western Main Line.
  • Cheltenham Spa – 41 miles
  • Filton Abbey Wood – 4 miles
  • Gloucester – 39 miles
  • Newport – 5 miles to the electrified Great Western Main Line.
  • Severn Beach – 13.5 miles
  • Taunton – 45 miles
  • Westbury – 28.5 miles
  • Weston-super-Mare – 19 miles

Note.

  1. Return trips to Bristol Parkway, Filton Abbey Wood, Severn Beach and Western-super-Mare would be possible.
  2. The other destinations will need charging facilities.

Other local destinations could be added as the Bristol Metro develops.

This Google Map shows the station.

Note.

  1. The curving nature of the platforms doesn’t make 25 KVAC overhead electrification easy.
  2. Trains to and from London appear to use the two Eastern platforms 13 and 15.
  3. It might be possible to increase platform lengths to run longer trains to and from places like London.

I believe that there are three possible ways of charging the trains in Bristol Temple Meads station.

25  KVAC Overhead Electrification

This could be short length of standard 25 KVAC overhead electrification in platforms, that would be served by trains with pantographs like the Class 800 trains.

The driver would stop in the correct place in the platform and connect the pantograph, whilst waiting in the station.

Note that the Class 800 trains to and from London typically take 35-20 minutes to turn round, which is time enough for a full charge.

750 VDC Third-Rail Electrification

This could be short lengths of standard 750 VDC third-rail electrification in platforms, that would be used by standard third-rail shoes on trains.

The train would connect automatically and charging would take place, whilst waiting in the station.

A Specialist Charging Facility Like Vivarail’s Fast Charge System

Vivarail’s Fast Charging system is described in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

This extract from this Vivarail press release explains how the system works.

he concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

I believe that this system or something like it could be adapted to work with all trains with a battery capability in the UK.

I also believe that this system can be designed so that it is ultra-safe and doesn’t disrupt, the visual impact of the station.

Conclusion

Bristol Temple Meads station could be converted into a station, where a high proportion of trains ran solely on electricity.

 

 

 

July 30, 2020 Posted by | Transport | , , , , , , | 5 Comments

Beeching Reversal – Reinstatement Of The Bodmin-Wadebridge Railway

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

The basic outline of this Beeching Reversal project is described in the section called RailTrail Project in the Wikipedia entry for the Bodmin and Wenford Railway, where this is a simplified version of what is said.

The railway company is currently planning to extend beyond its western terminus at Boscarne Junction towards Wadebridge alongside the Camel Trail. Known as the RailTrail project, phase one would see the railway extended to Nanstallon Halt, phase two to Grogley Halt and phase three to Wadebridge Guineaport.

In areas where the width of the trackbed does not allow both a railway and a footpath side-by-side, short diversions are proposed. For example, at Grogley, the Camel Trail could be re-routed along a former “headshunt”, which was part of the original railway before it was replaced by a later deviation.

There is some controversy, over the reduction in width of the Camel Trail.

This Google Map shows the River Camel through Wadebridge, where the extension appears to be proposed to finish.

Note.

  1. The Guineaport area of Wadebridge is marked by a red arrow-dot.
  2. The Future Plans section of the Wikipedia entry for Wadebridge station, says that the new station will be beyond Guineaport.
  3. The Camel Trail is marked on Google Maps as a dotted line and it can be followed to where it meets the Bodmin and Wenford Railway at Boscarne Junction station.

This Google Map shows Boscarne Junction station.

Looking from my helicopter, I am fairly sure that the RailTrail can be squeezed in with a footpath.

What Sort Of Railway Would It Be?

These are my thoughts.

Will It Be Double Or Single-Track?

It will be single-track, as there is not enough space for two.

I would suspect, they could use similar construction to these tram tracks in Blackpool.

Effectively, the RailTrail could be a high-strength road, with a rail track set to one side, and appropriate markings, rails and safety signage.

How Long Will The New Track Be?

Google gives these distances.

  • Padstow and Boscarne – 14.4 miles
  • Padstow and Bodmin – 16 miles
  • Wadebridge and Boscarne – 6 miles
  • Wadebridge and Bodmin – 7.4 miles

I have added Padstow, as this town on the sea, used to be the rail terminus.

Should The Route Go To Padstow?

This Google Map shows the Padstow end of the Camel Trail.

But there could be a major problem.

At the bottom of the map is the Little Petherick Creek Bridge.

  • It’s probably OK for a cycle trail, but would it be strong enough for heavy rail use.
  • On the other hand, is it past its replace date and Cornwall County Council might like to pass the responsibility to Network Rail?

There is also more land to build a station at Padstow.

It could even be built on the East side of the bridge, so that the heaviest thing it would carry would be pedestrians.

Would A Shared RailTrail Work?

One of the most interesting train systems, that I have seen is in Zwickau in the former East Germany, where instead of buying more trams to connect to other towns and cities, they devised a train-tram system using standard diesel multiple units.

The Zwickau system is more complicated than it would need to be in the UK, as the trains have to share tram-tracks of a different size, so there are  three-railed tracks; two for the metre gauge trams and an extra one for the standard gauge trains.

I have never seen anywhere else, where rail vehicles of different gauges share rails.

The trains run under virtually the same rules as street running trams do in Birmingham, Blackpool, Croydon, Edinburgh, Manchester, Nottingham and Sheffield.

  • You can cross the road all round them.
  • Trains are limited to slow speeds.
  • The trains are independently powered.
  • The trains cross level crossings.
  • There is no electric power for the trains.
  • The trains are double-manned and the crew keep a good look out!

Note, in the pictures, that the trains have flashing orange warning lights.

Could a GWR Class 800 train run along the RailTrail?

  • The train would be a five-car unit.
  • The train would be fitted with environmentally-friendly battery power, so it would be emission-free and almost silent.
  • There would be a charging facility in the platform at Bodmin General station to top up the battery, before the train ran on the RailTrail.
  • As in Zwickau, the track would be buried in the ground. so it could be safely used by trains and not be a hazard to pedestrians.
  • The train would have a slow speed crawling mode, so it could proceed along the RailTrail with extreme care.

With the right timetable, the modern trains could share with the Bodmin and Wenford’s heritage trains.

Could Wadebridge Get A Direct Service To London Paddington?

Why not?

Places like Bradford, Harrogate, Huddersfield and Skipton appear to be being added to LNER’s network, by joining and splitting Class 800 trains at Leeds.

I wouldn’t be surprised to see a five-car Class 800 train with a battery capability running  from Wadebridge to Plymouth, where is joined with another train from Newquay, Penzance or Plymouth, before running as a ten-car train to London Paddington.

Conclusion

I like this scheme and it could be a prototype for other similar ones.

July 26, 2020 Posted by | Transport | , , , , , , , , | 3 Comments

Could Hitachi’s Class 800 Trains Work The Cornish Main Line On Battery Power?

The distance between Plymouth and Penzance stations along the Cornish Main Line is just seventy-nine miles and thirty-eight chains. I’ll call it 79.5 miles.

Hitachi’s proposed train is described in this infographic.

The range on battery power of 90 km or 56 miles, will not be quite enough to get all the way between Plymouth and Penzance!

But note the phrase – Allows Discontinuous Electrification; at the top of the infographic.

Will Electrification Be Needed?

Obviously or the train could perhaps wait at Truro for ten minutes to charge the batteries.

But how customer-unfriendly and disruptive to good operating practice is that?

Could Bigger Batteries Be Fitted?

This obviously is a possibility, but surely an operator would prefer all of their trains to have the same battery range and updating them all for a longer distance might not be an economic proposition.

Could Intelligent Discontinuous Third-Rail Electrification Be Used?

Third-rail electrification, is hated by the Health & Safety Taliban, as it occasionally kills people trespassing or falling on the railway. But in the UK, we have around 1,500 miles of third-rail electrified line, that generally operates to a high level of safety.

Can my modern successors make third-rail electrification absolutely safe in new installations?

Third-Rail And Discontinuous Electrification Installations!

To connect to overhead electrification, the driver or an automatic system on the train, must raise the pantograph. It doesn’t often go wrong, but when it does, it can bring down the wires. This section on panotograph weaknesses from Wikipedia give more details.

With third-rail, the connection and disconnection is automatic, with far less to go wrong.

These pictures show a gap in the third-rail electrification at the Blackfriars station, which was rebuilt in 2012, so it must meet all modern regulations.

Note the gap in the third-rail, which carries the current.

  • The third-rail shoes on the train disconnect and connect automatically, as the train passes through.
  • The only rails with voltage are between the tracks for safety.
  • The high-tech shields appear to be real tree wood painted yellow.

As an Electrical Engineer, I actually suspect, that this gap in the conductor rail, is to isolate the North and South London electricity supplies from each other,, so that a catastrophic failure on one side doesn’t affect both halves of Thameslink.

Third-Rail Electrification In Stations

Most rail passengers in the UK, understand third-rail electrification, if they’ve ever used trains in the South of London or Merseyside.

Electrifying stations using third-rail equipment could enable battery trains to go further.

  • Stopping trains could top-up their batteries.
  • Passing trains, that were low on power could make a pit-stop.
  • All trains would connect automatically to the third-rail, when in the station.

The safety level would be raised by making sure that the third-rail was electrically-dead unless a train was over the top.

I am by training a Control Engineer and one of my first jobs in a dangerous factory as a fifteen-year-old,  was designing and building safety systems, that cut power to guillotines, when the operator put their hands somewhere they shouldn’t! I remember endlessly testing the system with an old broom, which survived unscathed.

I believe that only switching on the electrification, when a train completes the circuit, is a fairly simple operation for modern control switchgear. I can imagine an intelligent switch constantly monitoring the resistance  and only switching on power, when the resistance in the circuit looks like a train.

Third-Rail Electrification In Discrete Locations

Overhead electrification can receive complaints in scenic locations, but third-rail electrification can be invisible in tunnels and over bridges and viaducts.

The Cornish Main Line has four tunnels, two bridges, which include the Royal Albert Bridge, and no less than thirty-two viaducts.

How many of these could be used to hide electrification?

  • Any electrified sections could be intelligently controlled to increase safety.
  • Power for the electrification could come from local renewable sources, using techniques like Riding Sunbeams.

I can see engineers developing several techniques for discrete electrification.

Third-Rail And Charging Battery Trains

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Hitachi And Third Rail

The picture shows a Hitachi Class 395 train at Gillingham station.

 

The silver-coloured  third-rail equipment is clearly visible, under the javelin logo.

These trains are cousins of all the new Hitachi trains in the UK, so I suspect fitting third-rail equipment to Class 80x trains, is just a matter of finding the appropriate documents on the computer and raiding the parts bin.

I suspect, as Hitachi will probably be building some more trains for Southeastern to start the Highspeed service between London St. Pancras and Hastings, that Hitachi are already working on the design of a third-rail high-speed train with batteries.

I doubt that Hitachi have any fears about fitting third-rail gear to their trains, as an optional extra.

Electrifying Between Plymouth And Penzance

Obviously, Plymouth and Penzance stations would have charging facilities, but now many would the trains handle the 79.5 miles in between?

There are three possibilities.

Limited-Third Rail Electrification

As I indicated earlier short lengths of intelligent third-rail electrification could be added at various places on the route.

A full battery would take the train fifty-six miles and as the Cornish Main Line is nearly eighty miles long, I suspect that the train would need almost a full charge halfway along the route.

  • Hitachi claim in the infographic, that a full-charge takes 10-15 minutes, when the train is static, so I will assume the largest figure of this range, as charging on the move might not be as efficient, with everything happening at 90 mph.
  • So I will assume a fifteen minute charge time.
  • Typically, a Class 80x takes two hours between Penzance and Plymouth, which is an average speed of just 40 mph.
  • In fifteen minutes, the train will go ten miles. So a rough estimate would say ten miles should be electrified.

As electrification in stations would allow trains to have a bigger sup, a scientifically-correct simulation would show the best philosophy.

The London Paddington and Penzance services call at the following stations, that are West of Plymouth.

Liskeard, Saltash, St. Germans, Bodmin Parkway, Lostwithiel, Par, St Austell, Truro, Redruth, Camborne, Hayle and St Erth

Note.

  1. Some smaller stations do get skipped.
  2. According to Real Time Trains, stops seem to take 1-2 minutes.
  3. Trains are usually nine- or ten-cars, but I feel that the proposed improvements between Bodmin General and Bodmin Parkway stations, that I wrote about in Increased Service Provision Bodmin General-Bodmin Parkway, may result in a large reorganisation of services between London and Cornwall.

Could it be that electrifying the major stations with third-rail electrification would enable enough power to be taken on board by a train running between London Paddington and Penzance, so that the journey could be completed?

Vivarail Fast Chargers

Vivarail’s Fast Chargers could be fitted at all or selected stations and trains could take a sip as and when they need.

A charger would also be needed at any Cornish terminal station, that would have services from battery electric trains.

A Mixture Of Third-Rail Electrification And Vivarail Fast Chargers

Both technologies are interchangeable and can be used with compatible battery electric trains.

I would expect an accurate mathematical model will indicate the best layout of electrification and Fast Chargers.

 

July 26, 2020 Posted by | Transport | , , , , , , , , , , | Leave a comment

Beeching Reversal – Increased Service Provision Bodmin General-Bodmin Parkway

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This Google Map shows the relationship of the two Bodmin General and Bodmin Parkway stations.

The two stations are clearly visible.

The aim of this Beeching Reversal project would appear to set up a more regular service between Bodmin Parkway station on the Cornish Main Line and Bodmin General station in the town.

This video shows some of the current trains run by the Bodmin and Wenford railway, between the two stations.

This article on Cornwall Live is entitled Plan To Link Heritage Railway At Bodmin To Mainline Train Services, gives a few scant details.

  • There will be a second platform at Bodmin General station.
  • This will allow extra services.

Looking at the space around Bodmin Parkway station, it should be possible to have a very comprehensive track layout, that connects the Bodmin branch to the main line.

It also appears that the platform is fully-funded from Great Western Railway (GWR) and Cornwall County Council.

What Do GWR Want In Return For Their Funding?

I think that GWR could have a couple of uses for a platform at Bodmin General station.

Reorganising The Services Between London Paddington and the South-West

Currently, there are three services on this route.

  • London Paddington and Exeter St. Davids via Reading, Newbury, Pewsey, Westbury, Castle Cary, Taunton, Tiverton Parkway.
  • London Paddington and Plymouth via Reading, Taunton, Tiverton Parkway, Exeter St Davids, Newton Abbot, Totnes.
  • London Paddington and Penzance via Reading, Taunton, Tiverton Parkway, Exeter St Davids, Newton Abbot, Totnes, Plymouth, Liskeard, Bodmin Parkway, Lostwithiel, Par, St Austell, Truro, Redruth, Camborne, St Erth.

All services have a frequency of one train per two hours (tp2h)

Perhaps by reorganising the train paths, GWR could run another 1 tp2h service between London Paddington and Bodmin or Newquay station after the Transformation Of The Newquay Line.

Joining And Splitting Between London Paddington And The South-West

GWR’s Hitachi Class 80x trains have the ability to run in pairs, that are split and joined at convenient places en route.

As a means of evening out passenger loadings on pairs of trains running to the South-West, the two large stations of Exeter St. Davids and Plymouth would surely be possibilities for the manoeuvre.

I also think that Bodmin Parkway station could be used to split and join two trains from Cornwall.

  • One train would come from Penzance and the West.
  • The other could come from either Newquay or Bodmin General stations.
  • In the future the second train, might come from a new Wadebridge station.

Bodmin Parkway station might need some small modifications, but it should be remembered that the closely-related Class 395 trains, do the deed and quickly disappear at Ashford International station.

Creating A Bodmin-Wadebridge Railway

There are also plans in the Beeching Reversal projects for the Reinstatement of the Bodmin-Wadebridge Railway

For trains to travel between Bodmin Parkway and Wadebridge stations, trains will need to reverse in the new platform at Bodmin General station.

Local Services From Exeter And Plymouth

From what I have read on the Internet, the Bodmin and Wenford Railway is an important tourist attraction and is one of several around Bodmin including the beaches and the Camel Trail.

So perhaps, a connection between Bodmin and Exeter and/or Plymouth in a vintage InterCity 125 could be a nice little earner for GWR and an appropriate way to arrive at the steam railway.

Steam Local Services From Exeter And Plymouth

Why not?

The new platform at Bodmin General station could probably take a locomotive and four coaches and all the facilities to handle steam engines are in the vicinity of the station.

Could The New Platform Be Used For High Speed Freight Shuttles?

Why not?

Rail Operations Group is looking at the possibility of running Class 769 trains as freight shuttles.

Bodmin could make an ideal Cornish terminal, as it’s the right side of county and has the main A38 close by.

Could The Platform Be Used To Charge Battery Electric Trains?

I feel that First Group are starting to embrace battery trains.

In Hitachi Trains For Avanti, I talked about how a fellow First Group company were reporting, that they might have battery trains.

If Great Western Railway were running extra trains into Cornwall, would a new platform at Bodmin General station, be an ideal place to charge a train?

Conclusion

A second platform at Bodmin General station could open up a lot of possibilities for train operating companies.

 

July 25, 2020 Posted by | Transport | , , , , , , , , , | 4 Comments

Battery Electric Class 800 Trains Between London Paddington And Bristol Temple Mead Stations

Hitachi have changed the rules on electrification, by the announcement of the development of battery electric trains in collaboration with Hyperdrive Innovation, which I wrote about in Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains.

The proposed train is described in this Hitachi infographic.

It will have a range on battery power of 90 km or 56 miles.

Currently, services between London Paddington and Bristol Temple Meads stations are as follows.

  • The frequency is two trains per hour (tph)
  • Services call at Reading, Didcot Parkway (1tph), Swindon, Chippenham and Bath Spa.
  • Services use the electrification between London Paddington and Chippenham.
  • Services use diesel power between Chippenham and Bristol Temple Meads.
  • Chippenham and Bristol Temple Meads are 24.5 miles apart.

It looks to me that a well-driven Class 800 train with Hyperdrive Innovation’s clever batteries replacing some or all of the diesel engines could run between Chippenham and Bristol Temple Meads stations and back without using a drop of diesel.

It might be a bit tight, but it would certainly be possible, if there were more electrification between Bath Spa and Chippenham stations.

  • From this article on the BBC, which is entitled Box Tunnel Reopens After Network Rail Electrification Work, it appears that a lot of the pre-electrification work has been completed.
  • This would reduce the distance without wires to perhaps 18-20 miles.

As the Class 800 trains have agile pantographs, I’m sure that it will be possible for battery electric Class 800 trains to run between London Paddington and Bristol Temple Meads stations.

Electrification At Bristol Temple Meads Station

This will surely happen and with full electrification, the following will be possible.

  • Trains would be able to recharge before returning to Chippenham.
  • Trains would be able to extend the service using battery power to Weston-super-Mare, which is only twenty miles away.
  • Trains would be able to use the power whilst waiting in the station.

It appears that trains that run between London Paddington and Bristol Temple Meads station, use a selection of platforms in Bristol.

Would it be sensible to reduce the number of platforms used and electrify them first, so that battery electric trains could charge their batteries?

Could A Battery Electric Train Run Between Bristol Temple Means And Taunton Stations?

Consider.

  • These two stations are 46 miles apart via Weston-super-Mare, so if there was charging at Taunton, this service might be possible.
  • The direct route is a couple of miles shorter.
  • A train with full batteries at Taunton, would reach well past Exeter.

Could a battery-electric service be of use in creating Great Western Railway’s timetable, as in the Peak services are extended to Weston-super-Mare and Taunton stations?

It would certainly be lower carbon. than a current journey.

Would The Railway Through Bath Need To Be Electrified?

This would depend on three main factors.

  • There is a certain amount of opposition to electrification in the centre of Bath.
  • Can all passenger trains through the city be made zero-carbon without electrification?
  • Can all freight trains through the city be made zero-carbon without electrification?

I would feel that all passenger trains could be run by appropriate trains, but freight would be a problem under existing technology.

I wouldn’t be surprised, if no electrification was ever erected through Bath!

July 23, 2020 Posted by | Transport | , , , , , | 2 Comments

Beeching Reversal – Restoring A South Humber Link

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

The project is described by these two paragraphs in this article in the Yorkshire Post, which is entitled Government Announce Yorkshire Rail Schemes That Could Receive ‘Reverse Beeching’ Funding.

North Lincolnshire Council have bid for funding to subsidise a new train service that would allow passengers from Barton-on-Humber to travel to Gainsborough, from where they would be able to catch direct services to Sheffield.

This would be achieved by diverting the existing Barton to Grimsby and Cleethorpes trains up a freight-only section used by traffic heading to Immingham docks. There have never been passenger trains using this path before.

This rail map clipped from Wikipedia shows the Barton Line to Barton-on-Humber station.

Note.

  1. Barton-on-Humber station has a bus link to Hull station.
  2. The loop gives a grand tour of the Port of Immingham on what is now a freight-only line.
  3. There is a lot of development going on in the area including the AltAlto aviation biofuel, that I wrote about in Grant Shapps Announcement On Friday.

Perhaps all this development is causing a lot of small problems.

  • Is it causing congestion on the roads?
  • Are workers difficult to find in the Immingham area?
  • Is commuting over the Humber Bridge expensive?
  • Is parking difficult in the Port?

North Lincolnshire Council could feel that a better rail connection serving the Port of Immingham, would be an asset, that reduces these problems.

I suspect the current two-hourly service between Barton-on-Humber and Cleethorpes stations, will be replaced by an hourly one, between Barton-on-Humber and Gainsborough Lea Road stations, that takes the following route.

  • Barton-on-Humber to Ulceby
  • At Ulceby station the train will reverse and go clockwise around the loop.
  • After calling at Great Coates, Healing, Stallingborough and Habrough stations, the train would go West to Barnetby and Gainsborough Lea Road stations.
  • Passengers wanting to go from Barton-on-Humber to Grimsby Town or Cleethorpes, would change at Great Coates station.

It may look a rather round-about route, but I suspect that the plan includes some stations to serve the Port of Immingham and the industrial development.

I suspect that some of these port, oil, chemical and energy companies can afford to pay a contribution.

Gainsborough Lea Road Station

Gainsborough Lea Road station is a mix of architectural styles.

But with the addition of a friendly café and some other facilities, it would be a good interchange between the Immingham area and Sheffield and the county town of Lincoln.

Future Trains

Lincolnshire is an energy-rich county, which partly explains all the industrial development in the North-East of the county around Grimsby, Immingham and Scunthorpe.

  • Immingham is a large importer of biomass for power generation.
  • There are off-shore and on-shore gas fields connected to Theddlethorpe gas terminal.
  • There is the large power station complex at Keadby.

But the energy mix is a-changing.

  • Keadby now includes a solar farm.
  • Wind turbines are springing up both on land and in the sea.

If I was to make a prediction, it would be that more and more large energy-related businesses will develop in the area.

  • In recent months, Altalto’s waste-to-aviation biofuel plant has been given national and local government backing to be built at Immingham.
  • ITM Power are involved in a hydrogen development project in the area.
  • I wouldn’t be surprised to see hydrogen produced for transport from all this energy.

I think it will be inevitable, that zero-carbon battery electric or hydrogen-powered trains will run in the area.

  • Cleethorpes and Doncaster via Scunthorpe 52 miles apart.
  • Cleethorpes and Barton-on-Humber are 23 miles apart
  • Lincoln and Newark are 16.5 miles apart.
  • Lincoln and Doncaster are 37 miles apart.
  • Lincoln and Sheffield are 48 miles apart
  • Lincoln and the electrification at Peterborough are 54 miles apart.
  • Skegness and Sleaford are 41 miles apart.
  • Sleaford and Grantham are 18 miles apart.

With charging facilities at Barton-on-Humber, Lincoln, Skegness and Sleaford, the whole of Lincolnshire could be served by zero-carbon battery electric trains.

I suspect LNER could lead the way, as a five-car Class 800 train equipped with batteries, is predicted to have a 56 mile range away from the wires, which would easily handle a return trip between Newark and Lincoln.

There could be a small problem, in that the first train of the day, between Lincoln and London Kings Cross positions from Doncaster Carr IEP Depot, so running Doncaster to Newark via Lincoln might challenge the battery range of the train. I suspect, that the positioning could be performed via Newark with a reverse, prior to the installation of a charging facility at Lincoln Central station.

I estimate that Barton-on-Humber and Gainsborough Lea Road stations are about 35 miles apart, so with today’s battery technology, I suspect that a round trip in a battery electric train would be on the limit. But with charging facilities at Gainsborough, there would be no problems.

I suspect that East Midlands Railway would use several of their forty diesel Class 170 trains on this and other routes in Lincolnshire, so perhaps a good interim solution would be to run the Class 170 trains on Altalto’s biodiesel, that will be produced at Immingham.

There is also the possibility, that some or all of the Class 170 trains will be retrofitted with MTU Hybrid PowerPacks, which would cut their diesel consumption.

Surely, with all Lincolnshire’s energy, hydrogen-powered trains must be a possibility. But they seem to be stuck in a siding!

The MTU Hybrid PowerPack and Altalto’s bio-diesel seems a more affordable and less risky route.

A Direct Connection To London

In the Wikipedia entry for Gainsborough Lea Road station, there is a section called Future Services, where a direct connection to London is mentioned.

Conclusion

Given that the likes of East Midlands Railway, Hull Trains, LNER and TransPennine Express are improving their services to Hull, Lincoln, Cleethorpes and Grimsby, this local North Lincolnshire Metro serving the Port and the industrial development, could well be welcomed by those that live and work in the area.

I doubt that the infrastructure cost will be very high.

July 12, 2020 Posted by | Transport | , , , , , , , , , , , , , , , | 2 Comments

Underneath A Class 800 Train

As I came into Paddington, there was a Class 800 train in an adjoining platform, with nothing in between.

So I took these pictures of the rows of neat cupboards underneath the train.

Are all of these boxes crammed full of diesel engines and electrical gubbins? Or is there space for batteries in a few empty boxes?

The underneath of the train and the boxes are all very tidy! Is that Japanese style?

This picture of a Class 710 train has boxes, but they are not as neat!

June 13, 2020 Posted by | Transport | | Leave a comment