The Anonymous Widower

What Is Possible On The East Coast Main Line?

In the Wikipedia entry for the Class 91 locomotive, there is an amazing story.

This picture shows one of these locomotives at Kings Cross.

Note.

  1. They have a design speed of 140 mph.
  2. They have a power output of 4.8 MW.
  3. They were built around 1990 by British Rail at Crewe.

They were designed to run services between London King’s Cross and Edinburgh as fast as possible, as the motive power of the InterCity 225 trains.

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Note.

  1. For the British locomotive speed record, locomotive was actually pushing the train and going backwards, as the driving van trailer (DVT) was leading.
  2. How many speed records of any sort, where the direction isn’t part of the record, have been set going backwards?
  3. I feel that this record could stand for many years, as it is not very likely anybody will build another 140 mph locomotive in the foreseeable future. Unless a maverick idea for a high speed freight locomotive is proposed.

I have a few general thoughts on the record run between Kings Cross and Edinburgh in three-and-a-half hours.

  • I would assume that as in normal operation of these trains, the Class 91 locomotive was leading on the run to the North.
  • For various reasons, they would surely have had at least two of British Rail’s most experienced drivers in the cab.
  • At that time, 125 mph InterCity 125 trains had been the workhorse of East Coast Main Line for well over ten years, so British Rail wouldn’t have been short of experienced high speed drivers.
  • It was a Thursday, so they must have been running amongst normal traffic.
  • On Monday, a typical run between Kings Cross and Edinburgh is timetabled to take four hours and twenty minutes.
  • High Speed Two are predicting a time of three hours and forty-eight minutes between Euston and Edinburgh via High Speed Two and  the West Coast Main Line.

The more you look at it, a sub-three-and-and-a-half hour time, by 1980s-technology on a less-than-perfect railway was truly remarkable.

So how did they do it?

Superb Timetabling

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I talk about how Network Rail and Greater Anglia created a fast service between Liverpool Street and Norwich.

I suspect that British Rail put their best timetablers on the project, so that the test train could speed through unhindered.

Just as they did for Norwich-in-Ninety and probably will be doing to the East Coast Main Line to increase services and decrease journey times.

A Good As ERTMS Signalling

Obviously in 1991, there was no modern digital in-cab signalling and I don’t know the standard of communication between the drivers and the signallers.

On the tricky sections like Digswell Viaduct, through Hitchin and the Newark Crossing were other trains stopped well clear of any difficult area, as modern digital signalling can anticipate and take action?

I would expect the test train got a signalling service as good as any modern train, even if parts of it like driver to signaller communication may have been a bit experimental.

There may even have been a back-up driver in the cab with the latest mobile phone.

It must have been about 1991, when I did a pre-arranged airways join in my Cessna 340 on the ground at Ipswich Airport before take-off on a direct flight to Rome. Air Traffic Control had suggested it to avoid an intermediate stop at say Southend.

The technology was arriving and did it help the drivers on that memorable run North ensure a safe and fast passage of the train?

It would be interesting to know, what other equipment was being tested by this test train.

A Possible Plan

I suspect that the plan in 1991 was to use a plan not unlike one that would be used by Lewis Hamilton, or in those days Stirling Moss to win a race.

Drive a steady race not taking any chances and where the track allows speed up.

So did British Rail drive a steady 125 mph sticking to the standard timetable between Kings Cross and Edinburgh?

Then as the Wikipedia extract indicated, at several times during the journey did they increase the speed of the train to 140 mph.

And the rest as they say was an historic time of 3 hours, 29 minutes and 30 seconds. Call it three-and-a-half-hours.

This represented a start-to-stop average speed of 112.5 mph over the 393 miles of the East Coast Main Line.

Can The Current Trains Achieve Three-And-A-Half-Hours Be Possible Today?

Consider.

  • The best four hours and twenty minutes timings of the Class 801 trains, represents an average speed of 90.7 mph.
  • The Class 801 trains and the InterCity 225 trains have similar performance.
  • There have been improvements to the route like the Hitchin Flyover.
  • Full ERTMS in-cab signalling is being installed South of Doncaster.
  • I believe ERTMS and ETC could solve the Newark Crossing problem! See Could ERTMS And ETCS Solve The Newark Crossing Problem?
  • I am a trained Control Engineer and I believe if ERTMS and ETC can solve the Newark Crossing problem, I suspect they can solve the Digswell Viaduct problem.
  • The Werrington Dive Under is being built.
  • The approaches to Kings Cross are being remodelled.

I can’t quite say easy-peasy. but I’m fairly certain the Kings Cross and Edinburgh record is under serious threat.

  • A massive power supply upgrade to the North of Doncaster is continuing. See this page on the Network Rail web site.
  • ERTMS and ETC probably needs to be installed all the way between Kings Cross and Edinburgh.
  • There may be a need to minimise the number of slower passenger trains on the East Coast Main Line.
  • The Northumberland Line and the Leamside Line may be needed to take some trains from the East Coast Main Line.

Recent Developments Concerning the Hitachi Trains

There have been several developments  since the Hitachi Class 800 and Class 801 trains were ordered.

  • Serious engineers and commentators like Roger Ford of Modern Railways have criticised the lugging of heavy diesel engines around the country.
  • Network Rail have upgraded the power supply South of Doncaster and have recently started to upgrade it between Doncaster and Edinburgh. Will this extensive upgrade cut the need to use the diesel power-packs?
  • Hitachi and their operators must have collected extensive in-service statistics about the detailed performance of the trains and the use of the diesel power-packs.
  • Hitachi have signed an agreement with Hyperdrive Innovation of Sunderland to produce battery-packs for the trains and two new versions of the trains have been announced; a Regional Battery Train and an Intercity Tri-Mode Battery Train.
  • East Coast Trains have ordered five five-car Class 803 trains, each of which will have a small battery for emergency use and no diesel power-packs.
  • Avanti West Coast have ordered ten seven-car Class 807 trains, each of which have no battery or diesel power-packs.

And these are just the ones we know about.

The Class 807 Trains And Liverpool

I find Avanti West Coast’s Class 807 trains the most interesting development.

  • They have been partly financed by Rock Rail, who seem to organise train finance, so that the train operator, the train manufacturer all get the best value, by finding good technical solutions.
  • I believe that these trains have been designed so they can run between Euston and Liverpool Lime Street stations in under two hours.
  • Does the absence of battery or diesel power-packs save weight and improve performance?
  • Euston and Liverpool Lime Street in two hours would be an average of only 96.8 mph.
  • If the Class 807 trains could achieve the same start-stop average of 112.5 mph achieved by the InterCity 225 test run between Kings Cross and Edinburgh, that would mean a Euston and Liverpool Lime Street time of one hour and forty-three minutes.
  • Does Thunderbird provision on the West Coast Main Line for the Class 390 trains mean that the Class 807 trains don’t need emergency power?
  • Have diesel power-packs been rarely used in emergency by the Hitachi trains?

I believe the mathematics show that excellent sub-two hour times between Euston and Liverpool Lime Street are possible by Avanti West Coast’s new Class 807 trains.

The Class 803 Trains And Edinburgh

East Coast Trains ordered their Class 803 trains in March 2019,  nine months before Avanti West Coast ordered their Class 807 trains.

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, I outlined brief details of the trains and the proposed service.

  • FirstGroup is targeting the two-thirds of passengers, who fly between London and Edinburgh.
  • They are also targeting business passengers, as the first train arrives in Edinburgh at 10:00.
  • The trains are five-cars.
  • The trains are one class with onboard catering, air-conditioning, power sockets and free wi-fi.
  • Stops will be five trains per day with stops at Stevenage, Newcastle and Morpeth.
  • The trains will take around four hours.
  • The service will start in Autumn 2021.

I also thought it would be a successful service

As I know Edinburgh, Liverpool and London well, I believe there are similarities between the Euston-Liverpool Lime Street and Kings Cross-Edinburgh routes.

  • Both routes are between two cities known all over the world.
  • Both routes are fully-electrified.
  • Both routes have the potential to attract passengers from other transport modes.

The two services could even be run at similar speeds.

  • Euston-Liverpool Lime Street in two hours will be at 96.8 mph
  • Kings Cross-Edinburgh in four hours will be at 98.3 mph.

Does this explain the similar lightweight trains?

Could Lightweight Trains Help LNER?

There is one important factor, I haven’t talked about in detail in this post. Batteries and diesel power-packs on the Hitachi trains.

I have only mentioned them in the following circumstances.

  • When trains are not fitted with battery and/or diesel power-packs.
  • When battery developments are being undertaken.

Let’s consider the LNER fleet.

  • LNER has thirteen nine-car Class 800 trains, each of which has five diesel power-packs
  • LNER has ten five-car Class 800 trains, each of which has three diesel power-packs
  • LNER has thirty nine-car Class 801 trains, each of which has one diesel power-pack
  • LNER has twelve five-car Class 801 trains, each of which has one diesel power-pack

There are sixty-five trains, 497 coaches and 137 diesel power-packs.

And look at their destinations.

  • Aberdeen – No Electrification from Edinburgh
  • Alnmouth – Fully Electrified
  • Berwick-upon-Tweed – Fully Electrified
  • Bradford Forster Square – Fully Electrified
  • Darlington – Fully Electrified
  • Doncaster – Fully Electrified
  • Durham – Fully Electrified
  • Edinburgh – Fully Electrified
  • Glasgow – Fully Electrified
  • Grantham – Fully Electrified
  • Harrogate – No Electrification from Leeds – Possible Battery Destination
  • Huddersfield – No Electrification from Leeds – Possible Battery Destination – Probable Electrification
  • Hull – No Electrification from Temple Hirst Junction – Possible Battery Destination
  • Inverness – No Electrification from Stirling
  • Leeds – Fully Electrified
  • Lincoln – No Electrification from Newark North Gate – Possible Battery Destination
  • Middlesbrough – No Electrification from Northallerton – Possible Battery Destination
  • Newcastle – Fully Electrified
  • Newark North Gate – Fully Electrified
  • Northallerton – Fully Electrified
  • Peterborough – Fully Electrified
  • Skipton – Fully Electrified
  • Retford – Fully Electrified
  • Stevenage – Fully Electrified
  • Stirling – Fully Electrified
  • Sunderland – No Electrification from Northallerton – Possible Battery Destination
  • Wakefield Westgate – Fully Electrified
  • York – Fully Electrified

The destinations can be summarised as followed.

  • Not Electrified – 2
  • Possible Battery Destination – 6
  • Fully Electrified – 20

This gives a total of 28.

Could the trains be matched better to the destinations?

  • Some routes like Edinburgh, Glasgow, Newcastle and Stirling could possibly be beneficially handled by lightweight trains without any diesel or battery power-packs.
  • Only Aberdeen and Inverness can’t be reached by all-electric or battery-electric trains.
  • In LNER Seeks 10 More Bi-Modes, I proposed a hydrogen-electric flagship train, that would use hydrogen North of the existing electrification.

There certainly appear to be possibilities.

Example Journey Times To Edinburgh

This table shows the various time for particular start-stop average speeds between Kings Cross and Edinburgh.

  • 80 mph – 4:54
  • 85 mph – 4:37
  • 90 mph – 4:12
  • 98.2 mph – 4:00
  • 100 mph – 3:56
  • 110 mph – 3:34
  • 120 mph – 3:16
  • 125 mph – 3:08

Note.

  • Times are given in h:mm.
  • A few mph increase in average speed reduces journey time by a considerable amount.

The figures certainly show the value of high speed trains and of removing bottlenecks, as average speed is so important.

Decarbonisation Of LNER

LNER Seeks 10 More Bi-Modes was based on an article in the December 2020 Edition of Modern Railways, with the same title. These are the first two paragraphs of the article.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast main line services.

In a Prior Information Notice published on 27 October, the operator states it is seeking trains capable of operating under 25kW overhead power with ‘significant self-power capability’ for operation away from overhead wires. ‘On-board Energy Storage for traction will be specified as a mandatory requirement to reduce, and wherever practical eliminate, diesel usage where it would otherwise be necessary, although LNER anticipates some degree of diesel traction may be required to meet some self-power requirements. Suppliers tendering are asked to detail their experience of designing and manufacturing a fleet of multi-mode trains with a range of traction options including battery-electric, diesel-electric, hydrogen-electric, battery-diesel, dual fuel and tri-mode.

From this, LNER would appear to be serious about decarbonisation and from the destination list I published earlier, most services South of the Scottish Central Belt can be decarbonised by replacing diesel-power packs with battery power-packs.

That last bit, sounds like a call for innovation to provide a solution to the difficult routes to Aberdeen and Inverness. It also looks as if it has been carefully worded not to rule anybody out.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

It announces the Hitachi Intercity Tri-mode Battery Train, which is described in this Hitachi infographic.

As the Hitachi press release is dated the 15th of December 2020, which is after the publication of the magazine, it strikes me that LNER and Hitachi had been talking.

At no point have Hitachi stated what the range of the train is on battery power.

To serve the North of Scotland these gaps must be bridged.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

It should also be noted that distances in Scotland are such, that if these gaps could be bridged by battery technology, then probably all of the North of Scotland’s railways could be decarbonised. As Hitachi are the major supplier of Scotland’s local and regional electric trains, was the original Prior Information Notice, written to make sure Hitachi responded?

LNER run nine-car Class 800 trains on the two long routes to Aberdeen and Inverness.

  • These trains have five diesel power-packs under coaches 2,3, 5, 7 and 8.
  • As five-car Class 800 trains have diesel power-packs under coaches 2, 3 and 4, does this mean that Hitachi can fit diesel power-packs under all cars except for the driver cars?
  • As the diesel and battery power-packs appear to be interchangeable, does this mean that Hitachi could theoretically build some very unusual trains?
  • Hitachi’s trains can be up to twelve-cars in normal mode and twenty-four cars in rescue mode.
  • LNER would probably prefer an all Azuma fleet, even if a few trains were a bit longer.

Imagine a ten-car train with two driver and eight intermediate cars, with all of the intermediate cars having maximum-size battery-packs.

Supposing, one or two of the battery power-packs were to be replaced with a diesel power-pack.

There are a lot of possibilities and I suspect LNER, Hitachi and Hyperdrive Innovation are working on a train capable of running to and from the North of Scotland.

Conclusion

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

 

 

 

May 15, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments