The Anonymous Widower

What Is Possible On The East Coast Main Line?

In the Wikipedia entry for the Class 91 locomotive, there is an amazing story.

This picture shows one of these locomotives at Kings Cross.

Note.

  1. They have a design speed of 140 mph.
  2. They have a power output of 4.8 MW.
  3. They were built around 1990 by British Rail at Crewe.

They were designed to run services between London King’s Cross and Edinburgh as fast as possible, as the motive power of the InterCity 225 trains.

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Note.

  1. For the British locomotive speed record, locomotive was actually pushing the train and going backwards, as the driving van trailer (DVT) was leading.
  2. How many speed records of any sort, where the direction isn’t part of the record, have been set going backwards?
  3. I feel that this record could stand for many years, as it is not very likely anybody will build another 140 mph locomotive in the foreseeable future. Unless a maverick idea for a high speed freight locomotive is proposed.

I have a few general thoughts on the record run between Kings Cross and Edinburgh in three-and-a-half hours.

  • I would assume that as in normal operation of these trains, the Class 91 locomotive was leading on the run to the North.
  • For various reasons, they would surely have had at least two of British Rail’s most experienced drivers in the cab.
  • At that time, 125 mph InterCity 125 trains had been the workhorse of East Coast Main Line for well over ten years, so British Rail wouldn’t have been short of experienced high speed drivers.
  • It was a Thursday, so they must have been running amongst normal traffic.
  • On Monday, a typical run between Kings Cross and Edinburgh is timetabled to take four hours and twenty minutes.
  • High Speed Two are predicting a time of three hours and forty-eight minutes between Euston and Edinburgh via High Speed Two and  the West Coast Main Line.

The more you look at it, a sub-three-and-and-a-half hour time, by 1980s-technology on a less-than-perfect railway was truly remarkable.

So how did they do it?

Superb Timetabling

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I talk about how Network Rail and Greater Anglia created a fast service between Liverpool Street and Norwich.

I suspect that British Rail put their best timetablers on the project, so that the test train could speed through unhindered.

Just as they did for Norwich-in-Ninety and probably will be doing to the East Coast Main Line to increase services and decrease journey times.

A Good As ERTMS Signalling

Obviously in 1991, there was no modern digital in-cab signalling and I don’t know the standard of communication between the drivers and the signallers.

On the tricky sections like Digswell Viaduct, through Hitchin and the Newark Crossing were other trains stopped well clear of any difficult area, as modern digital signalling can anticipate and take action?

I would expect the test train got a signalling service as good as any modern train, even if parts of it like driver to signaller communication may have been a bit experimental.

There may even have been a back-up driver in the cab with the latest mobile phone.

It must have been about 1991, when I did a pre-arranged airways join in my Cessna 340 on the ground at Ipswich Airport before take-off on a direct flight to Rome. Air Traffic Control had suggested it to avoid an intermediate stop at say Southend.

The technology was arriving and did it help the drivers on that memorable run North ensure a safe and fast passage of the train?

It would be interesting to know, what other equipment was being tested by this test train.

A Possible Plan

I suspect that the plan in 1991 was to use a plan not unlike one that would be used by Lewis Hamilton, or in those days Stirling Moss to win a race.

Drive a steady race not taking any chances and where the track allows speed up.

So did British Rail drive a steady 125 mph sticking to the standard timetable between Kings Cross and Edinburgh?

Then as the Wikipedia extract indicated, at several times during the journey did they increase the speed of the train to 140 mph.

And the rest as they say was an historic time of 3 hours, 29 minutes and 30 seconds. Call it three-and-a-half-hours.

This represented a start-to-stop average speed of 112.5 mph over the 393 miles of the East Coast Main Line.

Can The Current Trains Achieve Three-And-A-Half-Hours Be Possible Today?

Consider.

  • The best four hours and twenty minutes timings of the Class 801 trains, represents an average speed of 90.7 mph.
  • The Class 801 trains and the InterCity 225 trains have similar performance.
  • There have been improvements to the route like the Hitchin Flyover.
  • Full ERTMS in-cab signalling is being installed South of Doncaster.
  • I believe ERTMS and ETC could solve the Newark Crossing problem! See Could ERTMS And ETCS Solve The Newark Crossing Problem?
  • I am a trained Control Engineer and I believe if ERTMS and ETC can solve the Newark Crossing problem, I suspect they can solve the Digswell Viaduct problem.
  • The Werrington Dive Under is being built.
  • The approaches to Kings Cross are being remodelled.

I can’t quite say easy-peasy. but I’m fairly certain the Kings Cross and Edinburgh record is under serious threat.

  • A massive power supply upgrade to the North of Doncaster is continuing. See this page on the Network Rail web site.
  • ERTMS and ETC probably needs to be installed all the way between Kings Cross and Edinburgh.
  • There may be a need to minimise the number of slower passenger trains on the East Coast Main Line.
  • The Northumberland Line and the Leamside Line may be needed to take some trains from the East Coast Main Line.

Recent Developments Concerning the Hitachi Trains

There have been several developments  since the Hitachi Class 800 and Class 801 trains were ordered.

  • Serious engineers and commentators like Roger Ford of Modern Railways have criticised the lugging of heavy diesel engines around the country.
  • Network Rail have upgraded the power supply South of Doncaster and have recently started to upgrade it between Doncaster and Edinburgh. Will this extensive upgrade cut the need to use the diesel power-packs?
  • Hitachi and their operators must have collected extensive in-service statistics about the detailed performance of the trains and the use of the diesel power-packs.
  • Hitachi have signed an agreement with Hyperdrive Innovation of Sunderland to produce battery-packs for the trains and two new versions of the trains have been announced; a Regional Battery Train and an Intercity Tri-Mode Battery Train.
  • East Coast Trains have ordered five five-car Class 803 trains, each of which will have a small battery for emergency use and no diesel power-packs.
  • Avanti West Coast have ordered ten seven-car Class 807 trains, each of which have no battery or diesel power-packs.

And these are just the ones we know about.

The Class 807 Trains And Liverpool

I find Avanti West Coast’s Class 807 trains the most interesting development.

  • They have been partly financed by Rock Rail, who seem to organise train finance, so that the train operator, the train manufacturer all get the best value, by finding good technical solutions.
  • I believe that these trains have been designed so they can run between Euston and Liverpool Lime Street stations in under two hours.
  • Does the absence of battery or diesel power-packs save weight and improve performance?
  • Euston and Liverpool Lime Street in two hours would be an average of only 96.8 mph.
  • If the Class 807 trains could achieve the same start-stop average of 112.5 mph achieved by the InterCity 225 test run between Kings Cross and Edinburgh, that would mean a Euston and Liverpool Lime Street time of one hour and forty-three minutes.
  • Does Thunderbird provision on the West Coast Main Line for the Class 390 trains mean that the Class 807 trains don’t need emergency power?
  • Have diesel power-packs been rarely used in emergency by the Hitachi trains?

I believe the mathematics show that excellent sub-two hour times between Euston and Liverpool Lime Street are possible by Avanti West Coast’s new Class 807 trains.

The Class 803 Trains And Edinburgh

East Coast Trains ordered their Class 803 trains in March 2019,  nine months before Avanti West Coast ordered their Class 807 trains.

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, I outlined brief details of the trains and the proposed service.

  • FirstGroup is targeting the two-thirds of passengers, who fly between London and Edinburgh.
  • They are also targeting business passengers, as the first train arrives in Edinburgh at 10:00.
  • The trains are five-cars.
  • The trains are one class with onboard catering, air-conditioning, power sockets and free wi-fi.
  • Stops will be five trains per day with stops at Stevenage, Newcastle and Morpeth.
  • The trains will take around four hours.
  • The service will start in Autumn 2021.

I also thought it would be a successful service

As I know Edinburgh, Liverpool and London well, I believe there are similarities between the Euston-Liverpool Lime Street and Kings Cross-Edinburgh routes.

  • Both routes are between two cities known all over the world.
  • Both routes are fully-electrified.
  • Both routes have the potential to attract passengers from other transport modes.

The two services could even be run at similar speeds.

  • Euston-Liverpool Lime Street in two hours will be at 96.8 mph
  • Kings Cross-Edinburgh in four hours will be at 98.3 mph.

Does this explain the similar lightweight trains?

Could Lightweight Trains Help LNER?

There is one important factor, I haven’t talked about in detail in this post. Batteries and diesel power-packs on the Hitachi trains.

I have only mentioned them in the following circumstances.

  • When trains are not fitted with battery and/or diesel power-packs.
  • When battery developments are being undertaken.

Let’s consider the LNER fleet.

  • LNER has thirteen nine-car Class 800 trains, each of which has five diesel power-packs
  • LNER has ten five-car Class 800 trains, each of which has three diesel power-packs
  • LNER has thirty nine-car Class 801 trains, each of which has one diesel power-pack
  • LNER has twelve five-car Class 801 trains, each of which has one diesel power-pack

There are sixty-five trains, 497 coaches and 137 diesel power-packs.

And look at their destinations.

  • Aberdeen – No Electrification from Edinburgh
  • Alnmouth – Fully Electrified
  • Berwick-upon-Tweed – Fully Electrified
  • Bradford Forster Square – Fully Electrified
  • Darlington – Fully Electrified
  • Doncaster – Fully Electrified
  • Durham – Fully Electrified
  • Edinburgh – Fully Electrified
  • Glasgow – Fully Electrified
  • Grantham – Fully Electrified
  • Harrogate – No Electrification from Leeds – Possible Battery Destination
  • Huddersfield – No Electrification from Leeds – Possible Battery Destination – Probable Electrification
  • Hull – No Electrification from Temple Hirst Junction – Possible Battery Destination
  • Inverness – No Electrification from Stirling
  • Leeds – Fully Electrified
  • Lincoln – No Electrification from Newark North Gate – Possible Battery Destination
  • Middlesbrough – No Electrification from Northallerton – Possible Battery Destination
  • Newcastle – Fully Electrified
  • Newark North Gate – Fully Electrified
  • Northallerton – Fully Electrified
  • Peterborough – Fully Electrified
  • Skipton – Fully Electrified
  • Retford – Fully Electrified
  • Stevenage – Fully Electrified
  • Stirling – Fully Electrified
  • Sunderland – No Electrification from Northallerton – Possible Battery Destination
  • Wakefield Westgate – Fully Electrified
  • York – Fully Electrified

The destinations can be summarised as followed.

  • Not Electrified – 2
  • Possible Battery Destination – 6
  • Fully Electrified – 20

This gives a total of 28.

Could the trains be matched better to the destinations?

  • Some routes like Edinburgh, Glasgow, Newcastle and Stirling could possibly be beneficially handled by lightweight trains without any diesel or battery power-packs.
  • Only Aberdeen and Inverness can’t be reached by all-electric or battery-electric trains.
  • In LNER Seeks 10 More Bi-Modes, I proposed a hydrogen-electric flagship train, that would use hydrogen North of the existing electrification.

There certainly appear to be possibilities.

Example Journey Times To Edinburgh

This table shows the various time for particular start-stop average speeds between Kings Cross and Edinburgh.

  • 80 mph – 4:54
  • 85 mph – 4:37
  • 90 mph – 4:12
  • 98.2 mph – 4:00
  • 100 mph – 3:56
  • 110 mph – 3:34
  • 120 mph – 3:16
  • 125 mph – 3:08

Note.

  • Times are given in h:mm.
  • A few mph increase in average speed reduces journey time by a considerable amount.

The figures certainly show the value of high speed trains and of removing bottlenecks, as average speed is so important.

Decarbonisation Of LNER

LNER Seeks 10 More Bi-Modes was based on an article in the December 2020 Edition of Modern Railways, with the same title. These are the first two paragraphs of the article.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast main line services.

In a Prior Information Notice published on 27 October, the operator states it is seeking trains capable of operating under 25kW overhead power with ‘significant self-power capability’ for operation away from overhead wires. ‘On-board Energy Storage for traction will be specified as a mandatory requirement to reduce, and wherever practical eliminate, diesel usage where it would otherwise be necessary, although LNER anticipates some degree of diesel traction may be required to meet some self-power requirements. Suppliers tendering are asked to detail their experience of designing and manufacturing a fleet of multi-mode trains with a range of traction options including battery-electric, diesel-electric, hydrogen-electric, battery-diesel, dual fuel and tri-mode.

From this, LNER would appear to be serious about decarbonisation and from the destination list I published earlier, most services South of the Scottish Central Belt can be decarbonised by replacing diesel-power packs with battery power-packs.

That last bit, sounds like a call for innovation to provide a solution to the difficult routes to Aberdeen and Inverness. It also looks as if it has been carefully worded not to rule anybody out.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

It announces the Hitachi Intercity Tri-mode Battery Train, which is described in this Hitachi infographic.

As the Hitachi press release is dated the 15th of December 2020, which is after the publication of the magazine, it strikes me that LNER and Hitachi had been talking.

At no point have Hitachi stated what the range of the train is on battery power.

To serve the North of Scotland these gaps must be bridged.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

It should also be noted that distances in Scotland are such, that if these gaps could be bridged by battery technology, then probably all of the North of Scotland’s railways could be decarbonised. As Hitachi are the major supplier of Scotland’s local and regional electric trains, was the original Prior Information Notice, written to make sure Hitachi responded?

LNER run nine-car Class 800 trains on the two long routes to Aberdeen and Inverness.

  • These trains have five diesel power-packs under coaches 2,3, 5, 7 and 8.
  • As five-car Class 800 trains have diesel power-packs under coaches 2, 3 and 4, does this mean that Hitachi can fit diesel power-packs under all cars except for the driver cars?
  • As the diesel and battery power-packs appear to be interchangeable, does this mean that Hitachi could theoretically build some very unusual trains?
  • Hitachi’s trains can be up to twelve-cars in normal mode and twenty-four cars in rescue mode.
  • LNER would probably prefer an all Azuma fleet, even if a few trains were a bit longer.

Imagine a ten-car train with two driver and eight intermediate cars, with all of the intermediate cars having maximum-size battery-packs.

Supposing, one or two of the battery power-packs were to be replaced with a diesel power-pack.

There are a lot of possibilities and I suspect LNER, Hitachi and Hyperdrive Innovation are working on a train capable of running to and from the North of Scotland.

Conclusion

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

 

 

 

May 15, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

High-Speed Low-Carbon Transport Between Great Britain And Ireland

Consider.

  • According to Statista, there were 13,160,000 passengers between the United Kingdom and the Irish Republic in 2019.
  • In 2019, Dublin Airport handled 32,907,673 passengers.
  • The six busiest routes from Dublin were Heathrow, Stansted, Amsterdam, Manchester, Birmingham and Stansted.
  • In 2018, Belfast International Airport handled 6,269,025 passengers.
  • The four busiest routes from Belfast International Airport were Stansted, Gatwick. Liverpool and Manchester, with the busiest route to Europe to Alicante.
  • In 2018, Belfast City Airport handled 2,445,529 passengers.
  • The four busiest routes from Belfast City Airport were Heathrow, Manchester, Birmingham and London City.

Note.

  1. The busiest routes at each airport are shown in descending order.
  2. There is a lot of air passengers between the two islands.
  3. Much of the traffic is geared towards London’s four main airports.
  4. Manchester and Liverpool get their fair share.

Decarbonisation of the air routes between the two islands will not be a trivial operation.

But technology is on the side of decarbonisation.

Class 805 Trains

Avanti West Coast have ordered thirteen bi-mode Class 805 trains, which will replace the diesel Class 221 trains currently working between London Euston and Holyhead.

  • They will run at 125 mph between Euston and Crewe using electric power.
  • If full in-cab digital signalling were to be installed on the electrified portion of the route, they may be able to run at 140 mph in places under the wires.
  • They will use diesel power on the North Wales Coast Line to reach Holyhead.
  • According to an article in Modern Railways, the Class 805 trains could be fitted with batteries.

I wouldn’t be surprised that when they are delivered, they are a version of the Hitachi’s Intercity Tri-Mode  Battery Train, the specification of which is shown in this Hitachi infographic.

Note.

  1. I suspect that the batteries will be used to handle regenerative braking on lines without electrification, which will save diesel fuel and carbon emissions.
  2. The trains accelerate faster, than those they replace.
  3. The claimed fuel and carbon saving is twenty percent.

It is intended that these trains will be introduced next year.

I believe that, these trains will speed up services between London Euston and Holyhead.

  • Currently, services take just over three-and-a-half hours.
  • There should be time savings on the electrification between London Euston and Crewe.
  • The operating speed on the North Wales Coast Line is 90 mph. This might be increased in sections.
  • Some extra electrification could be added, between say Crewe and Chester and possibly through Llandudno Junction.
  • I estimate that on the full journey, the trains could reduce emissions by up to sixty percent compared to the current diesel trains.

I think that a time of three hours could be achievable with the Class 805 trains.

New trains and a three hour journey time should attract more passengers to the route.

Holyhead

In Holyhead Hydrogen Hub Planned For Wales, I wrote about how the Port of Holyhead was becoming a hydrogen hub, in common with several other ports around the UK including Felixstowe, Harwich, Liverpool and Portsmouth.

Holyhead and the others could host zero-carbon hydrogen-powered ferries.

But this extract from the Wikipedia hints at work needed to be done to create a fast interchange  between trains and ferries.

There is access to the port via a building shared with Holyhead railway station, which is served by the North Wales Coast Line to Chester and London Euston. The walk between trains and ferry check in is less than two minutes, but longer from the remote platform 1, used by Avanti West Coast services.

This Google Map shows the Port of Holyhead.

I think there is a lot of potential to create an excellent interchange.

HSC Francisco

I am using the high-speed craft Francisco as an example of the way these ships are progressing.

  • Power comes from two gas-turbine engines, that run on liquified natural gas.
  • It can carry 1024 passengers and 150 cars.
  • It has a top speed of 58 knots or 67 mph. Not bad for a ship with a tonnage of over 7000.

This ship is in service between Buenos Aires and Montevideo.

Note.

  1. A craft like this could be designed to run on zero-carbon  liquid hydrogen or liquid ammonia.
  2. A high speed craft already runs between Dublin and Holyhead taking one hour and forty-nine minutes for the sixty-seven miles.

Other routes for a specially designed high speed craft might be.

  • Barrow and Belfast – 113 miles
  • Heysham and Belfast – 127 miles
  • Holyhead and Belfast – 103 miles
  • Liverpool and Belfast – 145 miles
  • Stranraer and Larne – 31 miles

Belfast looks a bit far from England, but Holyhead and Belfast could be a possibility.

London And Dublin Via Holyhead

I believe this route is definitely a possibility.

  • In a few years, with a few improvements on the route, I suspect that London Euston and Holyhead could be fairly close to three hours.
  • With faster bi-mode trains, Manchester Airport and Holyhead would be under three hours.
  • I would estimate, that a high speed craft built for the route could be under two hours between Holyhead and Dublin.

It certainly looks like London Euston and Dublin and Manchester Airport and Dublin would be under five hours.

In A Glimpse Of 2035, I imagined what it would be like to be on the first train between London and Dublin via the proposed fixed link between Scotland and Northern Ireland.

  • I felt that five-and-a-half hours was achievable for that journey.
  • The journey would have used High Speed Two to Wigan North Western.
  • I also stated that with improvements, London and Belfast could be three hours and Dublin would be an hour more.

So five hours between London Euston and Dublin using current technology without massive improvements and new lines could be small change well spent.

London And Belfast Via Holyhead

At 103 miles the ferry leg may be too long for even the fastest of the high speed craft, but if say the craft could do Holyhead and Belfast in two-and-a-half hours, it might just be a viable route.

  • It might also be possible to run the ferries to a harbour like Warrenpoint, which would be eighty-six miles.
  • An estimate based on the current high speed craft to Dublin, indicates a time of around two hours and twenty minutes.

It could be viable, if there was a fast connection between Warrenpoint and Belfast.

Conclusion

Once the new trains are running between London Euston and Holyhead, I would expect that an Irish entrepreneur will be looking to develop a fast train and ferry service between England and Wales, and the island of Ireland.

It could be sold, as the Greenest Way To Ireland.

Class 807 Trains

Avanti West Coast have ordered ten electric Class 807 trains, which will replace some of the diesel Class 221 trains.

  • They will run at 125 mph between Euston and Liverpool on the fully-electrified route.
  • If full in-cab digital signalling were to be installed on the route, they may be able to run at 140 mph in places.
  • These trains appear to be the first of the second generation of Hitachi trains and they seem to be built for speed and a sparking performance,
  • These trains will run at a frequency of two trains per hour (tph) between London and Liverpool Lime Street.
  • Alternate trains will stop at Liverpool South Parkway station.

In Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?, I came to the conclusion, that a two-hour journey time was possible, when the new Class 807 trains have entered service.

London And Belfast Via Liverpool And A Ferry

Consider.

  • An hour on the train to and from London will be saved compared to Holyhead.
  • The ferry terminal is in Birkenhead on the other side of the Mersey and change between Lime Street station and the ferry could take much longer than at Holyhead.
  • Birkenhead and Belfast is twice the distance of Holyhead and Dublin, so even a high speed craft would take three hours.

This Google Map shows the Ferry Terminal and the Birkenhead waterfront.

Note.

  1. The Ferry Terminal is indicated by the red arrow at the top of the map.
  2. There are rows of trucks waiting for the ferries.
  3. In the South East corner of the map, the terminal of the Mersey Ferry sticks out into the River
  4. Hamilton Square station is in-line with the Mersey Ferry at the bottom of the map and indicated with the usual red symbol.
  5. There is a courtesy bus from Hamilton Square station to the Ferry Terminal for Ireland.

There is a fourteen tph service between Hamilton Square and Liverpool Lime Street station.

This route may be possible, but the interchange could be slow and the ferry leg is challenging.

I don’t think the route would be viable unless a much faster ferry is developed. Does the military have some high speed craft under development?

Conclusion

London and Belfast via Liverpool and a ferry is probably a trip for enthusiasts or those needing to spend a day in Liverpool en route.

Other Ferry Routes

There are other ferry routes.

Heysham And Barrow-in-Furness

,These two ports might be possible, but neither has a good rail connection to London and the South of England.

They are both rail connected, but not to the standard of the connections at Holyhead and Liverpool.

Cairnryan

The Cairnryan route could probably be improved to be an excellent low-carbon route to Glasgow and Central Scotland.

Low-Carbon Flight Between The Islands Of Great Britain And Ireland

I think we’ll gradually see a progression to zero-carbon flight over the next few years.

Sustainable Aviation Fuel

Obviously zero-carbon would be better, but until zero-carbon aircraft are developed, there is always sustainable aviation fuel.

This can be produced from various carbon sources like biowaste or even household rubbish and disposable nappies.

British Airways are involved in a project called Altalto.

  • Altalto are building a plant at Immingham to turn household rubbish into sustainable aviation fuel.
  • This fuel can be used in jet airliners with very little modification of the aircraft.

I wrote about Altalto in Grant Shapps Announcement On Friday.

Smaller Low-Carbon Airliners

The first low- and zero-carbon airliners to be developed will be smaller with less range, than Boeing 737s and Airbus A 320s. These three are examples of three under development.

I feel that a nineteen seater aircraft with a range of 500 miles will be the first specially designed low- or zero-carbon airliner to be developed.

I believe these aircraft will offer advantages.

  • Some routes will only need refuelling at one end.
  • Lower noise and pollution.
  • Some will have the ability to work from short runways.
  • Some will be hybrid electric running on sustainable aviation fuel.

They may enable passenger services to some smaller airports.

Air Routes Between The Islands Of Great Britain And Ireland

These are distances from Belfast City Airport.

  • Aberdeen – 228 miles
  • Amsterdam – 557 miles
  • Birmingham – 226 miles
  • Blackpool – 128 miles
  • Cardiff – 246 miles
  • Edinburgh – 135 miles
  • Gatwick – 337 miles
  • Glasgow – 103 miles
  • Heathrow – 312 miles
  • Jersey – 406 miles
  • Kirkwall – 320 miles
  • Leeds – 177 miles
  • Liverpool – 151 miles
  • London City – 326 miles
  • Manchester – 170 miles
  • Newcastle – 168 miles
  • Southampton – 315 miles
  • Southend – 344 miles
  • Stansted – 292 miles
  • Sumburgh – 401 miles

Note.

  1. Some airports on this list do not currently have flights from Belfast City Airport.
  2. I have included Amsterdam for comparison.
  3. Distances to Belfast International Airport, which is a few miles to the West of Belfast City Airport are within a few miles of these distances.

It would appear that much of Great Britain is within 500 miles of Belfast City Airport.

These are distances from Dublin Airport.

  • Aberdeen – 305 miles
  • Amsterdam – 465 miles
  • Birmingham – 199 miles
  • Blackpool – 133 miles
  • Cardiff – 185 miles
  • Edinburgh – 208 miles
  • Gatwick – 300 miles
  • Heathrow – 278 miles
  • Jersey – 339 miles
  • Kirkwall – 402 miles
  • Leeds – 190 miles
  • Liverpool – 140 miles
  • London City – 296 miles
  • Manchester – 163 miles
  • Newcastle – 214 miles
  • Southampton – 268 miles
  • Southend – 319 miles
  • Stansted – 315 miles
  • Sumburgh – 483 miles

Note.

  1. Some airports on this list do not currently have flights from Dublin Airport.
  2. I have included Amsterdam for comparison.

It would appear that much of Great Britain is within 500 miles of Dublin Airport.

I will add a few long routes, that someone  might want to fly.

  • Cork and Aberdeen – 447 miles
  • Derry and Manston – 435 miles
  • Manston and Glasgow – 392 miles
  • Newquay and Aberdeen – 480 miles
  • Norwich and Stornaway – 486 miles.

I doubt there are many possible air services in the UK and Ireland that are longer than 500 miles.

I have a few general thoughts about low- and zero-carbon air services in and around the islands of Great Britain and Ireland.

  • The likely five hundred mile range of the first generation of low- and zero-carbon airliners fits the size of the these islands well.
  • These aircraft seem to have a cruising speed of between 200 and 250 mph, so flight times will not be unduly long.
  • Airports would need to have extra facilities to refuel or recharge these airliners.
  • Because of their size, there will need to be more flights on busy routes.
  • Routes which are less heavily used may well be developed, as low- or zero-carbon could be good for marketing the route.

I suspect they could be ideal for the development of new routes and even new eco-friendly airports.

Conclusion

I have come to the conclusion, that smaller low- or zero-carbon are a good fit for the islands of Great Britain and Ireland.

But then Flybe and Loganair have shown that you can make money flying smaller planes around these islands with the right planes, airports, strategy and management.

Hydrogen-Powered Planes From Airbus

Hydrogen-powered zero-carbon aircraft could be the future and Airbus have put down a marker as to the way they are thinking.

Airbus have proposed three different ZEROe designs, which are shown in this infographic.

The turboprop and the turbofan will be the type of designs, that could be used around Great Britain and Ireland.

The ZEROe Turboprop

This is Airbus’s summary of the design for the ZEROe Turboprop.

Two hybrid hydrogen turboprop engines, which drive the six bladed propellers, provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

It certainly is a layout that has been used successfully, by many conventionally-powered aircraft in the past. The De Havilland Canada Dash 8 and ATR 72 are still in production.

I don’t think the turboprop engines, that run on hydrogen will be a problem.

If you look at the Lockheed-Martin C 130J Super Hercules, you will see it is powered by four Rolls-Royce AE 2100D3 turboprop engines, that drive 6-bladed Dowty R391 composite constant-speed fully-feathering reversible-pitch propellers.

These Rolls-Royce engines are a development of an Allison design, but they also form the heart of Rolls-Royce’s 2.5 MW Generator, that I wrote about in Our Sustainability Journey. The generator was developed for use in Airbus’s electric flight research program.

I wouldn’t be surprised to find the following.

  • , The propulsion system for this aircraft is under test with hydrogen at Derby and Toulouse.
  • Dowty are testing propellers suitable for the aircraft.
  • Serious research is ongoing to store enough liquid hydrogen in a small tank that fits the design.

Why develop something new, when Rolls-Royce, Dowty and Lockheed have done all the basic design and testing?

This screen capture taken from the video, shows the front view of the plane.

From clues in the picture, I estimate that the fuselage diameter is around four metres. Which is not surprising, as the Airbus A320 has a height of 4.14 metres and a with of 3.95 metres. But it’s certainly larger than the fuselage of an ATR-72.

So is the ZEROe Turboprop based on a shortened Airbus A 320 fuselage?

  • The ATR 72 has a capacity of 70 passengers.
  • The ZEROe Turboprop has a capacity of less than a hundred passengers.
  • An Airbus A320 has six-abreast seating.
  • Could the ZEROe Turboprop have sixteen rows of seats, as there are sixteen windows in front of the wing?
  • With the seat pitch of an Airbus A 320, which is 81 centimetres, this means just under thirteen metres for the passengers.
  • There could be space for a sizeable hydrogen tank in the rear part of the fuselage.
  • The plane might even be able to use the latest A 320 cockpit.

It looks to me, that Airbus have designed a larger ATR 72 based on an A 320 fuselage.

I don’t feel there are any great technical challenges in building this aircraft.

  • The engines appear to be conventional and could even have been more-or-less fully developed.
  • The fuselage could be a development of an existing design.
  • The wings and tail-plane are not large and given the company’s experience with large composite structures, they shouldn’t be too challenging.
  • The hydrogen storage and distributing system will have to be designed, but as hydrogen is being used in increasing numbers of applications, I doubt the expertise will be difficult to find.
  • The avionics and other important systems could probably be borrowed from other Airbus products.

Given that the much larger and more complicated Airbus A380 was launched in 2000 and first flew in 2005, I think that a prototype of this aircraft could fly around the middle of this decade.

It may seem small at less than a hundred seats, but it does have a range of greater than a 1000 nautical miles or 1150 miles.

Consider.

  • It compares closely in passenger capacity, speed and range, with the De Havilland Canada Dash 8/400 and the ATR 72/600.
  • The ATR 72 is part-produced by Airbus.
  • The aircraft is forty percent slower than an Airbus A 320.
  • It looks like it could be designed to have a Short-Takeoff-And Landing (STOL) capability.

I can see the aircraft replacing Dash 8s, ATR 72s and similar aircraft all over the world. There are between 2000 and 3000 operational airliners in this segment.

The ZEROe Turbofan

This is Airbus’s summary of the design.

Two hybrid hydrogen turbofan engines provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

ZEROeTurbofan

This screen capture taken from the video, shows the front view of the plane.

The aircraft doesn’t look very different different to an Airbus A320 and appears to be fairly conventional. It does appear to have the characteristic tall winglets of the A 320 neo.

I don’t think the turbofan engines, that run on hydrogen will be a problem.

These could be standard turbofan engines modified to run on hydrogen, fuelled from a liquid hydrogen tank behind the rear pressure bulkhead of the fuselage.

If you want to learn more about gas turbine engines and hydrogen, read this article on the General Electric web site, which is entitled The Hydrogen Generation: These Gas Turbines Can Run On The Most Abundant Element In the Universe,

These are my thoughts of the marketing objectives of the ZEROe Turbofan.

  • The cruising speed and the number of passengers are surprisingly close, so has this aircraft been designed as an A 320 or Boeing 737 replacement?
  •  I suspect too, that it has been designed to be used at any airport, that could handle an Airbus A 320 or Boeing 737.
  • It would be able to fly point-to-point flights between most pairs of European or North American cities.

It would certainly fit the zero-carbon shorter range airliner market!

In fact it would more than fit the market, it would define it!

I very much believe that Airbus’s proposed zero-carbon hydrogen-powered designs and others like them will start to define aviation on routes of up to perhaps 3000 miles, from perhaps 2035.

  • The A 320 neo was launched in December 2010 and entered service in January 2016.  That was just five years and a month.
  • I suspect that a lot of components like the fuselage sections, cockpit, avionics, wings, landing gear, tailplane and cabin interior could be the same in a A 320 neo and a ZEROe Turbofan.
  • Flying surfaces and aerodynamics could be very similar in an A 320 neo and a ZEROe Turbofan
  • There could even be commonality between the ZEROe Turboprop and the ZEROe Turbofan, with respect to fuselage sections, cockpit, avionics and cabin interior.

There also must be the possibility, that if a ZEROe Turbofan is a hydrogen-powered A 320 neo, that this would enable the certification process to be simplified.

It might even be possible to remanufacture a A 320 neo into a ZEROe Turbofan. This would surely open up all sorts of marketing strategies.

My project management, flying and engineering knowledge says that if they launched the ZEROe Turbofan this year, it could be in service by the end of the decade on selected routes.

Conclusion

Both the ZEROe Turboprop and ZEROe Turbofan are genuine zero-carbon aircraft, which fit into two well-defined market segments.

I believe that these two aircraft and others like them from perhaps Boeing and Bombardier could be the future of aviation between say 500 and 3000 miles.

With the exception of the provision of hydrogen refuelling at airports, there will be no need for any airport infrastructure.

I also wouldn’t be surprised that the thinking Airbus appear to have applied to creating the ZEROe Turbofan from the successful A 320 neo, could be applied to perhaps create a hydrogen-powered A 350.

I feel that Airbus haven’t fulling disclosed their thinking.  But then no company would, when it reinvents itself.

T also think that short-haul air routes will increasing come under pressure.

The green lobby  would like airlines to decarbonise.

Governments will legislate that airlines must decarbonise.

The rail industry will increasingly look to attract customers away from the airlines, by providing more competitive times and emphasising their green credentials.

Aircraft manufacturers will come under pressure to deliver zero-carbon airliners as soon as they can.

I wouldn’t be surprised to see a prototype ZEROe Turbofan or Boeing’s equivalent fly as early as 2024.

Short Term Solutions

As I said earlier, one solution is to use existing aircraft with Sustainable Aviation Fuel.

But many believe this is greenwash and rather a cop out.

So we must do better!

I don’t believe that the smaller zero- and low-carbon aircraft with a range of up to 500 miles and a capacity of around 19 seats, will be able to handle all the passengers needing to fly between and around the islands of Great Britain and Ireland.

  • A Boeing 737 or Airbus A 320 has a capacity of around two hundred passengers, which would require ten times the number of flights, aircraft and pilots.
  • Airports would need expansion on the airside and the terminals to handle the extra planes.
  • Air Traffic Control would need to be expanded to handle the extra planes.

But the smaller planes would be ideal for the thinner secondary routes.

So I tend to think, that the greens will have to lump it, as Sustainable Aviation Fuel will increasingly be the only viable solution.

This will increase the need for Airbus or Boeing to develop a viable A 320 or 737-sized aircraft as soon as possible.

Air Bridges

I said earlier, that I believe using ferries between Ireland and Holyhead and new bi-mode Class 805 trains between London Euston and Holyhead could be a competitor to airlines.

  • The ferries would be high speed craft capable of Holyhead and Ireland in around 90-100 minutes.
  • The ferries would be zero-carbon.
  • The trains would have a sixty percent reduction in carbon emissions compared to current trains on the route.

If we can skim across the water in a zero-carbon high speed craft, are there any reasons we can’t cross the water in a low- or zero-carbon aircraft.

In the next few sub-sections, I’ll suggest a few air bridges.

Glasgow

Glasgow Airport could be an ideal airport for a  low or zero-carbon air bridge to Northern Ireland.

  • A rail link could eventually be built.
  • There is a reasonable amount of traffic.
  • The distance to Belfast City Airport is only 103 miles.

As the airport serves islands and other places that could be ideal low- and zero-carbon routes, I could see Glasgow becoming a hub for battery and hydrogen-powered aircraft.

Heathrow

Heathrow must prepare itself for an uncertain future.

It will be some years before a third runway is both needed and will have been constructed.

I believe the following will happen.

  • Smaller up to nineteen seat low- or zero-carbon airliners will be in service by 2025.
  • From around 2024, Heathrow will get requests to refuel or charge low- or zero-carbon airliners.
  • Low- or-zero- carbon A 320-size airliners will be in service by 2030.
  • Most ground equipment at Heathrow like tugs and fuel bowsers will be zero-carbon.

If I were Boris or Prime Minister, I would say that Heathrow could have its third runway with the following conditions.

  • All aircraft using the third runway must be zero-carbon
  • All air-side vehicles must be zero-carbon.
  • All vehicles bringing passengers on the last mile to the airport must be zero-carbon.
  • All aircraft using the airport that are not zero-carbon must use sustainable aviation fuel.

I suspect that the conditions would be met by a large margin.

When an airport knows it is effectively going to be closed, it will make sure it survives.

Liverpool

Liverpool Airport could be an ideal airport for a  low or zero-carbon air bridge to the island of Ireland.

  • There is a nearby Liverpool South Parkway station, with frequent services to both the local area and places further away.
  • An improved London train service starts in 2022 or 2023.
  • There would need to be a people mover between the station and the airport.
  • The airport can probably have piped hydrogen from across the Mersey.
  • There is already significant traffic to and from the island of Ireland.
  • Flight times Between Liverpool and Dublin and Belfast would be under an hour.

I also feel that Liverpool could develop lots of other low- and zero-carbon routes to perhaps Cardiff, Edinburgh, Glasgow, Norwich, Southampton and the Isle of Man.

I could even see Liverpool having a Turn-Up-And-Go shuttle service to Dublin and Belfast, with small zero-carbon planes running every fifteen minutes or so.

Manston

I wouldn’t rule out Manston as a low- and zero-carbon airport for flights to the Benelux countries and Northern France and parts of Germany.

These are a few distances from Manston Airport.

  • Amsterdam – 160 miles
  • Brussels – 134 miles
  • Cologne – 253 miles
  • Dusseldorf – 234 miles
  • Frankfurt – 328 miles
  • Geneva – 414 miles
  • Hamburg – 396 miles
  • Le Touquet – 59 miles
  • Lille – 49 miles
  • Luxembourg – 243 miles
  • Ostend – 66 miles
  • Strasbourg – 339 miles

Manston’s position on the tip of Kent gives it an advantage and I think low- and zero-carbon services could reach Cologne, Frankfurt, Geneva, Hamburg and Strasbourg.

The airport also has other advantages.

  • A big electrolyser to produce hydrogen is being built at Herne Bay.
  • The area is rich in wind and solar energy.
  • I suspect the airspace to the East of the airport isn’t very busy and short hops to the Continent could be easy to slot in.

There is a new station being built at Thanet Parkway, which is on the Ashford and Ramsgate Line, which has regular services to London, including some services on High Speed One.

This Google Map shows the location of the airport and the station.

Note.

  1. The runway of Manston Airport.
  2. The Ashford and Ramsgate Line running across the South-East corner of the map.
  3. The station could be built to the West of the village of Cliffsend, which is indicated by the red arrow.
  4. I’m sure, a people mover or a zero-carbon bus could be built to connect the station and the airport.

There would need to be improvements in the frequency of services to and from London, but I’m sure Manston Airport could become an ideal airport for low- and zero-carbon aircraft serving the near Continent.

Southampton

Southampton Airport could be the ideal design for an airport to serve an air bridge.

  • The Southampton Airport Parkway station is connected to the terminal.
  • The station has numerous rail services, including a fast service to and from London.
  • The airport is expanding and could make sure all works are compatible with a low- and zero-carbon future.

Southampton is not ideally placed for services to Ireland, but with low- and zero-carbon aircraft it could be ideal for running services to the Channel Islands and Western France.

Other Airports

I suspect other airports will go the low- and zero-carbon route.

Conclusion

I started this post, with the intention of writing about writing about low- and zero-carbon transport between the islands of Great Britain and Ireland.

But it has grown.

I have now come to the conclusion that there are several low- and zero-carbon routes that could be developed.

The most promising would appear to be.

  • London Euston and Belfast by new Class 805 train to Holyhead and then zero-carbon high speed ferry.
  • London Euston and Dublin by new Class 805 train to Holyhead and then zero-carbon high speed ferry.
  • Glasgow and Belfast by train to Cairnryan and then zero-carbon high speed ferry.
  • Point-to-point air routes using new small nineteen seat low- or zero-carbon airliners with a range of 500 miles.
  • London Euston and Belfast by new Class 807 train to Liverpool Airport and then smaller low- or zero-carbon airliner.
  • London Euston and Dublin by new Class 807 train to Liverpool Airport and then and then smaller low- or zero-carbon airliner.
  • Other air bridges will develop.

But I am fairly certain by the end of the decade, there will be A320-size airlines powered by hydrogen taking us to Ireland and Western Europe.

I believe that the survival and ultimate prospering of Airbus and Boeing depends on the development of a range of zero-carbon airliners.

For this reason alone, they will succeed.

April 22, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Northern Powerhouse Rail – A New Line Between Manchester And Leeds Via The Centre Of Bradford

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is a new rail line between Manchester and Leeds via the centre of Bradford.

I shall look at a few of the possibilities for various sections of the route.

Current And Proposed Timings Between Manchester And Leeds

These are the current typical timings between Manchester Victoria and Leeds stations.

  • 55 minutes for 43 miles, which is an average speed of 47 mph.

With Northern Powerhouse Rail, a time of 25 minutes is the objective, which is an average speed of 103.2 mph.

  • As my helicopter flies it is just 35.7 miles, so a 25 minutes journey time would require an average speed of 85.7 mph.

It is obvious that a new much straighter line is needed with an operating speed of at least 100 mph.

One of the best 100 mph lines in the UK  is the Great Eastern Main Line between Liverpool Street and Norwich.

  • It is generally only double-track.
  • The fastest services take 90 minutes for the 115 miles, which is an average speed of 77 mph.
  • It is a busy line with lots of suburban services closer to London and freight trains to and from Felixstowe.

But even a line built to the standard of the Great Eastern Main Line wouldn’t be good enough for Northern Powerhouse Rail’s objective of 25 minutes.

The mathematics tell me, that a new line is needed, built as straight as possible between Manchester and Leeds.

High Speed Two’s Approach To Manchester

This map clipped from High Speed Two’s interactive map, shows the route of High Speed Two as it approaches Manchester Piccadilly station.

The colours of High Speed Two indicate the type of construction.

  • Black is a bored tunnel. Only in the South East corner, where it continues to Manchester Airport.
  • Purple is a tunnel portal.
  • Brown is a track between retaining walls. Used through Manchester Interchange or Airport station.
  • Red is a viaduct.
  • Orange is a box structure

This Google Map shows a similar area.

Are High Speed Two serious about demolishing a large area of Manchester to the North and East of Manchester Piccadilly station?

  • It will cause massive disruption all over the centre of Manchester.
  • How many businesses will be ruined by this plan?
  • How many residents are there in the area?
  • How will trains from the new platforms at Piccadilly station continue to Bradford, Huddersfield, Leeds and Sheffield?
  • Mrs. Merton could have said “Let’s all have a reverse!” And she’d have been joking!
  • You can’t go through the new platforms, as that would mean demolishing most of Manchester City Centre.

What High Speed Two are proposing is complete and utter rubbish!

In Whither HS2 And HS3?, which I wrote in May 2015, I said this.

I do think though that our designs for HS2 are rather dated and don’t take things that are happening or have happened into account.

Crossrail in London has shown that putting a large twin rail tunnel under a major city, is not the problem it once was. Crossrail have also been very innovative in creating stations with the minimum disturbance to existing infrastructure. As an example, the new Whitechapel station for Crossrail has also used a technique called uphill excavation, where you create escalator and lift shafts upwards from the tunnels, rather than traditionally from the surface, which is much more disruptive.

These techniques can revolutionise the construction of HS2.

Take cities like Birmingham, Leeds, Manchester, Newcastle and Sheffield, which have developed and are continually developing extensive local rail, tram and bus networks. So why are we in Birmingham still talking about creating an HS2 station at Curzon Street? Surely, we just dig a very deep pair of HS2 tunnels under the city and then uphill excavate into not only New Street, but Moor Street and Snow Hill as well. The tunnels would be only made as long as necessary, although the underground station could be very large. But it probably wouldn’t be much bigger than the enormous double-ended Liverpool Street/Moorgate station being created for Crossrail.

The great advantage of this method of construction is that you can continue to develop your network of local trains, trams and other transport links, untroubled by the construction of the new station deep below. Anybody, who thinks this is not possible, should spend half-an-hour walking around Whitechapel station, where the Hammersmith and City, District and East London Lines are passing untroubled over the giant hole and through the building site for the new station.

To some the example of Crossrail in London, would not be a good one, as Crossrail is years late. But the tunnelling under London and the excavations for the stations have gone well and were delivered on time.

In the related post, I went on to propose a double-ended underground station in Manchester with connections to both Piccadilly and Victoria stations. It could even have other connections to locations in the City Centre like Piccadilly Gardens.

There’s certainly space for a stylish entrance at the busy tram and bus interchange.

By applying the lessons learned in the building of Crossrail and other projects like Stuttgart 21, which I wrote about in Stuttgart Hauptbahnhof, I’m sure that a massive underground station in Manchester could be built successfully, on time and on budget.

I am not alone in thinking this way. In The Rival Plans For Piccadilly Station, That Architects Say Will ‘Save Millions’, I write about a plan from world-class architects Weston Williamson, who designed the superb new London Bridge station.

This visualisation from Weston Williamson, shows their proposed station.

Note.

  1. In the visualisation, you are observing the station from the East.
  2. The existing railway lines into Piccadilly station are shown in red.
  3. Stockport and Manchester Airport are to the left, which is to the South.
  4. Note the dreaded Castlefield Corridor in red going off into the distance to Oxford Road and Deansgate stations.
  5. The new high speed lines are shown in blue.
  6. To the left they go to Manchester Airport and then on to London, Birmingham and the South, Warrington and Liverpool and Wigan, Preston, Blackpool, Barrow-in-Furness, the North and Scotland.
  7. To the right, they go to Huddersfield, Bradford, Leeds, Hull and the North East, and Sheffield, Doncaster and the East.
  8. Between it looks like  a low-level High Speed station with at least four tracks and six platforms.
  9. The Manchester Mretrolink is shown in yellow.
  10. The potential for over-site development is immense. If the Station Square Tower was residential, the penthouses would be some of the most desirable places to live in the North.

This station would enable improvements to rail services in the North and Scotland.

  • It would be a through station, to allow East to West services, like Liverpool and Hull.
  • Fewer services would have to reverse.
  • All services using the underground station, that went to the West would serve Manchester Airport.
  • TransPennine services like Liverpool and Edinburgh and Liverpool and Scarborough, would use the station and also call at Manchester Airport.
  • TransPennine services like Glasgow and Manchester Airport could be extended to Leeds and Hull.
  • TransPennine services would not need to use the overcrowded Castlefield Corridor.
  • All existing services to the main section of the existing Piccadilly station, could continue operation as now, during the construction and operation of the underground station. Some would eventually be replaced by high speed services using the underground station.

Manchester Airport would have one of the best train services of any airport in the world. It would certainly be on a par with Schiphol.

Careful alignment of the tunnels under Manchester, could also ease the building of the new line between Manchester and Leeds.

Huddersfield And Westtown (Dewsbury)

The only part of an upgraded TransPennine route between Manchester and Leeds, that is in the planning and design phase and visible to the public, is the upgrade between Huddersfield to Westtown (Dewsbury), which is described on this page of the Network Rail web site. This is the introductory paragraph.

We’re proposing an upgrade to a section of railway between Huddersfield and Westtown (Dewsbury) to deliver passenger benefits along the TransPennine railway.

Network Rail provide this very useful map.

This article on Rail Technology Magazine is entitled Network Rail Reveals Detailed £2.9bn Upgrade Plans For TransPennine Route, which gives the major details of the upgrade.

  • Improvement between Huddersfield and Westtown
  • Grade separation or a tunnel at Ravensthorpe
  • Rebuilding and electrification of eight miles of track.
  • Possible doubling the number of tracks from two to four.
  • Improved stations at Huddersfield, Deighton, Mirfield and Ravensthorpe.

This project would be a major improvement to the Huddersfield Line, but I have one problem with this project. – It doesn’t go anywhere near Bradford.

This Google Map shows Bradford, Leeds, Brighouse and Dewsbury.

Note.

  1. Bradford is in the North-West corner of the map, with the red arrow marking Bradford Royal Infirmary.
  2. Leeds is in the North-East corner of the map.
  3. Brighouse is in the South-West corner  of the map.
  4. The red arrow at the bottom of the map marks Dewsbury and District Hospital, with the towns of Morley and Dewsbury to the East.

The route Network rail are improving goes South-Westerly from Leeds and through both Morley and Leeds, before turning to the West and then going South to Huddersfield.

I am left with the conclusion, that Network Rail’s plans may do wonders for travel between Leeds and Huddersfield, but they don’t do anything for Bradford.

But the plans will have positive effects on travellers between Leeds and Manchester.

Eight Miles Of Electrification

Eight miles of electrification may not seem much, but to a Hitachi Regional Battery train, travelling at speed it is a few minutes to add some charge to the batteries, especially if the train stops at Dewsbury and/or Huddersfield stations.

This Hitachi infographic gives the specification for the Hitachi Regional Battery train.

Note.

  1. It has a range of 90 km or 56 miles on battery power.
  2. It can travel at up to 100 mph on battery power.
  3. TransPennine’s Class 802 trains can be converted to Regional Battery trains, by simply swapping the diesel engines for battery packs.

If these trains fully-charged their batteries on the eight miles of electrification, they could do the following.

  • Going East they could easily reach Leeds, which is under ten miles from Dewsbury station. At a pinch they could even reach York, which is thirty-five miles from Dewsbury.
  • Going West they could reach Manchester, which is twenty-six miles from Huddersfield station. At a pinch, they could just about reach Liverpool, which is fifty-seven miles from Huddersfield.

Note that North of York and West of Manchester are both fully electrified.

This eight miles of electrification would enable the following.

  • Several of TransPennine Express services run by Class 802 trains to become all-electric services.
  • Other operators like Northern could use battery electric trains for stopping services along the route.
  • It might even enable some freight trains to run through the area, with hybrid power.

It looks to me, that Network Rail have chosen this section to electrify, so that it gives a lot of benefit to battery electric trains.

Will Services Be Faster Between Huddersfield And Leeds?

I estimate the the straightened track, the better acceleration of electric trains and other improvements would save up to perhaps ten minutes.

Timings between Manchester and Leeds, would probably be around 45 minutes, which is nowhere near Northern Powerhouse Rail’s objective of 25 minutes

The Problem Of Bradford

Bradford has two central stations; Bradford Interchange and Bradford Forster Square. which have no connection between them.

This Google Map shows the two stations.

It is an area crowded with buildings between the two stations.

There is a Wikipedia entry called Bradford Crossrail, where this is said about the reasons for the two stations.

These stations were built in the nineteenth century by different railway companies with an individual, rather than a comprehensive plan for rail development in the city.

The Wikipedia entry also says this about Northern Powerhouse Rail and the city.

The Northern Powerhouse Rail project has also mooted a project to link Leeds and Manchester with a through route at Bradford. Whilst this would either involve a bypass line south of the city and a parkway station at Low Moor or a new route tunnelling through the city centre, neither option mentions connecting the lines from both north and south of the city together.

I will look at the two solutions to connect Northern Powerhouse Rail to the City.

Low Moor Station

The diagram shows the connections between Bradford Interchange, Bradford Low Moor, Huddersfield and Leeds stations.

It would appear that if a connection were to be made between Low Moor and New Pudsey stations. that could be a solution.

This Google Map shows where the lines to Huddersfield and Leeds join outside Bradford Interchange station.

Note,

  1. Bradford Interchange station is to the North.
  2. Bradford Low Moor station is to the South.
  3. New Pudsey station is to the East.

I suspect it would be possible to create a curve that allowed trains to go between  Bradford Low Moor and New Pudsey stations, but I doubt it would be a fast route.

A Bradford Tunnel

This would be the bold option, where all sorts of routes could be possible.

  • It could go under the City Centre in such a way, that it had pedestrian connections to both current stations and important places with a large number of visitors.
  • It could connect to Huddersfield in the West and Leeds in the East.
  • It might even loop under the City Centre, as the Wirral Line does under Liverpool.

A tunnel under the City, would be my preferred solution.

A Tunnel Between Manchester And Leeds

So far, various people or organisations have advocated the following tunnels on the route.

  • High Speed Two are proposing a tunnel between Manchester Airport and Manchester City Centre.
  • Weston Williamson are proposing a Manchester High Speed station underneath Manchester Piccadilly station.
  • A tunnel has been proposed to connect to Bradford City Centre.

I feel strongly, that a tunnel can be built under the Pennines to link Manchester and Leeds.

Rail Tunnels through the Pennines have been dug before, notably at Standedge, Totley and Woodhead.

I answered the question in detail in Will HS2 And Northern Powerhouse Rail Go For The Big Bore? and this was the conclusion of that post.

I believe that my naïve analysis in this post shows that a TransPennine tunnel is possible.

But I believe that the right tunnel could have one big advantage.

Suppose it was built to handle the following.

    • A capacity of eighteen tph, which is the same as High Speed Two.
    • An operating speed of 140 mph or more. The Gotthard Base Tunnel has a maximum operating speed of 160 mph.
    • High Speed Two’s Full-Size trains.
    • The largest freight trains

It would be future proofed for longer than anybody could envisage.

There are also other smaller advantages.

    • It would by-pass a lot of difficult areas.
    • It would cause very little aural and visual disruption.
    • IIf it were designed with care, it would not affect the flora and fauna.
    • As with the Swiss tunnel, it could be dug level, which would save energy and allow trains to run faster.
    • It could be running twelve tph between Leeds and Manchester Airport via Bradford, Huddersfield and Manchester Piccadilly.
    • Existing surface railways at the Eastern end could serve Cleethorpes, Darlington, Doncaster, Edinburgh, Hull, Middlesbrough, Newcastle, Scarborough, Sheffield and York
    • Existing surface railways at the Western end could serve Barrow, Blackpool, Carlisle, Chester, Glasgow, Liverpool. North Wales, Preston and Wigan.

It would be more like Thameslink for the North turned on its side, rather than Crossrail for the North.

Would such a TransPennine tunnel be realisable?

Consider.

  • 3D design software has improved tremendously over the last decade.
  • The Swiss have shown that these long tunnels can be built through solid rock.
  • There is plenty of space to put the tunnel.
  • It doesn’t have to be one continuous tunnel.
  • It might be possible to built it as a base tunnel, which would be low down and level between two valleys on either side of the Pennines.

I think there could be a lot of flexibility on how the tunnel would be designed and built.

Conclusion

A Manchester and Leeds tunnel via Bradford, could be one of the boldest projects ever undertaken in the UK.

I believe that we have the capabilities to build it.

Project Management Recommendations

This is a large project that will take several years.

  • But the Swiss have dug the Gotthard Base Tunnel of a similar size through solid rock in recent years.
  • It would be a political symbol to the North, that Government is serious about levelling up.
  • In thirty years or so, it won’t be found to have been built with inadequate capacity.

Other projects, such as the Huddersfield and Westtown Improvement wukk old the fort, whilst the tunnel is built.

 

November 22, 2020 Posted by | Transport | , , , , , , , , , , , | 17 Comments

Northern Powerhouse Rail – A New Line Between Liverpool And Manchester Via The Centre Of Warrington

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is a new rail line between Liverpool and Manchester via the centre of Warrington.

I shall look at a few of the possibilities for various sections of the line starting at the Manchester end.

High Speed Two And Northern Powerhouse Rail Between Warrington/Lymm And Manchester Airport

This map clipped from High Speed Two’s interactive map, shows the route of High Speed Two in the area between Lymm and Manchester Airport.

Note.

  1. High Speed Two is shown in orange
  2. The blue dot is Manchester Interchange station at Manchester Airport.
  3. High Speed Two goes North to Wigan North Western station.
  4. High Speed Two goes South to Crewe station.
  5. High Speed Two goes East to Manchester and the East.
  6. The East-West Motorway is the M56 with Junction 7/8 in the middle of the map and Junction 9 with the M6, at the Western edge of the map.

This enlarged map shows High Speed Two between Manchester Airport and Junction 7/8 of the M56.

 

The colours of High Speed Two indicate the type of construction.

  • Black is a bored tunnel. Only in the North East corner, where it continues to Manchester.
  • Brown is a track between retaining walls. Used through Manchester Interchange or Airport station.
  • Red is a viaduct.
  • Yellow is a cutting.

This Google Map shows a similar area.

High Speed Two’s tracks will be on the South side of the Motorway and will be shared with Northern Powerhouse Rail.

  • There is likely to be up to twelve trains per hour (tph) in both directions.
  • I would think, that with modern signalling that the trains would be running at 140 mph or more.
  • Between Manchester Airport and Warrington could be a line as between St. Pancras and Ebbsfleet on High Speed One.

This map clipped from High Speed Two’s interactive map, shows the M56 and High Speed Two around Junction 7/8 of the M56.

The colours are as before.

  • The obvious way to build a new rail line between Manchester and Warrington, would surely be to create a rail junction just South of the Motorway junction.
  • A line to Warrington could run along the South side of the Motorway.
  • I also believe that there should be a connection between the High Speed Two lines to Manchester and Wigan North Western, to allow high speed services between Manchester and Barrow, Blackpool, Preston, Windermere and Scotland.

Building the rail junctions around the Motorway junctions would be a good idea for environmental and visual reasons.

Northern Powerhouse Rail would then continue to Junction 9 of the M56 Motorway.

This Google Map, shows the M56 around Junction 9 with the M6.

Note.

  1. The M56 running East-West.
  2. The M6 running North-South.
  3. Lymm services to the North-West of the junction.
  4. Lymm is to the North-East and Warrington is to the North-West of the junction.

Would it be possible for to run South of the M56 and then turn North to run along the Western side of the M6 towards Warrington?

I very much feel, that with modern 3D software, an engineer with expertise in extreme knitting could thread a double-track line through to take a North-Western route towards Warrington.

The Bridge Across The Mersey

If you look at maps of the area, there is a big problem of water between Junction 9 of the M56 and Warrington town centre, with its two stations of Warrington Bank Quay and Warrington Central, both of which have services to Liverpool Lime Street station.

The problem is the Manchester Ship Canal.

I then noticed a bridge to the South East of the town centre, which is shown in this Google Map.

It may look like it has got more than a touch of the dreaded iron moths, but it certainly looks like it was once a double track rail line.

The bridge was on the Warrington and Altrincham Junction Railway, which did what you would expect from the name.

This Google Map shows the track of the railway either side of the bridge.

Note the bridge in the centre of the map and the green scar of the former railway running East-West across the map.

To the East the green scar of the railway can be picked out all the way to M6.

Note.

  1. The bridge is at the West over the Manchester Ship Canal.
  2. The green scar of the Warrington and Altrincham Junction Railway can be followed all the way to the M6,
  3. I think the track is now a footpath, as it is marked on the map with a dotted white line.

I would be interested to know, if it could take a modern double track railway.

This Google Map shows an enlarged view of where the green scar of the Warrington and Altrincham Junction Railway goes under the M6.

Note the dotted white line marking the railway, towards the top of the map.

Would it be possible to design a track layout, where Northern Powerhouse Rail came up the Western side of the M6 and was able to connect to Warrington?

I certainly believe it’s a possibility.

Warrington Bank Quay Station

To the West of the bridge over the Manchester Ship Canal, the Warrington and Altrincham Junction Railway ran through low-level platforms at Warrington Bank Quay station.

This Google Map shows Warrington Bank Quay station.

This picture shows a freight train passing under Warrington Bank Quay station.

Note.

  1. There are four North-South platforms on the West Coast Main Line.
  2. The Warrington and Altrincham Junction Railway passes East-West under the four main platforms.
  3. Low levels platforms used to handle passengers on the East-West lines.
  4. I was looking to the East in the picture.
  5. The tracks continue to the West on the route of the former St. Helens Railway, which is now a freight route.
  6. The map shows the tracks curving sharply round one of the meanders of the River Mersey.

Warrington Bank Quay station is on a congested and tight site, but by using some of the spare railway land, I feel it could rebuilt to be an excellent station for Warrington.

Warrington Bank Quay Station As An Interchange

Warrington Bank Quay station could be an excellent and efficient interchange between High Speed Two and Northern Powerhouse Rail.

There are also local services from the station, which could be useful for some travellers.

Between Warrington Bank Quay Station And Widnes

This Google Map shows the Mersey estuary between Warrington Bank Quay station and Widnes.

Note.

  1. Warrington is in the North-East corner of the map, with Warrington Bank Quay station shown by a red station symbol.
  2. The new Mersey Gateway bridge is in the South-West corner of the map.
  3. The River Mersey meanders between the bridge and Warrington.
  4. Fiddlers Ferry power station can be picked out in the nearest meander of the Mersey to the bridge.
  5. The dark straight line below the river is the Manchester Ship Canal.
  6. There is currently a freight line on the North bank of the river.

This Google Map shows Fiddlers Ferry power station, with the railway between the now-decommissioned power station and the River Mersey.

Note.

  1. Fiddlers Ferry will become an employment site.
  2. It could even be a good place for a depot for Northern Powerhouse Rail.
  3. I think there’s scope to increase the operating speed of the railway along the Mersey.

Could it even be an electrified high speed line with a 125 mph operating speed?

Between Widnes And Liverpool Lime Street

The trains coming from Warrington could join the Liverpool Branch of the West Coast Main Line at Ditton East Junction.

The route between Ditton East Junction and Liverpool Lime Street has the following characteristics.

  • It has four tracks.
  • It is 10.6 miles long.
  • Avanti West Coast’s expresses typically take twelve minutes for the trip without stopping.
  • The stations on the route; Liverpool South Parkway; West Allerton, Mossley Hill and Edge Hill, all have one platform per line.
  • It is fully electrified.
  • Lime Street station has recently been updated with longer platforms and a higher capacity approach to the station.
  • Some local services have already been moved to Merseyrail’s Northern Line.
  • Stopping services on the route have their own platforms.

I believe that with the installation of full digital signalling and a degree of automatic train control, as far as Crewe and Warrington Bank Quay stations, that the following services could be handled.

  • Six tph – Northern Powerhouse Rail – Liverpool and Manchester Airport and Manchester Piccadilly
  • One tph – East Midlands Railway – Liverpool and Nottingham
  • Three tph – High Speed Two – Liverpool and London Euston
  • One tph – High Speed Two – Liverpool and Birmingham Curzon Street
  • Two tph – London North Western – Liverpool and Birmingham and London Euston

Note.

  1. This is only 13 tph.
  2. Avanti West Coast services would be replaced by High Speed Two.
  3. TransPennine Express services would be replaced by Northern Powerhouse Rail
  4. The Liverpool and Nottingham service may or may not go via Ditton East junction.

If the capacity on this branch could be raised to 15 tph, that would be only be a train every four minutes, or half the frequency, that will eventually be operational on Crossrail and Thameslink. It would also be less than the 18 tph frequency of High Speed Two.

Conclusion

This simple exercise has proven to me, that a high speed line could be built between Manchester Airport and Liverpool Lime Street station.

  • Several sections of the route could have an operating speed of 125 mph or more.
  • By running the tracks along the M56 and M6, visual and aural intrusion could be minimised.
  • The line along the Mersey through Warrington could be a valuable part of the route.
  • West of Warrington, much of the infrastructure needed, appears to be in place and it would only need to be upgraded.

There was a large and extremely pleasant surprise at the Liverpool end.

The approach to Liverpool Lime Street is two fast and two slow lines, and I believe, that this section of the route could handle up to say 15 fast trains and six stopping trains per hour, with full digital signalling.

Unlike London and Manchester, I doubt that Liverpool will need a tunnel to access the City Centre.

I also believe that after its refurbishment of the last couple of years, Lime Street could be substantially ready for High Speed Two and Northern Powerhouse Rail.

Project Management Recommendations

This project divides neatly into three.

  1. Between Manchester Airport and Warrington along the route of the M56 and M6.
  2. Reconstruction, upgrading and electrification through Warrington and the rebuilding of Warrington Bank Quay station.
  3. Reconstruction, upgrading and electrification between Warrington and Liverpool.

The first project will be a major one, involving the construction of nearly twenty miles of new electrified railway, with numerous viaducts, bridges and a large junction at High Legh with High Speed Two.

The other two projects would be a lot simpler and would involve turning twenty miles of double-track freight line into a modern electrified railway.

I would construct projects 2 and 3 early in the schedule, as it would give Warrington a new Bank Quay station. A passenger service to Liverpool Lime Street, could also be opened if required.

 

 

 

November 20, 2020 Posted by | Transport | , , , , , , , , , , , , | 10 Comments

EMR Set To Retain Liverpool – Nottingham Service

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

The Department for Transport has confirmed to East Midlands Railway that, for the time being at least, it is no longer planning to transfer the Liverpool Lime Street – Nottingham service to TransPennine Express from the December 2021 timetable change.

My experience of the service is limited these days, but occasionally, I do use the Liverpool and Sheffield section of the service to get across the Pennines on trips North.

In January 2020, I had a horrendous trip on an overcrowded train composed of several one-car Class 153 trains, which I wrote about in Mule Trains Between Liverpool And Norwich.

This is not the way to run a long distance service, which takes over five and a half hours.

The plan to improve the service involves splitting it into two from the December 2021 timetable change.

  • Liverpool and Nottingham
  • Derby and Norwich

It was thought that the Liverpool and Nottingham section would be going to TransPennine Express (TPE).

These points summarise the Railway Gazette article.

  • TPE were training drivers and that has now stopped.
  • EMR have told staff, they will be keeping both services.
  • The service will still be split.
  • EMR  will not have enough trains to run the split service.

This paragraph sums up what could happen to run the service.

One option favoured by industry insiders would see EMR take on 15 Class 185 Desiro trainsets which are due to be released by TPE during 2021 as its fleet renewal programme concludes. These trains are maintained by Siemens at its conveniently located Ardwick depot in Manchester.

I see this splitting, as being a pragmatic solution to the problems of running a long service, with a very varied loading at various parts of the route.

  • As one company runs both sections, the changeover can be arranged to be very passenger-friendly.
  • EMR manage the possible change stations at Derby and Nottingham.
  • Passengers can be given proper care in the changeover.
  • Derby gets a direct connection to Peterborough, Cambridge and Norwich.

With my East Anglian hat on, I can see advantages in the split, as I regularly used to travel as far as Derby or Nottingham, when I lived in the East, but only once took the full service to Liverpool.

I have a few thoughts.

Capacity Between Liverpool And Nottingham

This section of the service is generally run by a pair of Class 158 trains, which have a capacity of around 140 each or 280 in total.

The Class 185 trains have three-cars and a capacity of 180 seats.

Currently, Liverpool and Nottingham takes just under two hours and forty minutes, which would make for a comfortable six-hour round trip. This would mean, that an hourly service between the two cities, will need a fleet of six trains.

Under Future in the Wikipedia entry for Class 185 trains, this is said.

Following the August 2020 decision not to transfer the Liverpool Lime Street to Nottingham route to TransPennine Express, East Midlands Railway could opt to take on the 15 trainsets due to be released from TPE to run this route.

Fifteen trains would be more than enough trains to run a pair on each hourly service and perhaps run some extra services.

Pairs of Class 185 trains between Liverpool and Nottingham would go a long way to solve capacity problems on this route.

Calling At Derby

The current service between Liverpool and Norwich doesn’t call at Derby, as it uses the Erewash Valley Line via Alfreton.

The proposed Eastern portion of the split service has been proposed to terminate at Derby, so passengers would change at Nottingham, if they wanted to travel to Sheffield, Manchester or Liverpool.

As East Midlands Railway, runs both services, they can optimise the service to serve and attract the most passengers.

Preparation For High Speed Two At East Midlands Hub Station

Eventually, the two halves of the Liverpool and Norwich service must surely call at the future East Midlands Hub station for High Speed Two, so future routes must fit in with the plans for High Speed Two.

But there’ll be plenty of time to get that right.

Interchange At Nottingham

I’m sure a quick and easy interchange can be performed at Nottingham.

In the simplest interchange, the two services could share a platform and passengers could just walk between the two trains on the level.

The following sequence could be used at Nottingham.

  • The train from Derby to Norwich would arrive in the platform and stop at the Eastern end of the platform.
  • The train from Liverpool to Nottingham would arrive in the platform and stop close behind it.
  • Passengers on the train from Liverpool, who wanted to take the Norwich train, would simply walk a along the platform and board the train.
  • The Norwich train would leave when ready.
  • The train from Liverpool would stay where it had stopped and be prepared for the return trip to Liverpool.
  • , The next train from Norwich to Derby would pull in behind the Liverpool train.
  • Passengers on the train from Norwich, who wanted to take the Liverpool train, would simply walk a along the platform and board the train.
  • The Liverpool train would leave when ready.
  • Finally, the Norwich to Derby train would leave for Derby.

Only one platform would be needed at Nottingham station, that would need to be long enough to handle the two trains.

Between Norwich And Derby

This is the only section of the Liverpool and Norwich route with any electrification.

  • Currently about thirty miles between Grantham and Peterborough are electrified.
  • The lines around Ely and Norwich are also electrified.

I think that Ely and Peterborough will be electrified earlier than other lines.

  • It would be part of an electrified freight route between Felixstowe and the East Coast Main Line.
  • It would enable electric passenger trains between Cambridge and the North.
  • It would mean the Ipswich and Peterborough services could be run by battery electric trains.
  • It could be a useful electrified diversion route to London, during engineering works.

,This extra electrification, would also mean that Norwich and Derby would probably be within range of battery electric trains.

Stadler have stated that Greater Anglia’s Class 755 trains can be converted from bi-mode into battery electric trains.

So as Greater Anglia and East Midlands Railway are both Abellio companies, could we see battery electric operation on the around 150 miles between Norwich and Derby?

Conclusion

Splitting the Liverpool and Norwich service opens up a lot of possibilities to improve the service.

 

 

November 15, 2020 Posted by | Transport | , , , , , , , , , , | 6 Comments

How Many Trains Are Needed To Run A Full Service On High Speed Two?

The latest High Speed Two schedule was published in the June 2020 Edition of Modern Railways.

The Two Train Classes

Two separate train classes have been proposed for High Speed Two.

Full-Size – Wider and taller trains built to a European loading gauge, which would be confined to the high-speed network (including HS1 and HS2) and other lines cleared to their loading gauge.

Classic-Compatible – Conventional trains, capable of high speed but built to a British loading gauge, permitting them to leave the high speed track to join conventional routes such as the West Coast Main Line, Midland Main Line and East Coast Main Line.

The Wikipedia entry for High Speed Two has a section entitled Rolling Stock, where this is said about the design.

Both types of train would have a maximum speed of at least 360 km/h (225 mph) and a length of 200 metres (660 ft); two units could be joined together for a 400-metre (1,300 ft) train. It has been reported that these longer trains would have approximately 1,100 seats.

These are some of my thoughts.

Seating Density

I would assume that this means that a single 200 metre train, will have a capacity of approximately 550 seats or a density of 2.75 seats per metre. How does that compare with other trains?

  • 9-car Class 801 train – 234 metres – 611 seats – 2.61 seats/metre
  • 7-car Class 807 train – 182 metres – 453 seats – 2.49 seats/metre
  • 9-car Class 390 train  – 217.5 metres – 469 seats – 2.16 seats/metre
  • 11-car Class 390 train  – 265.3 metres – 589 seats – 2.22 seats/metre
  • 12-car Class 745/1 train – 236.6 metres – 767 seats – 3.24 seats/metre
  • 16-car Class 374 train – 390 metres – 902 seats – 2.31 seats/metre

What I find strange with these figures, is that I feel most crowded and cramped in a Class 390 train. Could this be because the Pendelino trains are eighteen years old and train interior design has moved on?

But I always prefer to travel in a Hitachi Class 80x train or a Stadler Class 745 train.

I very much feel that a seating density of 2.75 seats per metre, designed using some of the best modern practice, could create a train, where travelling is a very pleasant experience.

Step-Free Access

I have travelled in high speed trains all over Europe and have yet to travel in one with step-free access.

Surely, if Stadler can give their trains step-free access everybody can.

The pictures shows step-free access on Stadler Class 745 and Class 755 trains.

If I turned up pushing a friend in a wheelchair, would I be able to push them in easily? Or better still will they be able to wheel themselves in?

A Greater Anglia driver once said to me, that they never have to wait anymore for wheelchairs to be loaded.

So surely, it is in the train operator’s interest to have step-free access, if it means less train delays.

Double-Deck Trains

In my view double-deck trains only have one only good feature and that is the ability to see everything, if you have a well-designed window seat.

I may be seventy-three, but I am reasonably fit and only ever travel on trains with airline-sized hand baggage. So I don’t find any problem travelling upstairs on a double-deck bus or train!

But it could have been, so very different, if my stroke had been a bit worse and left me blind or in a wheelchair for life.

I have seen incidents on the Continent, which have been caused by double-deck trains.

  • A lady of about eighteen in trying to get down with a heavy case dropped it. Luckily it only caused the guy she was travelling with, to roll unhurt down the stairs.
  • Luggage is often a problem on Continental trains because of the step-up into the train and access is worse on double deck trains.
  • I also remember on a train at Leipzig, when several passengers helped me lift a guy and his wheelchair out of the lower deck of a double-deck train, which was lower than the platform, as they often are with double-deck trains.

I am not totally against double-deck trains, but they must be designed properly.

Consider.

  • High Speed Two’s Full-Size trains will only use London Euston, Old Oak Common, Birmingham Interchange, Birmingham Curzon Street, Manchester Airport, Manchester Piccadilly, East Midlands Hub and Leeds stations.
  • All stations used by Full-Size trains will be brand-new or substantially rebuilt stations.
  • Someone sitting in a wheelchair surely has the same right to a view from the top-deck of a double-deck train as anybody else.
  • Jumbo jets seemed to do very well without a full-length top-deck.
  • The A 380 Superjumbo has been designed so that entry and exit on both decks is possible.

I feel if High Speed Two want to run double-deck trains, an elegant solution can surely be found.

A Crude Estimate On The Number Of Trains

This is my crude estimate to find out how many trains, High Speed Two will need.

Western Leg

These are the services for the Western Leg between London , Birmingham, Liverpool, Manchester, Edinburgh and Glasgow.

  • Train 1 – London Euston and Birmingham Curzon Street – 400 metre Full-Size – 45 minutes – 2 hour Round Trip – 4 trains
  • Train 2 – London Euston and Birmingham Curzon Street – 400 metre Full-Size – 45 minutes – 2 hour Round Trip – 4 trains
  • Train 3 – London Euston and Birmingham Curzon Street – 400 metre Full-Size – 45 minutes – 2 hour Round Trip – 4 trains
  • Train 4 – London Euston and Lancaster – Classic Compatible – 2 hours 3 minutes – 5 hour Round Trip – 5 trains
  • Train 4 – London Euston and Liverpool – Classic Compatible – 1 hours 34 minutes – 4 hour Round Trip – 4 trains
  • Train 5 – London Euston and Liverpool – Classic Compatible – 1 hours 34 minutes – 4 hour Round Trip – 4 trains
  • Train 6 – London Euston and Macclesfield – Classic Compatible – 1 hours 30 minutes – 4 hour Round Trip – 4 trains
  • Train 7 – London Euston and Manchester – 400 metre Full-Size – 1 hour and 11 minutes – 3 hour Round Trip – 6 trains
  • Train 8 – London Euston and Manchester – 400 metre Full-Size – 1 hour and 11 minutes – 3 hour Round Trip – 6 trains
  • Train 9 – London Euston and Manchester – 400 metre Full-Size – 1 hour and 11 minutes – 3 hour Round Trip – 6 trains
  • Train 10 – London Euston and Edinburgh – Classic Compatible – 3 hours 48 minutes – 8 hour Round Trip – 8 trains
  • Train 10 – London Euston and Glasgow – Classic Compatible – 3 hours 40 minutes – 8 hour Round Trip – 8 trains
  • Train 11 – London Euston and Edinburgh – Classic Compatible – 3 hours 48 minutes – 8 hour Round Trip – 8 trains
  • Train 11 – London Euston and Glasgow – Classic Compatible – 3 hours 40 minutes – 8 hour Round Trip – 8 trains
  • Train 12 – Birmingham Curzon Street and Edinburgh or Glasgow – Classic Compatible – 3 hours 20 minutes – 7 hour Round Trip – 7 trains
  • Train 13 – Birmingham Curzon Street and Manchester – 200 metre Full-Size – 41 minutes – 2 hour Round Trip – 2 trains
  • Train 14 – Birmingham Curzon Street and Manchester – 200 metre Full-Size – 41 minutes – 2 hour Round Trip – 2 trains

Note.

  1. I have assumed 400 metre Full-Size trains will be a pair of 200 metre trains.
  2. I think that trains 4 and 5 work an intricate dance with appropriate splitting and joining at Crewe.
  3. The full schedule will need 34 Full-Size trains and 56 Classic-Compatible trains

According to Wikipedia, the first order will be for 54 Classic-Compatible trains, so I would assume, that more trains will be ordered.

Eastern Leg

These are the services for the Eastern Leg between London , Birmingham, East Midlands Hub, Leeds, Sheffield, York and Newcastle.

  • Train 15 – Birmingham Curzon Street and Leeds – 200 metre Full-Size – 49 minutes – 2 hour Round Trip – 2 trains
  • Train 16 – Birmingham Curzon Street and Leeds – 200 metre Full-Size – 49 minutes – 2 hour Round Trip – 2 trains
  • Train 17 – Birmingham Curzon Street and Newcastle – Classic Compatible – 1 hour 57 minutes – 5 hour Round Trip – 5 trains
  • Train 18 – London Euston and Sheffield – Classic Compatible – 1 hour 27 minutes – 4 hour Round Trip – 4 trains
  • Train 18 – London Euston and Leeds – Classic Compatible – 1 hour 21 minutes – 3 hour Round Trip – 3 trains
  • Train 19 – London Euston and Leeds – 400 metre Full-Size – 1 hour and 21 minutes – 3 hour Round Trip – 6 trains
  • Train 20 – London Euston and Leeds – 400 metre Full-Size – 1 hour and 21 minutes – 3 hour Round Trip – 6 trains
  • Train 21 – London Euston and Sheffield – Classic Compatible – 1 hour 27 minutes – 4 hour Round Trip – 4 trains
  • Train 21 – London Euston and York – Classic Compatible – 1 hour 24 minutes – 3 hour Round Trip – 3 trains
  • Train 22 – London Euston and Newcastle – Classic Compatible – 2 hour 17 minutes – 5 hour Round Trip – 5 trains
  • Train 23 – London Euston and Newcastle – Classic Compatible – 2 hour 17 minutes – 5 hour Round Trip – 5 trains

Note.

  1. I have assumed 400 metre Full-Size trains will be a pair of 200 metre trains.
  2. Trains 15 and 16 work as a pair
  3. I think that trains 18 and 21 work an intricate dance with appropriate splitting and joining at East Midlands Hub.
  4. The full schedule will need 16 Full-Size trains and 29 Classic-Compatible trains

Adding the two legs together and I estimate that 50 Full-Size trains and 85 Classic-Compatible trains, will be needed to run a full schedule.

Trains Per Hour On Each Section

It is possible to make a table of how many trains run on each section of the High Speed Two network in trains per hour (tph)

  • London Euston (stops) – 1-11, 18-23 – 17 tph
  • London Euston and Old Oak Common – 1-11, 18-23 – 17 tph
  • Old Oak Common (stops) – 1-11, 18-23 – 17 tph
  • Old Oak Common and Birmingham Interchange – 1-11, 18-23 – 17 tph
  • Birmingham Interchange (stops) – 2, 3, 7, 11, 20 – 5 tph
  • Birmingham Curzon Street (stops) – 1-3, 12-14, 15-17 – 9 tph
  • Birmingham and Crewe – 4,5, 7-9, 10-14 – 10 tph
  • Crewe (stops) – 4,5 – 2 tph
  • Crewe and Liverpool – 4,5 – 2 tph
  • Crewe and Lancaster – 4, 10-12 – 4 tph
  • Crewe and Manchester – 7-9, 13, 14 – 5 tph
  • Crewe and Wigan via Warrington – 4 – 1 tph
  • Crewe and Wigan via High Speed Two (new route) – 10-12 – 3 tph
  • Lancaster (stops) 4 – 1 tph
  • Lancaster and Carlisle  – 10-12 – 3 tph
  • Carlisle and Edinburgh – 10-12 – 2.5 tph
  • Carlisle and Glasgow – 10-12 – 2.5 tph
  • Birmingham and Stoke – 6 – 1 tph
  • Stoke (stops) – 6 – 1 tph
  • Stoke and Macclesfield – 6 – 1 tph
  • Macclesfield (stops) – 6 – 1 tph
  • Birmingham and East Midlands Hub – 15-17, 18-20, 21-23 – 9 tph
  • East Midlands Hub (stops) – 15-17, 18-20, 21 – 7 tph
  • East Midlands Hub and Sheffield – 18, 21 – 2 tph
  • Sheffield (stops) – 18, 21 – 2 tph
  • Midlands Hub and Leeds – 15, 16, 18-20 – 5 tph
  • Leeds (stops) – 15, 16, 18-20 – 5 tph
  • East Midlands Hub and York – 17, 21-23 – 4 tph
  • York (stops) – 17, 21-23 – 4 tph
  • York and Newcastle – 17, 22, 23 – 3 tph
  • Newcastle (stops) – 17, 22, 23 – 3 tph

These are a few thoughts.

Capacity Of The Southern Leg

The busiest section is between London Euston and Birmingham Interchange, which handles 17 tph.

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives a path for recovery, according to the article.

Trains Serving Euston

The following train types serve London Euston station.

  • Full-Size – 8 tph
  • 400 metre Classic-Compatible – 5 tph
  • 200 metre Classic-Compatible – 4 tph

As a 200 metre long train needs the same track and platform resources as a 400 metre long train, by splitting and joining, it would appear that extra destinations could be served.

Platform Use At Euston

This page on the High Speed Two web site, gives details of Euston High Speed Two station.

HS2 will deliver eleven new 400m long platforms, a new concourse and improved connections to Euston and Euston Square Underground stations. Our design teams are also looking at the opportunity to create a new northerly entrance facing Camden Town as well as new east-west links across the whole station site.

So how will the eleven platforms be used?

Destinations served from London are planned to be as follows.

  • Birmingham Curzon Street – Full-Size – 3 tph
  • Edinburgh/Glasgow – Classic-Compatible – 2 tph
  • Lancaster – Classic-Compatible – 1 tph
  • Leeds – Full-Size – 2 tph – Classic-Compatible – 1 tph

Liverpool – Classic-Compatible – 2 tph

  • Macclesfield – Classic-Compatible – 1 tph
  • Manchester Piccadilly – Full-Size – 3 tph
  • Newcastle – Classic-Compatible – 2 tph
  • Sheffield – Classic-Compatible – 2 tph
  • York – Classic-Compatible – 1 tph

That is ten destinations and there will be eleven platforms.

I like it! Lack of resources is often the reason systems don’t work well and there are certainly enough platforms.

Could platforms be allocated something like this?

  • Birmingham Curzon Street – Full-Size
  • Edinburgh/Glasgow – Classic-Compatible
  • Leeds – Full-Size
  • Liverpool – Classic-Compatible – Also serves Lancaster
  • Macclesfield – Classic-Compatible
  • Manchester Piccadilly – Full-Size
  • Newcastle – Classic-Compatible
  • Sheffield – Classic-Compatible – Also serves Leeds and York

Note.

  1. No  platform handles more than three tph.
  2. There are three spare platforms.
  3. Each platform would only be normally used by one train type.
  4. Only Birmingham Interchange, East Midlands Hub, Leeds, Preston and York are not always served from the same platform.

Platform arrangements could be very passenger- and operator-friendly.

Platform Use At Birmingham Curzon Street

Birmingham Curzon Street station has been designed to have seven platforms.

Destinations served from Birmingham Curzon Street station are planned to be as follows.

  • Edinburgh/Glasgow – Classic-Compatible – 1 tph
  • Leeds – Full-Size – 2 tph
  • London Euston – Full-Size – 3 tph
  • Manchester Piccadilly – Full-Size – 2 tph
  • Newcastle – Classic-Compatible – 1 tph
  • Nottingham – Classic-Compatible – 1 tph

Note.

  1. The Nottingham service has been proposed by Midlands Engine Rail, but will be running High Speed Two Classic Compatible trains.
  2. That is six destinations and there will be seven platforms.

I like it! For the same reason as London Euston.

Could platforms be allocated something like this?

  • Edinburgh/Glasgow – Classic-Compatible
  • Leeds – Full-Size
  • London Euston – Full-Size
  • Manchester Piccadilly – Full-Size
  • Newcastle/Nottingham – Classic-Compatible

Note.

  1. No  platform handles more than three tph.
  2. There are two spare platforms.
  3. Each platform would only be normally used by one train type.
  4. Only East Midlands Hub is not always served from the same platform.

Platform arrangements could be very passenger- and operator-friendly.

Back-to-Back Services via Birmingham Curzon Street

The current plan for High Speed Two envisages the following services between the main terminals served by Full-Size trains.

  • London Euston and Birmingham Curzon Street – 3 tph – 45 minutes
  • London Euston and Leeds – 2 tph – 81 minutes
  • London Euston and Manchester Piccadilly – 3 tph – 71 minutes
  • Birmingham Curzon Street and Leeds – 2 tph – 40 minutes
  • Birmingham Curzon Street and Manchester Piccadilly – 2 tph – 41 minutes

Suppose a traveller wanted to go between East Midlands Hub and Manchester Airport stations.

Wouldn’t it be convenient if the Leeds to Birmingham Curzon Street train, stopped in Birmingham Curzon Street alongside the train to Manchester Airport and Piccadilly, so passengers could just walk across?

Or the two services could be run Back-to-Back with a reverse in Birmingham Curzon Street station?

Note.

  1. The current fastest times between Nottingham and Manchester Airport stations are around two-and-a-half hours, with two changes.
  2. With High Speed Two, it looks like the time could be under the hour, even allowing up to eight minutes for the change at Birmingham Curzon Street.

The design of the track and stations for High Speed Two, has some interesting features that will be exploited by the train operator, to provide better services.

Capacity Of The Western Leg Between Birmingham And Crewe

The section is between Birmingham and Crewe, will be running 10 tph.

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.

But where will they come from?

High Speed One copes well with a few interlopers in the shape of Southeastern’s Class 395 trains, which run at 140 mph, between the Eurostars.

High Speed Two is faster, but what is to stop an operator running their own Classic-Compatible trains on the following routes.

  • Birmingham Curzon Street and Liverpool via Crewe, Runcorn and Liverpool South Parkway.
  • Birmingham Curzon Street and Holyhead via Crewe, Chester and an electrified North Wales Coast Line.
  • Birmingham Curzon Street and Blackpool via Crewe, Warrington Bank Quay, Wigan North Western and Preston.
  • Birmingham Curzon Street and Blackburn and Burnley via Crewe, Warrington Bank Quay, Wigan North Western and Preston.

Note.

  1. If these trains were say 130 metres long, they could call at all stations, without any platform lengthening.
  2. I’m sure that the clever engineers at Hitachi and Hyperdrive Innovation could come up with battery electric Classic-Compatible train, that could run at 225 mph on High Speed Two and had a battery range to reach Holyhead, with a small amount of electrification.
  3. A pair of trains, could work the last two services with a Split/Join at Preston.

The advantages of terminating these service in Birmingham Curzon Street would be as follows.

  • A lot more places get a fast connection to the High Speed Two network.
  • Passengers can reach London with an easy change at Birmingham Curzon Street station.
  • They can also walk easily between the three Birmingham stations.

But the big advantage is the trains don’t use valuable paths on High Speed Two between Birmingham Curzon Street and London Euston.

Crewe Station

In the current Avanti West Coast timetable, the following trains pass through Crewe.

  • London Euston and Blackpool – 4 trains per day (tpd)
  • London Euston and Chester – 1 tph
  • London Euston and Edinburgh/Glasgow – 2 tph
  • London Euston and Liverpool – 1 tph
  • London Euston and Manchester Piccadilly – 1 tph

Most trains stop at Crewe.

In the proposed High Speed Two timetable, the following trains will pass through Crewe.

  • London Euston and Edinburgh/Glasgow – 2 tph
  • London Euston and Lancaster/Liverpool – 2 tph
  • London Euston and Manchester – 3 tph
  • Birmingham Curzon Street and Edinburgh/Glasgow  -1 tph
  • Birmingham Curzon Street and Manchester – 2 tph

Note.

  1. Only the Lancaster and Liverpool trains stop at Crewe station.
  2. North of Crewe there will be a three-way split of High Speed Two routes to Liverpool, Wigan and the North and Manchester Airport and Piccadilly.
  3. High Speed Two will loop to the East and then join the West Coast Main Line to the South of Wigan.
  4. High Speed Two trains will use the West Coast Main Line to the North of Wigan North Western station.

This map of High Speed Two in North West England was captured from the interactive map on the High Speed Two web site.

 

 

Note.

  1. The current West Coast Main Line (WCML) and Phase 2a of High Speed Two are shown in blue.
  2. Phase 2b of High Speed Two is shown in orange.
  3. The main North-South route, which is shown in blue, is the WCML passing through Crewe, Warrington Bank Quay and Wigan North Western as it goes North.
  4. The Western Branch, which is shown in blue, is the Liverpool Branch of the WCML, which serves Runcorn and Liverpool.
  5. High Speed Two, which is shown in orange, takes a faster route between Crewe and Wigan North Western.
  6. The Eastern Branch, which is shown in orange, is the Manchester Branch of High Speed Two, which serves Manchester Airport and Manchester Piccadilly.
  7. The route in the East, which is shown in blue, is the Macclesfield Branch of High Speed Two, which serves Stafford, Stoke-on-Trent and Macclesfield.

The route of Northern Powerhouse Rail between Manchester Airport and Liverpool has still to be finalised.

Liverpool Branch

Consider.

  • The Liverpool Branch will take  two tph between London Euston and Liverpool.
  • In the future it could take up to 6 tph on Northern Powerhouse Rail between Liverpool and Manchester Piccadilly via Manchester Airport.

I believe that Liverpool Lime Street station, after the recent updating can handle all these trains.

Manchester Branch

This document on the Government web site is entitled HS2 Phase 2b Western Leg Design Refinement Consultation.

It indicates two important recently-made changes to the design of the Manchester Branch of High Speed Two.

  • Manchester Airport station will have four High Speed platforms instead of two.
  • Manchester Piccadilly station will have six High Speed platforms instead of four.

These changes will help the use of these stations by Northern Powerhouse Rail..

Consider.

  • The Manchester Branch will be new high speed track, which will probably be built in a tunnel serving Manchester Airport and Manchester Piccadilly stations.
  • The Manchester Branch will terminate in new platforms.
  • The Manchester Branch will take  five tph between Birmingham Curzon Street or London Euston and Manchester Airport and Manchester Piccadilly.
  • In the future it could take up to six tph on Northern Powerhouse Rail between Liverpool and Manchester Piccadilly via Manchester Airport.
  • London Euston and Old Oak Common will be new stations on a tunnelled approach to London and will handle 18 tph.

If London Euston and Old Oak Common can handle 18 tph, I can’t see why Manchester Airport and Piccadilly stations can’t handle somewhere near a similar number of trains.

At the moment eleven tph have been allocated to the Manchester Branch.

I believe that if infrastructure for Northern Powerhouse Rail was designed so that as well as connecting to Manchester and Liverpool, it connected Manchester and the West Coast Main Line running North to Preston, Carlisle and Scotland, services to the following destinations would be possible.

  • Barrow
  • Blackburn
  • Blackpool
  • Edinburgh
  • Glasgow
  • Windermere

Note.

  1. Edinburgh and Glasgow would probably be a service that would alternate the destination, as it is proposed for High Speed Two’s Birmingham and Scotland service.
  2. There would probably be a need for a North Wales and Manchester service via Chester.
  3. All trains would be Classic-Compatible.

If the Manchester Branch were to be built to handle 18 tph, there would be more than enough capacity.

Crewe, Wigan And Manchester

My summing up earlier gave the number of trains between Crewe, Wigan and Manchester as follows.

  • Crewe and Manchester – 5 tph
  • Crewe and Wigan via Warrington  – 1 tph
  • Crewe and Wigan via High Speed Two (new route) – 3 tph

This map of High Speed Two where the Manchester Branch leaves the new High Speed Two route between Crewe and Wigan was captured from the interactive map on the High Speed Two web site.

Note.

  1. The Manchester Branch runs to the South of the M56,
  2. The large blue dot indicates Manchester Airport station.
  3. Wigan is to the North.
  4. Crewe is to the South.
  5. Manchester Piccadilly is to the North East.

I believe this junction will be turned into a full triangular junction, to connect Wigan directly to Manchester Airport and Manchester Piccadilly.

  • Barrow, Blackburn, Blackpool, Preston and Windermere could all have high speed connections to Manchester Airport and Manchester Piccadilly. Trains could be shorter Classic-Compatible trains.
  • A Manchester and Scotland service would take the same route.

Another pair of tracks could leave the junction to the West to create a direct route between Manchester Airport and Liverpool for Northern Powerhouse Rail, by sneaking along the  M56.

Suppose extra services were as follows.

  • Manchester and Barrow – 1 tph
  • Manchester and Blackburn – 1 tph
  • Manchester and Blackpool – 1 tph
  • Manchester and Liverpool – 6 tph
  • Manchester and Scotland – 1 tph
  • Manchester and Windermere – 1 tph

The frequencies from the junction would be as follows.

  • To and from Crewe – High Speed Two (Manchester) – 5 tph – High Speed Two (North) – 3 tph = 8 tph
  • To and from Liverpool – Northern Powerhouse Rail – 6 tph = 6 tph
  • To and from Manchester – High Speed Two – 5 tph – Northern Powerhouse Rail – 6 tph – Local – 4 tph – Scotland – 1 tph = 16 tph
  • To and from Wigan – High Speed Two – 3 tph – Local – 4 tph – Scotland – 1 tph = 8 tph.

Only the Manchester Branch would be working hard.

The Liverpool Connection

I indicated that another pair of tracks would need to extend the Manchester Branch towards Liverpool in the West for Northern Powerhouse Rail.

  • Would these tracks have a station at Warrington?
  • Would there be a connection to allow services between Liverpool and the North and Scotland?

It might even be possible to design a Liverpool connection, that avoided using the current Liverpool Branch and increased the capacity and efficiency of all trains to Liverpool.

Capacity Of The Western Leg Between Wigan And Scotland

The sections between  Crewe and Carlisle, will be running at the following frequencies.

  • Wigan and Lancaster – 4 tph
  • Lancaster and Carlisle  – 3 tph
  • Carlisle and Edinburgh  – 2.5 tph
  • Carlisle and Glasgow – 2.5 tph

Note.

  1. The unusual Scottish frequencies are caused by splitting and joining at Carlisle and alternate services to Edinburgh and Glasgow.
  2. Any local high speed services and a Scotland service from Manchester, will increase the frequencies.

Over this section the services will be running on an improved West Coast Main Line.

But in some cases the trains will be replacing current services, so the increase in total frequencies will be less than it first appears.

Avanti West Coast currently run the following Scottish services.

  • One tph – London Euston and Glasgow via the most direct route.
  • One tph – London Euston and alternately Edinburgh and Glasgow via Birmingham.

This means that effectively Glasgow has 1.5 tph and Edinburgh 0.5 tph from London Euston.

The capacity of the current eleven-car Class 390 trains is 145 First and 444 Standard Class seats, which compares closely with the 500-600 seats given in Wikipedia for High Speed Two trains. So the capacity of the two trains is not that different.

But High Speed Two will be running 2.5 tph Between London Euston and both Edinburgh and Glasgow.

I would expect, that Class 390 services to Scotland will be discontinued and replaced by High Speed Two services.

Capacity Of The Eastern Leg Between Birmingham And East Midlands Hub

The section is between Birmingham and East Midlands Hub, will be running 9 tph

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.

But where will they come from?

Midlands Engine Rail is proposing a service between Birmingham Curzon Street and Nottingham.

  • It will have a frequency of one tph.
  • It will be run by High Speed Two Classic-Compatible trains.
  • The journey will take 33 minutes.
  • It will run on High Speed Two infrastructure between Birmingham Curzon Street and East Midlands Hub.

If High Speed Two has been designed with this service in mind, I doubt it will be a difficult service to setup.

  • There might be enough capacity on High Speed Two  for two tph on the route,
  • It could possibly be extended to Lincoln.

It will also depend on the service timing being consistent with an efficient use of trains and platforms.

  • Thirty-three minutes is not a good timing, as it means twenty-seven minutes wait in a platform to get a round trip time, that suits clock-face time-tabling.
  • The current Lincoln and Nottingham service takes 56 minutes for 34 miles.
  • LNER’s London Kings Cross and Lincoln service travels the 16 miles between Lincoln and Newark in 25 minutes.
  • I estimate that after track improvements,  with a single stop at Newark Castle station, that Nottingham and Lincoln could be achieved in several minutes under fifty minutes.
  • This would enable a sub-ninety minute journey time between Birmingham Curzon Street and Lincoln, with enough time to properly turn the trains at both ends of the route.
  • The three hour round trip would mean that an hourly service would need three trains.

This is probably just one of several efficient time-tabling possibilities.

Are there any other similar services?

The obvious one is surely Cambridge and Birmingham

  • It would run via Peterborough, Grantham, Nottingham and East Midlands Hub.
  • It would connect the three big science, engineering and medical centres in the Midlands and the East.
  • It could be run by High Speed Two Classic-Compatible trains.

It might even be a replacement for CrossCountry’s Stansted Airport and Birmingham service.

Capacity Of The Eastern Leg Between East Midlands Hub And Sheffield

The section between East Midlands Hub and Sheffield, will be running 2 tph

As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.

But where will they come from?

This map of High Speed Two where the Sheffield Branch leaves the new High Speed Two route between East Midlands Hub and Leeds was captured from the interactive map on the High Speed Two web site.

Note.

  1. The main route of High Speed Two between East Midlands Hub, is shown in orange and follows the route of the M1 Motorway, towards the East of the map.
  2. The Sheffield Branch is new track to Clay Cross North Junction, where is takes over the Midland Main Line to Sheffield, which is shown in blue.
  3. The line going South in the middle of the map is the Erewash Valley Line, which goes through Langley Mill and Ilkeston stations.

I suspect Clay Cross to Sheffield will be an electrified high speed line, with a maximum speed of at least 140 mph.

Could the Erewash Valley Line have been used as an alternative route to Sheffield?

This map of High Speed Two captured from their interactive map, shows the connection of High Speed Two and the Erewash Valley Line to East Midlands Hub.

Note.

  1. East Midlands Hub is shown by the big blue dot.
  2. High Speed Two is shown in orange.
  3. The route to Leeds vaguely follows the M1 Motorway.
  4. The Erewash Valley Line goes North to the East of Ilkeston.

Would have been quicker and easier to electrify the Erewash Valley Line, as the High Speed Two route to Chesterfield and Sheffield?

  • Network Rail updated the route a few years ago.
  • It does not have the problems of electrification, through a World Heritage Site, as does the route through Derby.
  • It could surely handle two tph, even if they were High Speed Two Classic Compatible trains.
  • Sheffield will be just under ninety minutes from London by High Speed Two, as opposed to two hours now.

I suspect that it all comes down to saving a few minutes to Sheffield and the civic pride of having a High Speed Two connection.

So it looks like we’ll have the following capacity between East Midlands Hub and Sheffield.

  • Between East Midlands Hub and Clay Cross North Junction, there will be the High Speed Two capacity of 18 tph.
  • Between Clay Cross and Sheffield, there will probably be an upgraded capacity of perhaps 8-10 tph.

It seems a lot of capacity for just two tph.

Consider.

  • High Speed Two is planning to run three tph between Birmingham Curzon Street and East Midlands Hub
  • Midlands Rail Engine is planning to run one tph between Birmingham Curzon Street and East Midlands Hub
  • Four tph is considered a Turn-Up-And-Go service, and could exist between Birmingham Curzon Street and East Midlands Hub.
  • Sheffield and Leeds, both probably need a Turn-Up-And-Go service, to and from East Midlands Hub.
  • Semi-fast services between Sheffield and East Midlands Hub, calling at Chesterfield, Alfreton, Langley Mill and Ilkeston would be possible, by using the Erewash Valley Line.
  • The Maid Marian Line will join the Robin Hood Line in adding extra connectivity to East Midlands Hub Station.
  • Leeds and East Midlands Hub could have a six tph service courtesy of High Speed Two and Midlands Rail Engine.

Using High Speed Two’s web site, the following times should be possible.

  • Sheffield and East Midlands Hub – 27 minutes
  • Sheffield and Birmingham Curzon Street – 47 minutes.

Both services allow time for an efficient service.

There are certainly many options to create a Turn-Up-And-Go service between Sheffield and East Midlands Hub and also improve connections to other locations across the area.

Capacity Of The Eastern Leg Between East Midlands Hub And Leeds

The section is between East Midlands Hub and Leeds, will be running 5 tph

High Speed Two between Midlands Hub and Leeds is a totally new high speed line.

  • As the maximum capacity of High Speed Two is laid down in the Phase One Act as 18 tph, this gives plenty of room for more trains.
  • The Southern section of the leg closely follows the M1 Motorway.
  • Leeds, York and Newcastle will be 27, 36 and 93 minutes from East Midlands Hub, respectively.

This map of High Speed Two, which shows the route of the line in Yorkshire, was captured from the interactive map on the High Speed Two web site.

Note.

  1. Sheffield is marked by the blue dot in the South.
  2. Leeds is marked by the blue dot in the North West.
  3. York is marked by the blue dot in the North East.
  4. New routes are shown in orange.
  5. Upgraded routes are shown in blue.

The route seems to open up several possibilities for extra routes.

Leeds and Sheffield will be used by Northern Powerhouse Rail and there will be four tph, taking 28 minutes.

Leeds and Bedford via East Midlands Hub has been proposed by Midlands Rail Engine.

Services between Sheffield and the North via York must be a possibility.

This map of High Speed Two, which shows the routes to the East of Leeds, was captured from High Speed Two’s interactive map.

I think that two things might be missing.

  • A full triangular junction would surely allow services between Leeds and the North via York.
  • A high speed connection to Hull.

We shall see in the future.

Capacity Of The Eastern Leg Between York And Newcastle

The section between  York and Newcastle, will be running at a frequency of 3 tph.

Over this section the services will be running on an improved East Coast Main Line.

Conclusion

I shall split the conclusions into various sections.

Route And Track Layout

I think there may be places, where the route and track layout might need to be improved.

  • The Manchester Branch probably needs a triangular junction with the Western Leg of High Speed Two.
  • How Liverpool is served by Northern Powerhouse Rail needs to be decided.
  • The approach to Leeds probably needs a triangular junction with the Eastern Leg of High Speed Two.
  • It is not clear how services will reach Hull.

Hopefully, these issues will become clear in the next year or so.

Capacity

The sections with the highest levels of capacity would appear to be the following.

  • London Euston and Birmingham Interchange.
  • The Manchester Branch
  • The section shared with the East Coast Main Line between York and Newcastle.
  • The section shared with the West Coast Main Line between Wigan and Scotland.

But on these sections extra trains can be run.

  • Birmingham and North West England
  • Birmingham and East Midlands Hub
  • East Midlands Hub and Leeds
  • East Midlands Hub and Sheffield
  • East Midlands Hub and York

I can see, this capacity being filled by high speed local services, like those proposed by Midlands Rail Engine.

Rolling Stock

The only comment, I will make, is that there could be a need for a shorter Classic-Compatible train to work local services.

 

 

 

October 22, 2020 Posted by | Design, Transport | , , , , , , , , , , , , , , , , , , , | 5 Comments

Walking Along Moorgate – 30th September 2020

I took these pictures as I walked from North to South along Moorgate today from the bus stop by Finsbury Square.

 

Note.

  1. I did cross the road three times.
  2. The building site behind the blue hoardings in some of the first pictures, looks like it could be another tall building.
  3. The tower looming in the background of several of the pictures is Citypoint, which was originally built in 1967 and refurbished in 2000.
  4. The new looking building, with the Barclays branch at street level, is not new but another refurbished building, that has been finished in the last few months.
  5. The older red and white building is Moorgate station. There is nothing to indicate that this building will be rebuilt.
  6. The odd shaped building to the South of the station is Moor House.
  7. A large new entrance to the station, with an office block on top is being built between the original station entrance and Moor House.
  8. Between the new station entrance and Moorgate, 101 Moorgate is being built.

There is certainly, a lot of all types of property development going on at Moorgate station, which after Crossrail opens will become the Western entrance to the Crossrail station at Liverpool Street station.

This 3D Google Map shows Moorgate.

101 Moorgate is marked with a red arrow.

A Crossrail Video Of Liverpool Street Station

This video shows the design of Crossrail’s Liverpool Street station.

This screen-capture from the video shows a possible future Moorgate.

Note the new buildings at 101 Moorgate and the current Moorgate station.

These are related posts on the design of the Crossrail station at Moorgate and Liverpool Street.

The station could become the major one for the City of London.

Extending the Northern City Line To The South

This was intended by the builders of the Northern City Line and they intended to take the route to just North of Bank station at Lothbury.

In the Wikipedia entry for Moor House, this is said.

Completed in 2004, it was the first building to be designed for the forthcoming Crossrail, with a ventilation shaft to the station underneath the building. When built, it had the deepest foundations in London, which reach down 57 metres (187 ft) and are specifically designed to withstand further tunneling below it in the future.

I suspect that could mean that Moor House won’t get in the way of any further railway development.

In the Wikipedia entry for the Northern City Line, this is said about possible developments planned after World War 2.

After the war there were proposals to extend the Northern City Line north and south. The London Plan Working Party Report of 1949 proposed several new lines and suburban electrification schemes for London, lettered from A to M. The lower-priority routes J and K would have seen the Northern City Line extended to Woolwich (Route J) and Crystal Palace (Route K), retaining the “Northern Heights” extensions to Edgware and Alexandra Palace. The lines would have run in small-diameter tube tunnels south from Moorgate to Bank and London Bridge. The “K” branch would have run under Peckham to Peckham Rye, joining the old Crystal Palace (High Level) branch (which was still open in 1949) near Lordship Lane. Nothing came of these proposals, and the Edgware, Alexandra Palace and Crystal Palace (High Level) branches were all closed to passengers in 1954. As a result, the Northern City Line remained isolated from the rest of the network.

Note.

  • The proposed J branch to Woolwich has been covered by Crossrail calling at both Moorgate and Woolwich.
  • The proposed K branch to Peckham Rye and Crystal Palace has been covered by Crossrail and the London Overground with a change at Whitechapel.

So why bother to open up the possibility by designing Moor House for more tunnels to be bored?

As the London Plan Working Party Report of 1949 indicated several more lines and electrification were proposed.

Also during the war several deep-level shelters were built under Underground stations. Wikipedia says this about the background to the shelters.

Each shelter consists of a pair of parallel tunnels 16 feet 6 inches (5.03 m) in diameter and 1,200 feet (370 m) long. Each tunnel is subdivided into two decks, and each shelter was designed to hold up to 8,000 people. It was planned that after the war the shelters would be used as part of new express tube lines paralleling parts of the existing Northern and Central lines. Existing tube lines typically had 11-foot-8.25-inch (3.56 m) diameter running tunnels and about 21 feet (6.4 m) at stations; thus the shelter tunnels would not have been suitable as platform tunnels and were constructed at stations the new lines would have bypassed. However, they would have been suitable as running tunnels for main-line size trains. (One existing tube, the Northern City Line opened in 1904, used a similar size of tunnel for this reason, although in fact main-line trains did not use it until 1976.)

Shelters were planned on the Northern Line at Belsize ParkCamden TownGoodge StreetStockwellClapham NorthClapham Common, and Clapham South on the Northern Line. Did London Transport do a full survey of the Northern Line before the war and leave documents saying where an express Northern Line could be easily built.

My mother told me about these plans and as her best friend worked in Personnel at London Transport, she probably knew more than the average suburban housewife, who worked part-time for my father as a book-keeper.

After Crossrail opens and Moorgate station and the Bank station Upgrade are completed will it be possible to bore two new full-size tunnels underneath the Northern Line and Moor House and other buildings on the route to create a Northern Line Express service?

Consider.

  • The tunnels would be very deep and suitable for full-size trains.
  • Moorgate, Bank and London Bridge stations will have all been rebuilt in the last twenty years, so hopefully, they have been built to allow tunnels for a Northern Line Express service to pass through.
  • The Northern Line Express would take the pressure off the City Branch of the Northern Line?
  • Initially, the line might terminate under London Bridge station in perhaps a two platform station.
  • Modern digital signalling would allow up to 24 trains per hour (tph) on the section between London Bridge and Alexandra Palace station and 12 tph on the Welwyn Garden City and Stevenage branches

It would be a lot easier to build than Crossrail 2 and would give some of the benefits.

An Extension To North Cheam?

The Wikipedia entry for Morden station has this paragraph.

A post-war review of rail transport in the London area produced a report in 1946 that proposed many new lines and identified the Morden branch as being the most overcrowded section of the London Underground, needing additional capacity. To relieve the congestion and to provide a new service south of Morden, the report recommended construction of a second pair of tunnels beneath the northern line’s tunnels from Tooting Broadway to Kennington and an extension from Morden to North Cheam. Trains using the existing tunnels would start and end at Tooting Broadway with the service in the new tunnels joining the existing tunnels to Morden. The extension to North Cheam would run in tunnel. Designated as routes 10 and 11, these proposals were not developed by the London Passenger Transport Board or its successor organisations.

Perhaps, the solution would be to bore two new deep full-size tunnels from Moorgate to Tooting Broadway.

  • The Northern Line Express trains couldn’t continue to Morden, as they would be too big for the existing tunnels.
  • So they would have to turn back at Tooting Broadway station.
  • The stations between Kennington and Morden, that are in need of improvement could be updated.
  • I would design the interchange between Northern Line Express and Northern Line trains at Tooting Broadway station as a step-free cross-platform interchange.

The Wikipedia entry for North Cheam station, describes the extension to the station.

  • It would have been in tunnel from Morden.
  • There would be an intermediate station at Morden South station.
  • It didn’t think much of the economics.
  • I would suspect that the tunnel would run under the A 24.
  • The tunnel would be just under three miles long.

I wonder, if the extra distance, made operation of the line easier.

I estimate that a train could go from Morden to North Cheam stations and back in under ten minutes.

  • This would allow 6 tph with a single tunnel and track between the two stations.
  • The two new stations; North Cheam and Morden South could be single platform.
  • The signalling could be simplified.

The extension could be more affordable.

 

 

September 30, 2020 Posted by | Transport | , , , , , , , | 4 Comments

Liverpool’s Forgotten Station

Edge Hill station is Liverpool’s forgotten station.

For instance, it could be the only train station in the UK, with a better than two trains per hour (tph) service in both directions, that doesn’t have any displays telling passengers, when the next train is arriving.

These pictures show the station.

Note.

  1. The station is Grade II* Listed.
  2. It does have a good clock.
  3. There are four platforms on two islands.
  4. The only way to get to Platforms 3 and 4, is by one of the worst subways, I’ve seen in many years.

If ever a station needed a good makeover, it is Edge Hill.

This Google Map shows the station.

Note.

  1. The Northern island platform is 1 & 2. All trains using these platforms seem to use platforms 1 to 5 at Liverpool Lime Street station.
  2. The Southern island platform is 3 & 4. All trains using these platforms seem to use platforms 6 to 10 at Liverpool Lime Street station.
  3. The deep four-track cutting, that leads to Lime Street station can be clearly seen to the West of the station.
  4. The lines to the South of the station, that run to the West, lead to the disused Wapping Tunnel. Surprisingly, the tracks still seem to be in place.
  5. The lines to the North of the station, that run to the West, lead to the disused Victoria Tunnel, that used to take freight to and from Liverpool Docks.

There is certainly a lot of space around the station to put in extra platforms and a flyover or two.

Connecting The Wapping Tunnel To The Lines Going To The East

In Liverpool’s Forgotten Tunnel, I talked about a resurrected plan to use the Wapping Tunnel for passenger trains.

This was my opening sentences of the post.

The Wapping Tunnel in Liverpool was designed by George Stephenson and was the first tunnel in the world to be bored under a city.

It used to take goods trains between Liverpool Docks and the Liverpool and Manchester Line.

During the 1970s preparations were made to connect the Wapping Tunnel to Merseyrail’s Northern Line, so that trains could run between the Northern Line and the City Line, which would have connected the North and East of the City.

But the project was never completed.

I also included this recent map of the scheme.

The proposed line through the Wapping Tunnel, is shown as a dotted blue line.

Components of the scheme include.

  • Four to eight tph instead of turning back at Liverpool Central station would use the Wapping Tunnel to access Edge Hill and then continue to Liverpool South Parkway, Manchester Airport, Manchester Oxford Road, St. Helens, Warrington and Wigan.
  • A new station will be built at Liverpool University.
  • A new station could be built at St. James. at a future date.

It looks to be a sensible scheme, providing the engineering isn’t too difficult.

New Platforms On The Wapping Tunnel Lines

This Google Map shows the lines leading to the Wapping Tunnel.

Note.

  1. Platform 4 is just off the Northern side of the map.
  2. There is a double track leading to the Wapping Tunnel.
  3. It looks like the other tracks are the entry to a marshalling yard, that used to serve the Docks, through the Wapping Tunnel.

I can see two platforms on either side or a single island platform between the two tracks being built, that is connected to the current station using a stylish step-free bridge, as at Leeds or Reading stations.

Connecting To The Liverpool South Parkway Route

This Google Map shows the Wapping Tunnel lines, as they pass to the South of the station.

Note.

  1. The Eastern ends of the two island platforms are clearly visible.
  2. Platforms 1 and 2, which connect to Wavertree Technology Park, St. Helens and Wigan are the Northern platform.
  3. Platforms 3 and 4, which connect to Liverpool South Parkway, Runcorn and London are the Southern platform.
  4. The lines through the Wapping Tunnel, are the two closest lines to the station.

It does appear that connecting the Wapping Lines to those to Liverpool South Parkway would probably need a series of well-designed crossovers.

In fact they might already be in place and just need refurbishment or replacement.

Connecting To The Wavertree Technology Park Route

Trains needing to go between the Wapping Tunnel lines and the lines towards Wavertree Technology Park, St. Helens and Wigan would need to cross right over the busy lines into Liverpool Lime Street station.

So I suspect for efficient operation, a flyover or dive-under will need to be built.

Conclusion

I don’t think that the engineering to connect the Wapping Tunnel lines to the Eastern routes from Edge Hill station, will be too challenging, as there is certainly plenty of space.

I also feel, that an innovative architect can create an efficient station with character.

 

August 21, 2020 Posted by | Transport | , , , | 14 Comments

It’s A Privilege To Work Here!

I was speaking to a young station assistant at Liverpool Lime Street station, who I suspect could have been a trainee or an apprentice, when he came out with the title of this post.

These pictures show the platforms at the station, since the recent remodelling.

Note.

  1. The platforms are wide and can take an eleven-car Class 390 train.
  2. TransPennine Express’s five-car Class 802 trains are easily handles in the shorter platforms of the Western train shed.
  3. I suspect Avanti West Coast’s new Class 807 trains, which are fifty-two metres longer than the Class 802 trains, could fit into the Western train shed, if needed.

It is certainly a station with a large capacity and I believe, with a few tweaks the station will be able to handle High Speed Two and Northern Powerhouse Rail.

Train Lengths Into Liverpool Lime Street

These are the lengths of the various trains that will be terminating at the station.

  • Class 350 train – eight cars – 160 metres
  • Class 350 train – twelve cars – 240 metres
  • Class 390 train – nine cars – 217.5 metres
  • Class 390 train – eleven cars – 265.3 metres
  • Class 730 train – five cars – 120 metres
  • Class 730 train – ten cars – 240 metres
  • Class 802 train – five cars – 130 metres
  • Class 802 train – ten cars – 260 metres
  • Class 807 train – seven cars – 182 metres
  • High Speed Two Classic-Compatible train – 200 metres

That looks like future-proofing to me!

 

An Almost Absence Of Red

I have looked at arrivals into Liverpool Lime Street over the last couple of days on Real Time Trains and nearly all trains seemed to be on time.

So has all the work to improve the track and signalling on the approaches to the station,  over the last couple of years, resulted in better time keeping?

Certainly, train and passenger flows seemed to be smooth.

Conclusion

Wikipedia says this about Liverpool Lime Street station.

Opened in August 1836, it is the oldest still-operating grand terminus mainline station in the world.

I’ve used Lime Street station for fifty-five years and finally, it is the station, the city needs and deserves.

I’ve been to grand termini all over the world and Lime Street may be the oldest, but now it is one of the best.

August 21, 2020 Posted by | Transport | , , , , , | Leave a comment

Possibly One Of The Best Underground Railways In A Smaller City In The World!

I took these pictures, as I took the Wirral Line between James Street and Lime Street stations.

I do compare them with the dingy inside of Essex Road station, which was refurbished by British Rail about the same time.

Merseyrail’s stations and trains are generally immaculate and that can’t be said for the dirty and tired infrastructure on the Northern City Line. As I indicated in the title of this post, t is one of the best underground railways under the centre of a smaller city. Liverpool would probably be regarded as a second size of city as it lacks the several millions of London, Paris or Berlin.

The tunnels of Merseyrail’s Northern and Wirral Lines, would have been probably been used as a model for British Rail’s proposed Picc-Vic Tunnel, that sadly never got to be built!

Manchester would be very different today, if it had an underground railway across the City to the standard of that in Liverpool or Newcastle.

This map clipped from Wikipedia show the proposed route of the Picc-Vic Tunnel.

Some of the other proposals included.

  • The tunnel would be twin bores and jus under three miles long.
  • The tunnel would be electrified with 25 KVAC overhead wires.
  • The rolling stock would have been Class 316 trains, which would have been similar to those on Merseyrail.
  • Train frequency could have been forty trains per hour (tph)

In some ways the specification was more ambitious than Crossrail, which might be able to handle 30 tph, at some time in the future. But Dear Old Vicky, which was designed at the same time, is now handling forty tph.

Wikipedia says the following routes could have run through the tunnel.

Note.

  1. The Styal Line now provides the link to Manchester Airport.
  2. The route map on the Wikipedia entry, shows only Bury and Bolton as Northern destinations. But surely fanning out the trains could have run to Barrow-in-Furness, Blackburn, Blackpool, Burnley, Clitheroe, Colne, Hebden Bridge, Kirkby, Preston, Rawtenstall, Tochdale, Southport, Stalybridge, Todmorden, Wigan and Windermere

The only problem, I could see would be that there would need to be a lot of electrification North of Manchester, some of which has now been done.

There have also been developments in recent years that would fit nicely with a system of lines running through the Picc-Vic Tunnel.

More Services In Manchester Piccadilly And Manchester Victoria Stations

If you look at Liverpool Lime Street station after the remodelling of the last few years, the station is now ready for High Speed Two.

You could argue, that it would be more ready, if the Wapping Tunnel connected services to and from the East to the Northern Line, as I wrote about in Liverpool’s Forgotten Tunnel, as this would remove a lot of local trains from the station.

The Picc-Vic Tunnel would have done the same thing for Manchester Piccadilly and Manchester Victoria stations and removed the local services.

This would have left more space for High Speed Two and other long distance services.

Northern Powerhouse Rail

The original plan also envisaged an East-West Tunnel at a later date. – Northern Powerhouse Rail?

But the creation of capacity by the diversion of local services from Manchester Victoria into the Picc-Vic Tunnel, would surely have enabled the station to be developed thirty years ago as a station on an improved TransPennine route.

Tram-Trains

The system would have accepted tram-trains, which hadn’t been invented in the 1970s.

Manchester Airport

Manchester Airport had only one runway in the 1970s and I think only a few would have believed, it would have expanded like it has.

The Picc-Vic Tunnel would create a superb service to the Airport, at a frequency upwards of six tph.

High Speed Two

The Picc-Vic Tunnel would have created the capacity in  for Manchester Piccadilly station and allowed High Speed Two services to use the station.

In The Rival Plans For Piccadilly Station, That Architects Say Will ‘Save Millions’, I talked about a radical plan for extending Manchester Piccadilly station for High Speed Two, that has been put forward by Weston Williamson; the architects.

This sort of scheme would also fit well with the Picc-Vic Tunnel.

Conclusion

Manchester was short-changed and not building the Picc-Vic Tunnel was a major mistake.

It would have created an underground railway in a similar mould to that of Liverpool’s, but it would probably have served a larger network.

They would probably be the best pair of underground railways for smaller cities in the world.

August 20, 2020 Posted by | Transport | , , , , , , , , , , | 4 Comments