The Anonymous Widower

Electrifying Wales

I would not be surprised to learn that Wales wants to decarbonise their railways.

At present, Wales only has the following electrified railways either in operation or under construction.

  • The South Wales Main Line between the Severn Tunnel and Cardiff.
  • The South Wales Metro based on local railways around Cardiff and Newport is being created and will be run by electric trains.

There is no more electrification planned in the future.

Hitachi’s Specification For Battery Electric Trains

Recently, Hitachi have released this infographic for their Regional Battery Train.

This gives all the information about the train and a definitive range of 90 km or 56 miles.

The Welsh Rail Network

If you look at the network of services that are run by Transport for Wales Rail Services, they connect a series of hub stations.

Major hubs include the following stations.

  • Cardiff Central – Electrified
  • Chester
  • Hereford
  • Shrewsbury
  • Swansea

Smaller hubs and termini include the following stations.

  • Aberystwyth
  • Birmingham International – Electrified
  • Birmingham New Street – Electrified
  • Blaenau Ffestiniog
  • Carmarthen
  • Crewe – Electrified
  • Fishguard Harbour
  • Hereford
  • Holyhead
  • Llandudno Junction
  • Manchester Airport – Electrified
  • Manchester Piccadilly – Electrified
  • Machynlleth
  • Milford Haven
  • Newport – Electrified
  • Pembroke Dock

Running Welsh Routes With Electric Trains

These routes make up the Welsh rail network.

Chester And Crewe

Consider.

  • The route between Chester and Crewe is without electrification.
  • Crewe and Chester are 21 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Crewe with full batteries, that it will be possible to run between Chester and Crewe stations.

Chester And Holyhead via Llandudno Junction

Consider.

  • All services between Llandudno Junction and England call at Chester.
  • All services running to and from Holyhead call at Llandudno Junction.
  • The route between Chester and Holyhead is without electrification.
  • Chester and Llandudno Junction are 54 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

I believe that if a battery-electric train with a range of 56 miles can leave Chester, Llandudno Junction and Holyhead with full batteries, that it will be possible to run between Chester and Holyhead stations.

Chester And Liverpool Lime Street

Consider.

  • The route between Runcorn and Liverpool Lime Street is electrified.
  • The route between Chester and Runcorn is without electrification.
  • Chester and Runcorn are 14 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Runcorn with full batteries, that it will be possible to run between Chester and Liverpool Lime Street stations.

Chester And Manchester Airport

Consider.

  • The route between Warrington Bank Quay and Manchester Airport is electrified.
  • The route between Chester and Warrington Bank Quay is without electrification.
  • Chester and Warrington Bank Quay are 18 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Chester and Warrington Bank Quay with full batteries, that it will be possible to run between Chester and Manchester Airport stations.

Chester And Shrewsbury

Consider.

  • The route between Chester and Shrewsbury is without electrification.
  • Chester and Shrewsbury are 42 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Shrewsbury and Chester with full batteries, that it will be possible to run between Chester and Shrewsbury stations.

Llandudno And Blaenau Ffestiniog

Consider.

  • The route between Llandudno and Blaenau Ffestiniog is without electrification.
  • Llandudno and Blaenau Ffestiniog are 31 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Llandudno and Blaenau Ffestiniog with full batteries, that it will be possible to run between Llandudno and Blaenau Ffestiniog stations.

Machynlleth And Aberystwyth

Consider.

  • The route between Machynlleth and Aberystwyth is without electrification.
  • Machynlleth and Aberystwyth are 21 miles apart.

I believe that if a battery-electric train with a range of 56 miles, can leave Machynlleth and Aberystwyth with full batteries, that it will be possible to run between Machynlleth and Aberystwyth stations.

Machynlleth And Pwllheli

Consider.

  • The route between Machynlleth and Pwllheli is without electrification.
  • Machynlleth and Pwllheli are 58 miles apart.

I believe that if a battery-electric train with a range of upwards of 58 miles, can leave Machynlleth and Pwllheli with full batteries, that it will be possible to run between Machynlleth and Pwllheli stations.

Machynlleth And Shrewsbury

Consider.

  • The route between Machynlleth and Shrewsbury is without electrification.
  • Machynlleth and Shrewsbury are 61 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Machynlleth and Shrewsbury with full batteries, that it will be possible to run between Machynlleth and Shrewsbury stations.

Shrewsbury and Birmingham International

Consider.

  • The route between Birmingham International and Wolverhampton is electrified.
  • The route between Shrewsbury and Wolverhampton is without electrification.
  • Shrewsbury and Wolverhampton are 30 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury and Wolverhampton with full batteries, that it will be possible to run between Shrewsbury and Birmingham International stations.

 Shrewsbury And Cardiff Central via Hereford

Consider.

  • All services between Cardiff Central and Shrewsbury call at Hereford.
  • The route between Cardiff Central and Newport is electrified.
  • The route between Newport and Shrewsbury is without electrification.
  • Shrewsbury and Hereford are 51 miles apart.
  • Hereford and Newport are 44 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Hereford and Newport with full batteries, that it will be possible to run between Shrewsbury and Cardiff Central stations.

Shrewsbury And Crewe

  • The route between Shrewsbury and Crewe is without electrification.
  • Shrewsbury and Crewe are 33 miles apart.

I believe that if a battery-electric train with a range of upwards of 61 miles, can leave Shrewsbury and Crewe with full batteries, that it will be possible to run between Shrewsbury and Crewe stations.

Shrewsbury and Swansea

Consider.

  • The Heart of Wales Line between Shrewsbury and Swansea is without electrification.
  • Shrewsbury and Swansea are 122 miles apart.
  • Trains cross at Llandrindod and wait for up to eleven minutes, so there could be time for a charge.
  • Shrewsbury and Llandrindod are 52 miles apart.
  • Swansea and Llandrindod are 70 miles apart.

It appears that another charging station between Swansea and Llandrindod is needed

I believe that if a battery-electric train, with a range of 56 miles, can leave Shrewsbury, Swansea and the other charging station, with full batteries, that it will be possible to run between Shrewsbury and Swansea stations.

Swansea And Cardiff Central

Consider.

  • The route between Swansea and Cardiff Central is without electrification.
  • Swansea and Cardiff Central are 46 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Cardiff Central with full batteries, that it will be possible to run between Swansea and Cardiff Central stations.

Swansea And Carmarthen

Consider.

  • The route between Swansea and Carmarthen is without electrification.
  • Swansea and Carmarthen are 31 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea and Carmarthen with full batteries, that it will be possible to run between Swansea and Carmarthen stations.

Swansea And Fishguard Harbour

Consider.

  • The route between Swansea and Fishguard Harbour is without electrification.
  • Swansea and Fishguard Harbour are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Fishguard Harbour are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Fishguard Harbour with full batteries, that it will be possible to run between Swansea and Fishguard Harbour stations.

Swansea And Milford Haven

Consider.

  • The route between Swansea and Milford Haven is without electrification.
  • Swansea and Milford Haven are 72 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Milford Haven are 41 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Milford Haven with full batteries, that it will be possible to run between Swansea and Milford Haven stations.

Swansea And Pembroke Dock

Consider.

  • The route between Swansea and Pembroke Dock is without electrification.
  • Swansea and Pembroke Dock are 73 miles apart.
  • Tramins could top up the batteries during the reverse at Carmathen.
  • Swansea and Carmarthen are 31 miles apart.
  • Carmarthen and Pembroke Dock are 42 miles apart.

I believe that if a battery-electric train, with a range of 56 miles, can leave Swansea, Carmathen and Pembroke Dock with full batteries, that it will be possible to run between Swansea and Pembroke Dock stations.

Other Routes

I have not covered these routes.

  • Borderlands Line
  • Cardiff Valley Lines, that will be part of the South Wales Metro
  • Routes on the electrified South Wales Main Line, that are to the East of Cardiff.

The first will run between Chester and the electrified Merseyrail system and the others will be electrified, except for short stretches.

Stations Where Trains Would Be Charged

These stations will need charging facilities.

Aberystwyth

Aberystwyth station only has a single terminal platform.

I’ve not been to the station, but looking at pictures on the Internet, I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems.

Birmingham International

Birmingham International station is fully-electrified and ready for battery-electric trains.

Blaenau Fflestiniog

Blaenau Ffestiniog station has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Cardiff

Cardiff station is fully-electrified and ready for battery-electric trains.

Chester

Chester station has two through platforms and one bay platform, that are used by Trains for Wales.

  • The through platforms are bi-directional.
  • The bay platform is used by services from Liverpool Lime Street and Manchester Airport and Piccadilly.
  • The station is a terminus for Merseyrail’s electric trains, which use 750 VDC third-rail electrification.
  • Some through services stop for up to seven minutes in the station.

This Google Map shows the station.

There is plenty of space.

The simplest way to charge trains at Chester would be to electrify the two through platforms 3 and 4 and the bay platform 1.

I would use 750 VDC third-rail, rather than 25 KVAC overhead electrification.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

I have a vague recollection, that there is an avoiding line at Chester station, so trains can go straight through. Perhaps that should be electrified too.

Carmarthen

Carmarthen station is a two platform station, with a rather unusual layout, that I wrote about in Changing Trains At Carmarthen Station.

I took these pictures when I passed through in 2016.

Note the unusual step-free crossing of the tracks.

This Google Map shows the layout at the station.

I believe it is another station, where third-rail electrification could be the solution.

  • Most trains seem to reverse at the station, which gives time for a full charge.
  • Others terminate here.

but would they still allow passengers to cross the line as they do now, whilst trains are being charged?

Crewe

Crewe station is fully-electrified.

  • Trains for Wales seem to use Platform 6 for through trains and the bay Platform 9 for terminating trains.
  • Both platforms appear to be electrified.
  • Terminating trains appear to wait at least 9-11 minutes before leaving.

It does appear that Crewe station is ready for battery-electric trains.

Fishguard Harbour

Fishguard Harbour station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Hereford

Hereford station has four through platforms.

This Google Map shows the station.

There is plenty of space.

As with Chester, I would electrify this station with 750 VDC third-rail equipment.

But the electrification wouldn’t be just for train services in Wales.

  • West Midlands Trains, run an hourly service to Birmingham New Street and there is only a forty-one mile gap in the electrification between Hereford and Bromsgrove.
  • Great Western Railway’s service to London, has a massive ninety-six mile run to the electrification at Didcot Junction, which could be bridged by installing charging facilities at Worcestershire Parkway and/or Honeybourne stations.

Both services have generous turnround times at Hereford, so would be able to leave fully-charged.

Distances from Hereford station are as follows.

  • Abergavenny – 24 miles
  • Bromsgrove – 41 miles
  • Great Malvern – 21 miles
  • Honeybourne – 48 miles
  • Ludlow – 13 miles
  • Newport – 44 miles
  • Shrewsbury – 51 miles
  • Worcester Parkway – 33 miles

Hereford station could be a serious battery-electric train hub.

Holyhead

Holyhead station has three terminals platforms.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Liverpool Lime Street

Liverpool Lime Street station is fully-electrified and ready for battery-electric trains.

Llandrindod

Llandrindod station has two through platforms.

I took these pictures at the station as I passed through in 2016.

The Heart of Wales Line is certainly a route, that would benefit from larger trains. Zero-carbon battery-electric trains would surely fit well in the area.

This Google Map shows the station.

It would appear that, it is another station, that could be fitted with third-rail electrification to charge the trains.

Distances from Llandrindod station are as follows.

  • Shrewsbury – 52 miles
  • Llandovery – 27 miles
  • Llanelli – 59 miles
  • Swansea – 70 miles

It would appear that a second station with charging facilities or bigger batteries are needed.

Llandudno Junction

Llandudno Junction station has four platforms.

This Google Map shows the station.

There is plenty of space.

As at Chester, the simple solution would be to electrify the platforms used by trains, that will need charging.

Butb there may also be a wider plan.

Llandudno Junction station is at the Western end of a string of five closely-spaced stations with Prestatyn station in the East.

  • Llandudno Junction and Prestatyn are eight miles apart.
  • Trains take twenty-three minutes to pass through this section.
  • Some trains do a detour to Llandudno station before continuing.
  • For part of the route, the railway lies between the dual-carriageway A55 road and the sea.

So why not electrify this section of railway between Llandudno Junction and Prestatyn stations?

  • Either 750 VDC this-rail or 25 KVAC overhead electrification could be used.
  • Prestatyn and Chester are 46 miles apart.
  • Llandudno Junction and Holyhead are 40 miles apart.

If third-rail electrification were to be used, it might be advantageous to electrify to Llandudno station.

  • It would be less intrusive.
  • It would be quieter in an urban area.
  • It would give the trains to Blaenau Ffestiniog trains a good charge.

But above all third-rail electrification might cost a bit less and cause less disruption to install.

Machynlleth

Machynlleth station is where the Aberystwyth and Pwllheli services split and join.

This Google Map shows the station.

Consider.

  • There is a train depot by the station.
  • Will there be a good power supply at the station to charge the trains?
  • Machnylleth and Pwllhelli are 58 miles apart.
  • Machynlleth and Shrewsbury are 61 miles apart.

I think that Machynlleth might be pushing things too far, without extra stations with charging facilities.

One solution might be to develop the Riding Sunbeams concept and electrify the route between Newtown and Dovey Junction via Machynlleth, using third-rail technology powered-by solar or wind power.

Another solution would be batteries with a larger capacity.

Manchester Airport

Manchester Airport station is fully-electrified and ready for battery-electric trains.

Manchester Piccadilly

Manchester Piccadilly station is fully-electrified and ready for battery-electric trains.

Milford Haven

Milford Haven station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pembroke Dock

Pembroke Dock station only has a single terminal platform.

My comments would be similar to what, I said for Aberystwyth station. I would hope a standard solution can be developed.

Pwllheli

Pwhelli station is a only has a single terminal platform.

This Google Map shows the location of the station.

The stsation is at the North West corner of the bay.

My first reaction, when I saw this was that I have to go.

So I took a closer look at the station instead.

I suspect that fitting a charging facility into the station, wouldn’t be the most difficult of engineering problems. Although, there might be a problem getting a good enough connection to the National Grid.

Shewsbury

Shrewsbury station is a five-platform station.

This Google Map shows the station’s unusual location over the River Severn.

It must be one of few stations in the world, where trains enter the station from three different directions.

  • From Crewe and Chester to the North.
  • From Hereford and Wales to the South.
  • From Birmingham and Wolverhampton in the East.

Adding electrification to all or selected platforms should allow trains to recharge and be on their way.

  • Under current timetables, dwell times in Shrewsbury are up to eight minutes.
  • I would suspect the train times could be adjusted, so that trains left the station with full batteries.

With battery-electric services to Aberystwyth, Birmingham International, Birmingham New Street, Cardiff Central, Chester, Crewe, Hereford, Holyhead, London Euston, Manchester, Pwllheli and Swansea, it will be a very important station.

Swansea

Swansea station has four terminal platforms.

A charging facility could be added to an appropriate number of platforms.

Or perhaps, the last few miles of track into the station should be electrified, so trains could charge on the way in, charge in the station and charge on the way out.

Third Rail Electrification

I have suggested in this post, that 750 VDC third-rail electrification could be used in several places.

I will repeat what I said earlier, when discussing Chester station.

  • I’m an engineer, who deals in scientifically-correct solutions, not politically-correct ones, devised by jobsworths.
  • Maintenance staff at the station will be familiar with the technology.
  • Station staff and passengers will know about the dangers of third-rail electrification.
  • Trains connect and disconnect automatically to third-rail electrification.
  • Trains don’t have to stop to connect and disconnect, so passing trains can be topped-up.
  • Hitachi with the Class 395 train and Alstom with the Class 373 train, have shown even trains capable of 140 mph can be fitted with third-rail shoes to work safely at slower speeds on lines electrified using third-rail.
  • Modern control systems can control the electricity to the third-rail, so it is only switched on, when the train completes the circuit.

Third-rail electrification should be seriously considered.

A Standardised Terminal Solution

In this post, I mentioned that the following stations could be powered by a scandalised solution, as they are all one platform, terminal stations.

  • Aberystwyth
  • Blaenau Ffestiniog
  • Fishguard Harbour
  • Holyhead
  • Milford Haven
  • Pembroke Dock
  • Pwllheli

The system might also be applicable at Carmarthen and Swansea.

My view is that Vivarail’s Fast Track charging based on third-rail technology would be ideal. I discussed this technology in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Conclusion

With a bit of ingenuity, all train services run by Transport for Wales, can be run with battery-electric trains.

 

July 9, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , | 5 Comments

High Speed Two To The North West Of England

This map clipped from the High Speed Two web site, shows High Speed Two routes in the North West of England.

Note.

  1. When shown in orange, High Speed Two will use new tracks.
  2. When shown in blue, High Speed Two will use existing tracks.
  3. New stations are shown as large blue dots.
  4. High Speed Two and the West Coast Main Line appear to share a corridor through Crewe, before dividing near Walley’s Green.
  5. High Speed Two loops to the East of the West Coast Main Line and rejoins it South of Wigan between Bryn Gates and Abram Brow.

The route will or might serve the following stations in North West England.

Blackpool North

Blackpool North station is not planned to be served by High Speed Two.

But the station has been recently rebuilt.

  • It has a number of platforms, that are capable of handling 200 metre long classic-compatible High Speed Two trains.
  • The route to High Speed Two at Preston is fully electrified.
  • In a couple of years, it will be connected to Blackpool’s expanding tramway.
  • Blackpool would welcome High Speed Two with open arms.

Blackpool North  would be an ideal extra destination, if more trains were to be split and joined at Crewe.

But whatever happens, I believe that high speed commuter trains will run from Blackpool North.

  • Blackpool and Manchester Piccadilly via Preston, Wigan North Western, Warrington Bank Quay and Manchester Airport.
  • Blackpool and Derby via Preston, Wigan North Western, Warrington Bank Quay, Crewe and Stoke-on-Trent.

Blackpool North has the platforms and electrification and it will be used.

Carlisle

Carlisle station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

But two tph will be 400 metre London Euston and Edinburgh/Glasgow trains, so platform lengthening will probably be required.

There will be the following trains.

  • Birmingham Curzon Street and Carlisle – I tph – 118 minutes
  • London Euston and Carlisle – 2 tph – 154 minutes.

After any necessary platform lengthening, Carlisle will be ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

The High Speed Two web site, says Carlisle will be reached in Phase 2b, but as Edinburgh and Glasgow are part of Phase 1, this must be a mistake.

Crewe

Crewe station is at the bottom of the map, just to the right of centre.

The station gets this introduction on this page of the High Speed Two web site.

HS2 services will call at Crewe, where passengers will be able to access the high speed network heading south. Journey times to London will be cut to under an hour. Macclesfield, Stafford and Stoke-on-Trent will also receive HS2 services, spreading the benefits of better connectivity.

The page also says that between five and seven trains per hour (tph) will call at Crewe.

Lancaster

Lancaster station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

Lancaster will also be a terminus of 200 metre long classic-compatible High peed Two train from London Euston, so there may need to be refurbishment to handle the larger, if not longer train.

The use of Lancaster as a terminus, would appear to have the following advantages.

  • The platform is already there.
  • Using Lancaster as a terminal, may reduce the scope of works at Carlisle and Preston.
  • The one tph service from London Euston is effectively a High Speed Northern stopper between Lancaster and Crewe, with calls at Warrington Bank Quay, Wigan North Western and Preston stations.
  • Lancaster has connections to Barrow-in-Furness, Heysham Port and Morecambe and the scenic Cumbrian Coast and Settle-Carlisle Lines.
  • Paces like Barrow-in-Furness. Morecambe and a host of other stations, should save forty-three minutes on journeys to and from London.

I think that Lancaster, is a good place to terminate a service in the North-West of England.

There will be the following trains.

  • Birmingham Curzon Street and Lancaster – I tph – 65 minutes
  • London Euston and Lancaster – 1 tph – 101 minutes.

After the necessary refurbishment, Lancaster will be ready  and waiting for High Speed Two and will be reached in Phase 2b of the project.

But I do feel that Lancaster could be reached in Phase 1 of the project, if necessary works North of Preston and at Lancaster station were planned as an independent project.

Liverpool Lime Street

Liverpool Lime Street station is at the Western edge of the map, at the end of the Liverpool Branch of the West Coast Main Line.

Liverpool gets this headline and brief description on this page of the High Speed Two web site.

The City Region Wants To Deliver a World Class Transport Network

Its ambitious plans would integrate the existing HS2 route and builds on the Northern Powerhouse Rail proposals for high speed, east-west links directly into Liverpool City Centre.

Liverpool has made a good start to prepare for High Speed Two.

  • The Grade II Listed; Lime Street station now has lengthened platforms and an improved layout so that it can handle two 200 metre long High Speed Two trains per hour.
  • Merseyrail is taking delivery of a fleet of new Class 777 trains to update their suburban network.
  • By the time High Speed Two arrives in the city, the suburban network will be larger.

Liverpool is ready and waiting for High Speed Two and will be reached in Phase 1 of the project.

Macclesfield

Macclesfield station is at the Eastern edge of the map, at the end of its own leg of High Speed Two.

The station was the surprise destination added, during the last iteration of High Speed Two.

  • The late, great Brian Redhead, who lived in the town would be very pleased.
  • The station was rebuilt in 1960 and has three platforms.
  • It is planned to have one tph to London Euston via Stoke-on-Trent, Stafford and Old Oak Common.
  • The visualisation on this page of the High Speed Two web site, also shows three platforms, but I wouldn’t be surprised to see a fourth added, as the extra platform would add flexibility.

The second surprise for Macclesfield, is that like Liverpool, it will be reached in Phase 1 of the project.

Manchester Airport

Manchester Airport station is the Southern large blue dot at the top of the map.

This page on the High Speed Two web site is rather sparse on information about Manchester Airport station.

I have combined train times given on the web page, with frequencies from an article in the June 2020 Edition of Modern Railways to create this table, which should be valid after the completion of High Speed Two.

  • Birmingham Curzon Street and Manchester Airport – 2 tph – 32 minutes
  • Birmingham Interchange and Manchester Airport – 1 tph – 29 minutes
  • London Euston and Manchester Airport – 3 tph – 63 minutes
  • London Old Oak Common and Manchester Airport – 3 tph – 56 minutes
  • Manchester Piccadilly and Manchester Airport – 5 tph – 6 minutes

In Changes Signalled For HS2 Route In North, I stated that Northern Powerhouse Rail were proposing the following Liverpool and Manchester service.

Manchester Airport station will be reached in Phase 2b of the project.

  • Six tph
  • Stops at Manchester Airport and Warrington.
  • An end-to-end journey time of 26 minutes.

This would do the following.

  • Add a Liverpool and Manchester Airport service with a frequency of 6 tph, that will take 20 minutes.
  • Add a Warrington Parkway and Manchester Airport service with a frequency of 6 tph that will take around 10 minutes.
  • Increase the frequency between Manchester Piccadilly and Manchester Airport to 11 tph. Or more likely 12 tph.

How many cities have an airport connection running every five minutes using trains running at 125 mph?

As these Liverpool and Manchester services would probably start in places like Hull and Newcastle and come via varied routes that included a selection of Bradford, Doncaster Huddersfield, Leeds and Sheffield, all of the North, that lies to the East of the Pennines will be connected to Manchester Piccadilly, Manchester Airport and Liverpool by high speed trains.

Manchester Piccadilly

Manchester Piccadilly station is the Northern large blue dot at the top of the map.

This page on the High Speed Two web site is rather sparse on information about Manchester Piccadilly station.

Using the same data as before I can create a table of services from Manchester Piccadilly station, where I have included Liverpool and Manchester services, that will be run by Northern Powerhouse Rail.

  • Birmingham Curzon Street – 2 tph – 40 minutes
  • Birmingham Interchange – 1 tph – 37 minutes
  • London Euston – 3 tph – 67 minutes
  • London Old Oak Common – 3 tph – 60 minutes
  • Manchester Airport – 12 tph – 6 minutes
  • Liverpool – 6 tph – 26 minutes

Manchester Piccadilly station will be reached in Phase 2b of the project.

Oxenholme Lake District

Oxenholme Lake District station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be the following trains.

  • Birmingham Curzon Street and Oxenholm Lake District – I tph – 79 minutes
  • London Euston and Oxenholme Lake District – 115 minutes – Change at Preston

Oxenholme Lake District is ready  and waiting for High Speed Two and will be reached in Phase 2b of the project.

But I do feel that Oxenholme Lake Districtcould be reached in Phase 1 of the project, if necessary works North of Preston and at Lancaster station were planned as an independent project

Penrith North Lakes

Penrith North Lakes station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be the following trains.

  • Birmingham Curzon Street and Penrith North Lakes – I tph – 102 minutes
  • London Euston and Penrith North Lakes – 138 minutes – Change at Preston

Penrith North Lakes is ready  and waiting for High Speed Two and will be reached in Phase 2b of the project.

But I do feel that Penrith North Lakes could be reached in Phase 1 of the project, if necessary works North of Preston and at Lancaster station were planned as an independent project

Preston

Preston station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

But two tph will be 400 metre London Euston and Edinburgh/Glasgow trains, so platform lengthening will probably be required.

There will be the following trains.

  • Birmingham Curzon Street and Preston – I tph – 50 minutes
  • London Euston and Preston – 3 tph – 78 minutes.

After any necessary platform lengthening, Preston will be ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

Runcorn

Runcorn station is a through station on the Liverpool service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be two tph between London Euston and Runcorn and trains will take 74 minutes.

Runcorn is ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

Stafford

Stafford station is a through station on the Macclesfield service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be one tph between London Euston and Stafford and trains will take 54 minutes.

Sfafford is ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

Stoke

Stoke station is a through station on the Macclesfield service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be one tph between London Euston and Stoke and trains will take 71 minutes.

Stoke is ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

Warrington

Warrington Bank Quay station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be the following trains.

  • Birmingham Curzon Street and Warrington Bank Quay – I tph – 25 minutes
  • London Euston and Warrington Bank Quay – 1 tph – 73 minutes.

Warrington Bank Quay is ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

Wigan

Wigan North Western station is a through station on the current Glasgow service and can handle a nine-car Class 390 train which is over 210 metres long, which means they can handle a 200 metre long, classic-compatible High Speed Two train.

There will be the following trains.

  • Birmingham Curzon Street and Wigan North Western – I tph – 36 minutes
  • London Euston and Wigan North Western – 1 tph – 84 minutes.

Wigan North Western is ready  and waiting for High Speed Two and will be reached in Phase 1 of the project.

 

June 25, 2020 Posted by | Transport | , , , , , , , , , , , , , , | 1 Comment

Splitting And Joining Of High Speed Two Trains

In Existing Stations Where High Speed Two Trains Will Call, I looked at how existing stations will need to be modified to handle the High Speed Two service pattern described in an article, which is entitled HS2 Minister Backs 18 tph Frequency, in the June 2020 Edition of Modern Railways.

The article states that splitting and joining of trains will take place at three stations; Carlisle, Crewe and East Midlands Hub.

To successfully split and join the pairs of 200 metre long High Speed Two trains, the following will be needed.

  •  400 metre long platforms, that can handle the pair of trains.
  • Excellent signage, so that passengers get into the right train and leave for the right destination.
  • Efficient crew methods, so that drivers are in the correct cabs at the right time.

For many years trains at Cambridge and several places South of London have successfully split and joined.

This video shows two Class 395 trains coupling and uncoupling automatically.

It;s impressive and I suspect High Speed Two’s trains will be equally good or even better at this procedure.

Why Is Split And Join Needed For High Speed Two?

According to the Modern Railways article, the full High Speed Two service will be as follows in trains per hour (tph) and trains per two hours (tp2h)

  1. 1 tph – London Euston and Birmingham Curzon Street via Old Oak Common (OOC) – 400 metres
  2. 2 tph – London Euston and Birmingham Curzon Street via OOC and Birmingham Interchange – 400 metres
  3. 1 tph – London Euston and Lancaster via OOC, Crewe, Warrington Bank Quay, Wigan North Western and Preston – London Euston and Liverpool Lime Street via OOC, Crewe and Runcorn – 200+200 metres with Split/Join at Crewe
  4. 1 tph – London Euston and Liverpool Lime Street via OOC, Crewe and Runcorn – 200 metres
  5. 1 tph – London Euston and Macclesfield via OOC, Stafford and Stoke-on-Trent – 200 metres
  6. 1 tph – London Euston and Manchester Piccadilly via OOC, Birmingham Interchange and Manchester Airport – 400 metres
  7. 2 tph – London Euston and Manchester Piccadilly via OOC and Manchester Airport – 400 metres
  8. 1 tph – London Euston and Edinburgh Waverley via OOC, Preston, Carlisle and Edinburgh Haymarket – London Euston and Glasgow Central via OOC, Preston and Carlisle – 200 +200 metres with Split/Join at Carlisle
  9. 1 tph – London Euston and Edinburgh Waverley via OOC, Birmingham Interchange, Preston, Carlisle and Edinburgh Haymarket – London Euston and Glasgow Central via OOC, Preston and Carlisle – 200 +200 metres with Split/Join at Carlisle
  10. 1 tp2h – Birmingham Curzon Street and Edinburgh Waverley via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith and Edinburgh Haymarket – 200 metres
  11. 1 tp2h – Birmingham Curzon Street and Glasgow Central via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith, Lockerbie and Motherwell – 200 metres
  12. 2 tph – Birmingham Curzon Street and Manchester Piccadilly via Manchester Airport – 200 metres
  13. 2 tph – Birmingham Curzon Street and Leeds via East Midlands Hub – 200 metres
  14. 1 tph – Birmingham Curzon Street and Newcastle via East Midlands Hub, Darlington and Durham – 200 metres
  15. 1 tph – London Euston and Sheffield via OOC and East Midlands Hub – London Euston and Leeds via OOC and East Midlands Hub – 200 + 200 metres with Split/Join at East Midlands Hub
  16. 1 tph – London Euston and Leeds via OOC and East Midlands Hub – 400 metres
  17. 1 tph – London Euston and Leeds via OOC, Birmingham Interchange and East Midlands Hub – 400 metres
  18. 1 tph – London Euston and Sheffield via OOC, East Midlands Hub and Chesterfield – London Euston and York via OOC and East Midlands Hub – 200 + 200 metres with Split/Join at East Midlands Hub
  19. 1tph – London Euston and Newcastle via OOC and York – 200 metres
  20. 1 tph – London Euston and Newcastle via OOC, York and Darlington – 200 metres

Note.

  1. Trains 10 and 11 share the same path in alternate hours.
  2. Birmingham Curzon Street is effectively a second Southern terminus.
  3. Seventeen tph leave London Euston and Old Oak Common for the North, of which eight are 400 metre trains, five are a pair of 200 metre trains and four are 200 metre trains.

As the five pairs of 200 metre trains Split/Join en route, this effectively means, that London Euston is served by twenty-two tph.

It would appear that Split/Join is important, as it allows the same number of train paths between London Euston and the North to support more services.

Could Any Other Trains Be Split And Joined?

I don’t see why not!

There are eight tph going North from London Euston and Old Oak Common, that are 400 metre long trains that don’t Split/Join

  • 3 tph – Birmingham Curzon Street
  • 2 tph – Leeds
  • 3 tph – Manchester Piccadilly

Note.

  1. Each 400 metre train would appear to have a capacity of around 1,100 passengers.
  2. Leeds is also served by another 200 metre train from London.

Effectively, this gives the following passenger capacities between London and the three major cities.

  • Birmingham – 3,300
  • Leeds – 2,750
  • Manchester – 3,300

If these capacities have been carefully predicted, performing a Split/Join on these trains might cause a shortage of capacity.

There are four single 200 metre trains, that could be doubled up for their run to the North.

  1. London Euston and Liverpool Lime Street via OOC, Crewe and Runcorn
  2. London Euston and Macclesfield via OOC, Stafford and Stoke-on-Trent
  3. London Euston and Newcastle via OOC and York
  4. London Euston and Newcastle via OOC, York and Darlington

In theory, these four trains could be doubled to provide extra services.

But there are two problems.

Where Would The Trains Split and Join?

  • Train 1 could Split/Join at Crewe.
  • Train 2 could Split/Join at Stafford, if the platforms were lengthened to accept a pair of 200 metre trains.
  • Trains 3 and 4 would need to stop at East Midlands Hub to Split/Join

It would appear that four extra trains could be run into London Euston, by running all single trains as pairs.

Where Would The Extra Services Terminate?

There are possibilities on the Western leg of High Speed Two.

  • An extra train for Liverpool Lime Street
  • An extra train for Lancaster
  • A direct train for the current Manchester Piccadilly via Wilmslow and Stockport
  • A direct train for Blackpool

But the Eastern leg of High Speed Two is more of a problem.

  • An extra train for Sheffield
  • A direct train for Hull.

Hull could be served via a new junction between High Speed Two and the Hull-Leeds Line to the North-West of Garforth or perhaps by extending a service from Sheffield.

Could Any Services North From Birmingham Curzon Street Be Split And Joined?

These 200 metre services go North from Birmingham Curzon Street station.

  1. 1 tp2h – Birmingham Curzon Street and Edinburgh Waverley via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith and Edinburgh Haymarket
  2. 1 tp2h – Birmingham Curzon Street and Glasgow Central via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith, Lockerbie and Motherwell
  3. 2 tph – Birmingham Curzon Street and Manchester Piccadilly via Manchester Airport
  4. 2 tph – Birmingham Curzon Street and Leeds via East Midlands Hub
  5. 1 tph – Birmingham Curzon Street and Newcastle via East Midlands Hub, Darlington and Durham.

Note that trains 1 and 2 share the same path in alternate hours.

There may be scope to double up some of these trains, to serve extra destinations in the North from Birmingham Curzon Street.

Conclusion

Split/Join is a powerful tool to increase the number of services without spending a fortune on new infrastructure.

 

 

 

 

 

 

 

June 14, 2020 Posted by | Transport | , , , , , | Leave a comment

Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Note that I have rewritten this post to take account of this information from the January 2020 Edition of Modern Railways, in an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services, which have now been numbered as Class 807 trains.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

Currently, Avanti West Coast‘s trains between London Euston and Liverpool Lime Street stations are timetabled as follows.

  • The journey takes two hours and thirteen or fourteen minutes.
  • There are three stops at Stafford, Crewe and Runcorn.
  • The stops with the current Class 390 trains seem to take around a minute.
  • There is one train per hour (tph)
  • A second hourly service with a stop at Liverpool South Parkway is planned to be introduced in December 2022.

In 2022, a new fleet of Hitachi AT-300 trains will be introduced on the route. I believe, it would be reasonable to assume, that these Class 807 trains will have similar or better performance, than the current Class 390 trains.

  • Acceleration and braking are likely to be better.
  • Regenerative braking energy may well be handled more efficiently.
  • The trains may well be equipped with in-cab digital signalling and be able to travel in excess of 125 mph in places, where the track allows.

I would expect, that these trains could be running near to or at 125 mph on most of the journey.

London Euston and Liverpool Lime Street are 193.5 miles apart, so if a train could be running at 125 mph all the way, a train would take 93 minutes.

Extra time must be added for the following.

  • Acceleration from a standing start to 125 mph at London Euston, Stafford, Crewe and Runcorn.
  • Deceleration from 125 mph to a stop at Stafford, Crewe, Runcorn and Liverpool Lime Street.
  • Dwell time in the platforms at Stafford, Crewe and Runcorn.

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train, which is a bi-mode AT-300 train with three diesel engines.

The data sheet shows that a five-car train can accelerate to 125 mph and then decelerate to a stop in six minutes in electric mode. As Avanti West Coast’s Class 807 trains will be all-electric seven-car trains with no heavy engine or battery, I doubt they will be slower than a Class 802 train in electric mode. So four accelerations/deceleration cycles  to 125 mph should take no more than twenty-four minutes.

I will assume two minutes for each of the three stops.

I can now give an estimate for the journey.

  • Base journey time – 93 minutes
  • Acceleration from and deceleration to stops – 24 minutes
  • Station dwell time – 6 minutes

This gives a journey time between London Euston and Liverpool Lime Street of two hours and three minutes.

The journey time can probably be improved in the following ways.

  • Take full advantage of the track improvements on the approach to Liverpool Lime Street station and at Norton Bridge Junction.
  • Better train pathing, as has been done on London Liverpool Street and Norwich services to create the fast Norwich-in-Ninety services.
  • Track and signal improvements to pinch a minute here and a minute there.
  • As Runcorn now has an hourly Liverpool Lime Street and Chester service, will the Runcorn stop be dropped to save time?
  • Reduction in station dwell time.
  • Better driver aids.
  • Better staff operating procedures at stops and whilst turning the train.

It should be born in mind, that a two hour journey between London Euston and Liverpool Lime Street would be a start-stop average speed of 97 mph on a 125 mph route. Intriguingly, this means the trains would run at 77 % of the maximum operating speed of the route, which is the same figure for Norwich-in-Ninety services.

Some of these improvements may enable the Class 390 trains to go a bit faster.

It has to be considered, that Avanti West Coast’s Marketing Department would be ecstatic, when told that London and Liverpool were less than two hours apart.

How Many Trains Would Be Needed?

Currently, this is a typical train round trip to Liverpool Lime Street.

  • 07:07 – Leave London Euston
  • 09:20 – Arrive Liverpool Lime Street
  • 09:47 – Leave Liverpool Lime Street
  • 12:02 – Arrive London Euston

The five-hour round-trip would indicate that five trains would be needed for the one tph service.

This train didn’t return to Liverpool, but went off to the Wembley Depot.

After their Liverpool trip, there is no real pattern of where the train will go next, as this table shows.

  • 06:41 – 6 – 33 minutes – Wembley Depot
  • 07:48 – 2 – 36 minutes – Manchester Piccadilly
  • 08:47 – 1 – 40 minutes – Manchester Piccadilly
  • 09:47 – 7 – 30 minutes – Wembley Depot
  • 10:47 – 4 – 42 minutes – Preston
  • 11:47 – 4 – 37 minutes – Preston
  • 12:47 – 1 – 34 minutes – Preston
  • 13:47 – 15 – 13 minutes – Birmingham New Street
  • 16:47 – 6 – 16 minutes – Glasgow Central
  • 17:47 – 1 – 42 minutes – Manchester Piccadilly

Note.

  1. The time is departure time from Liverpool Lime Street, the number is the platform and the minutes are the turnround time in Euston.
  2. I have left out a couple of trains as there was a very late train.
  3. There doesn’t seem to be any regular pattern.
  4. It looks like trains can be turned in under fifteen minutes.
  5. I think there was a time, when Liverpool couldn’t accept eleven-car trains, but the new longer platforms appear to accept them.
  6. Trains appear to be running services to Glasgow Central and Manchester Piccadilly, who seem to usually get eleven-car trains.

I almost think, that they’re allocating trains as they go.

With the new Class 807 trains, I suspect the following is possible.

  • London Euston to Liverpool Lime Street – Two hours
  • Turnround – Fifteen minutes
  • Liverpool Lime Street to London Euston – Two hours
  • Turnround – Fifteen minutes

This means it’s a four-and-a-half hour round trip.

  • Journey times of two hours.
  • Time enough for well-drilled staff to turn the trains.
  • Dedicated platforms at London Euston and Liverpool Lime Street.
  • It would be a very attractive customer-friendly service.

Two tph would need nine trains.

It would be everything the Marketing Department wanted!

Thoughts On The Current Class 390 Timings

As the Class 390 trains are a 125 mph train, their base timing of 93 minutes, between London and Liverpool should still be the same.

As their doors and lobbies are similar in design to those of the Hitachi AT-300 trains, I would allow the same two minutes of dwell time at each station.

Current timings of services on the route vary between 132 and 134 minutes. I’ll take the average of 133 minutes.

So the current services take thirty-four minutes to perform the four accelerate and decelerate sequences on the route.

It would appear that this sequence would take eight-and-a-half minutes in comparison with the six minutes of the new Hitachi AT-300 trains.

An Improved London Euston and Blackpool North Service

The new AT-300 trains will also be running to Blackpool.

  • London Euston and Blackpool North takes between two hours and forty-four minutes and two hours and fifty-nine minutes.
  • Journey times are not very consistent, probably due to timetabling difficulties.
  • Trains stop between four and five times on the West Coast Main Line.

Would the faster stops of the new AT-300 trains mean that Avanti West Coast could run a more regular timetable, with all services under three hours?

It should also be noted, that Grand Central will start a London Euston and Blackpool North service in Spring 2020.

As the rolling stock for this new service will be Class 90 locomotives hauling rakes of Mark 4 coaches, that will be limited to 110 mph, are Avanti West Coast making sure, that they have the fastest trains on the route?

Would AT-300 Trains Save Time To Other Avanti West Coast Destinations?

If we assume that AT-300 trains can save two-and-a-half minutes per accelerate and decelerate sequence times could change as follow.

  • Birmingham New Street – One hour and twenty-two minutes – Three stops – One hour and twelve minutes
  • Coventry – One hour – Two stops – Fifty-five minutes
  • Crewe – One hour and thirty-four minutes – One stop – One hour and thirty minutes
  • Glasgow – As services stop six or thirteen times, there may be substantial savings to be achieved.
  • Manchester – Between two hours and seven minutes and two hours and thirteen minutes – Three stops – Between one hour and fifty-seven minutes and two hours and three minutes.

Note.

  1. The number of accelerate and decelerate sequences is one more than the number of stops.
  2. Coventry services would be under an hour.
  3. Two out of three Manchester services would be under two hours.

This analysis illustrates how fast train performance is important in more customer-friendly services.

Conclusion

I believe the following will be possible.

  • A two hour service between London Euston and Liverpool Lime Street will be possible with Avanti West Coast’s new AT-300 trains.
  • The current Class 390 trains could go a bit faster.
  • I estimate that a Class 807 train could save as much as two-and-a-half-minutes at each stop.
  • Blackpool North and London times will be comfortably under three hours.
  • Coventry and London times will be comfortably under an hour.

The performance of these Class 807 trains will improve the West Coast Main Line.

March 27, 2020 Posted by | Transport | , , , , , , | 2 Comments

Mule Trains Between Liverpool And Norwich

I have done two trips to Liverpool in the last week.

On Saturday, I saw this collection of one-car Class 153 trains with a two-car Class 156 train thrown in.

They were forming one of East Midlands Railway‘s Liverpool and Norwich services.

And then yesterday, I had to travel between Liverpool and Sheffield and this was the collection of trains that took me.

So what was it like?

It started badly, with the driver announcing that because of the late arrival due to an undisclosed problem with the incoming train, that we would be leaving ten minutes after the planned departure time of 1551. He also indicated that our late departure meant that we would be stuck behind one of Northern’s services.

In the end, despite the gloomy faces of passengers we left twelve minutes late at 1603.

It was a bit like one of those classic films, where an ancient train escapes in the nick of time, with a lot of important and assorted passengers.

The asthmatic Cummins diesels under the train could be heard straining.

  • But the driver was at the top of his game and the train was running smoothly towards Manchester at close to 75 mph, which is the maximum speed of a Class 153 train.
  • At Manchester Piccadilly, the driver had pulled back two minutes.
  • There were obviously, no problems on the Dove Valley Line and the driver pulled back another minute before Sheffield, to arrive nine minutes late.

Looking at Real Time Trains, the train ran well until March (The place, not the month!), but there was some form of delay there and sadly it was thirty-four minutes late into Norwich.

The Train Was Clean

I should say there was nothing wrong with the train except for its design and age. It was also as clean as you can get one of these trains. The toilet, that I used was better than many I’ve used on trains and worked as it should.

Customer Service

East Midlands Railway had loaded a trolley and a steward and in the two hours I was on the train, he came through twice. The only problem for me, that he had no card machine, but I did find a fiver in my briefcase.

At least it was very drinkable. Even, if I hate those plastic tubs of milk, as they are difficult to open with one good hand.

Where Did Two Cars Go?

I had been fairly certain, that we had started with six cars, but we only arrived in Sheffield with four Class 153 trains.

I suspect that the trouble that delayed the train, concerned two cars and these were left on the naughty step or the end of Platform 6 in Liverpool Lime Street station.

Being Fair To East Midlands Railway

This service used to be run by a four-car formation of two-car Class 158 trains, but these have been causing trouble lately and they will be replaced by Class 170 trains cascaded from other operators.

But because of late arrivals of new trains the much better Class 170 trains haven’t arrived yet.

The driver, steward and other staff did a good job and I feel that the steward enjoyed it. No-one was abusive and stories were just exchanged, as we climbed across the Pennines in what by Sheffield was a very crowded train.

Class 153 trains may have been built as a stop-gap for short branch lines, but you couldn’t fault their performance.

Unless of course, one caused the delay at March, by expiring in a cloud of blue smoke.

Other Observations

These are other observations.

Scheduled Journey Times

On my journey the scheduled times were

  • Liverpool and Manchester Oxford Road – forty-seven minutes.
  • Liverpool and Sheffield – one hour and forty-eight minutes.
  • Liverpool and Nottingham – two hour and forty minutes.
  • Liverpool and Norwich – Five hours and twenty-seven minutes

The train considering the configuration, nearly achieved them.

It’s probably the motoring equivalent of doing the journey in a Morris Minor!

The Nine Stops Were Executed Perfectly

There were nine stops on my journey and eight took less than a minute, with Sheffield taking four, as the driver and crew changed.

A modern train like a Class 755 train, with fast acceleration and level boarding could probably save up to three minutes a time on each stop.

The Route Is A Genuine 75 mph Railway In Good Condition

I was checking the speed of the train on parts of the route and the driver had his motley crew at a steady 75 mph for long periods.

  • The train was riding well, indicating to me, that both trains and track were in reasonably good condition.
  • Note that 75 mph is the maximum speed of a Class 153 train.
  • The train recovered three minutes on the late departure from Liverpool.

I can see a faster train and improvements to the route, some of which are underway, could reduce the journey time by a few minutes.

Could Merseyrail’s New Class 777 Trains Work To The Bay Platform At Oxford Road?

Merseyrail’s new Class 777 trains will have the following performance.

  • A possible range of perhaps 40-50 miles on battery power.
  • An operating speed of 75 mph.
  • An acceleration rate of 1.1 m/sec², which is faster than a Class 153 or Class 170 train.
  • Fast stops due to regenerative braking, fast acceleration and level boarding.

As Liverpool Lime Street to Oxford Road is thirty four miles of which nine is electrified, I suspect that these new trains could extend Merseyrail’s Northern Line service from Hunts Cross to Manchester Oxford Road.

  • Two trains per hour (tph), but I’m sure four tph would transform the area.
  • I doubt any track modifications would be needed.

But would Liverpool and Manchester be able to sort out the local politics?

The Future Of The Liverpool And Norwich Service

This service will probably be spilt into two services.

  • Liverpool Lime Street and Derby, which could be run by TransPennine Express or Northern Trains.
  • Derby and Norwich, which would be run by East Midlands Railway.

As to the trains to be used, consider the following.

The Liverpool and Derby leg would probably need six trains, with the same number needed for Derby and Norwich, or twelve in total.

Currently, eleven or twelve is needed for the longer service.

Sections of the route like through Manchester and between Grantham and Peterborough are electrified.

There are even sections of route, where 125 mph running is possible.

Run reliably to an hourly frequency, I think that this service could attract passengers, especially, as it would serve Derby and extra stops like Ilkeston and Warrington West could be added.

This leads to the following trains being possibilities.

Class 802 trains – 125 mph bi-mode train of which TransPennine Express have 19 trains.

Class 185 trains – 100 mph diesel train of which TransPennine Express have 51 trains.

Class 804 trains – 125 mph bi-mode train of which East Midlands Railway have ordered 33 trains.

Class 755 trains – 100 mph diesel train of which Greater Anglia have 38 trains, which are based at Norwich.

Alstom Breeze hydrogen trains could be ideal for Liverpool and Derby.

Note.

  1. Greater Anglia and East Midlands Railway are both subsidiaries of Abellio.
  2. Developments of Class 755 trains could include battery and hydrogen versions.
  3. I suspect that 125 mph trains may be required for both legs, to maximise capacity on the East Coast Main Line and Midland Main Line.

January 29, 2020 Posted by | Transport | , , , , , , , , , , , , , , | 3 Comments

Hitachi Trains For Avanti

The title of this post is the same as that of an article in the January 2020 Edition of Modern Railways.

The Bi-Mode Trains

Some more details of the thirteen bi-mode and ten electric Hitachi AT 300 trains are given.

Engine Size and Batteries

This is an extract from the article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

I do wonder if my speculation in Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks? is possible.

After all, why do all the hard work to develop a hybrid drive system, when your engine supplier has done it for you?

Would Avanti West Coast need a train that will do 125 mph on diesel?

The only place, they will be able to run at 125 mph or even higher will be on the West Coast Main Line, where they will be running under electric power from the pantograph.

If I were designing a bi-mode for 90 mph on diesel and 125 mph on electric, I would have batteries on the train for the following purposes.

  • Handle regenerative braking.
  • Provide hotel power in stations or when stationery.
  • Provide an acceleration boost, if required, when running on diesel.
  • Provide emergency power, if the wires go down in electric mode.

I’m sure MTU could work out a suitable size of diesel engine and batteries in an MTU PowerPack, that would meet the required performance.

Or maybe a smaller diesel could be used. An LNER Class 800 train has 1680 kW of installed power to maintain 125 mph. But the Great Western Railway versions have 2100 kW or twenty-five percent more, as their routes are more challenging with steeper gradients.

For the less challenging routes at a maximum of 90 mph between Crewe, Chester, Shrewsbury and North Wales, I wonder what level of power is needed.

A very rough estimate based on the speed required could put the power requirement as low as 1200-1500 kW.

As the diesel engines are only electrical generators, it would not effect the ability of the train to do 125 mph between Crewe and London.

There looks to be a virtuous circle at work here.

  • Lower maximum speed on diesel means smaller diesel engines.
  • Smaller diesel engines means lighter diesel engines and less fuel to carry.
  • Less weight to accelerate needs less installed power.
  • Less power probably means a more affordable train, that uses less diesel.

It looks to me, that Hitachi have designed a train, that will work Avanti West Coast’s routes efficiently.

The Asymmetric Bi-Mode Train

It looks to me that the bi-mode train  that Avanti West Coast are buying has very different performance depending on the power source and signalling

  • 90 mph or perhaps up to 100 mph on diesel.
  • 125 mph on electric power.with current signalling.
  • Up to 140 mph on electric power with in-cab digital signalling.

This compares with the current Class 221 trains, which can do 125 mph on all tracks, with a high enough operating speed.

The new trains’ different performance on diesel and electric power means they could be called asymmetric bi-modes.

Surely, creating an asymmetric bi-mode train, with on-board power; battery, diesel or hydrogen, sized to the route, means less weight, greater efficiency, less cost and in the case of diesel, higher carbon efficiency.

Carbon Emissions

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Battery-Electric Conversion

In my quote earlier from the Modern Railways article, I said this.

These (the diesel engines) would be replaceable by batteries in future if specified.

In Thoughts On The Next Generation Of Hitachi High Speed Trains, I looked at routes that could be run by a battery-electric version of Hitachi AT-300 trains.

I first estimated how far an AT-300 train could go on batteries.

How far will an AT-300 train go on battery power?

  • I don’t think it is unreasonable to be able to have 150 kWh of batteries per car, especially if the train only has one diesel engine, rather than the current three in a five-car train.
  • I feel with better aerodynamics and other improvements based on experience with the current trains, that an energy consumption of 2.5 kWh per vehicle mile is possible, as compared to the 3.5 kWh per vehicle mile of the current trains.

Doing the calculation gives a range of sixty miles for an AT-300 train with batteries.

As train efficiency improves and batteries are able to store more energy for a given volume, this range can only get better.

I then said this about routes that will be part of Avanti West Coast’s network.

With a range of sixty miles on batteries, the following is possible.

  • Chester, Gobowen, Shrewsbury And Wrexham Central stations could be reached on battery power from the nearest electrification.
  • Charging would only be needed at Shrewsbury to ensure a return to Crewe.

Gobowen is probably at the limit of battery range, so was it chosen as a destination for this reason.

The original post was based on trains running faster than the 90 mph that is the maximum possible on the lines without electrification, so my sixty mile battery range could be an underestimate.

These distances should be noted.

  • Crewe and Chester – 21 miles
  • Chester and Shrewsbury – 42 miles
  • Chester and Llandudno – 47 miles
  • Chester and Holyhead – 84 miles

Could electrification between Crewe and Chester make it possible for Avanti West Coast’s new trains to go all the way between Chester and Holyhead on battery power in a few years?

I feel that trains with a sixty mile battery range would make operations easier for Avanti West Coast.

Eighty miles would almost get them all the way to Holyhead, where they could recharge!

Rlectrification Between Chester And Crewe

I feel that this twenty-odd miles of electrification could be key to enabling battery-electric trains for the routes to the West of Chester to Shrewsbury, Llandudno and Holyhead.

How difficult would it be to electrify between Chester and Crewe?

  • It is not a long distance to electrify.
  • There doesn’t appear to be difficult viaducts or cuttings.
  • It is electrified at Crewe, so power is not a problem.
  • There are no intermediate stations.

But there does seem to be a very large number of bridges. I counted forty-four overbridges and six underbridges. At least some of the bridges are new and appear to have been built with the correct clearance.

Perhaps it would be simpler to develop fast charging for the trains and install it at Chester station.

Conclusion On The Bi-Mode Trains

It appears to me that Avanti West Coast, Hitachi and Rock Rail, who are financing the trains have done a very good job in devising the specification for a fleet of trains that will offer a good service and gradually move towards being able to deliver that service in a carbon-free manner.

  • The initial bi-mode trains will give a big improvement in performance and reduction in emission on the current Voyagers, as they will be able to make use of the existing electrification between Crewe and London.
  • The trains could be designed for 125 mph on electric power and only 90-100 mph on diesel, as no route requires over 100 mph on diesel. This must save operating costs and reduce carbon emissions.
  • They could use MTU Hybrid PowerPacks instead of conventional diesel engines to further reduce emissions and save energy
  • It also appears that Hitachi might be able to convert the trains to battery operation in a few years.
  • The only new infrastructure would be a few charging stations for the batteries and possible electrification between Chester and Crewe.

I don’t think Avanti West Coast’s ambition of a two-thirds reduction in CO2 is unreasonable and feel it could even be exceeded.

Other Routes For Asymetric Bi-Mode Trains

I like the concept of an asymetric bi-mode train, where the train has the following performance.

  • Up to 100 mph on battery, diesel or hydrogen.
  • Up to 100 mph on electrified slower-speed lines.
  • 125 mph on electrified high-speed lines, with current signalling.
  • Up to 140 mph on electrified high-speed lines, with in-cab digital signalling.

I am very sure that Hitachi can now tailor an AT-300 train to a particular company’s needs. Certainly, in the case of Avanti West Coast, this seems to have happened, when Avanti West Coast, Hitachi, Network Rail and Rock Rail had some serious negotiation.

LNER At Leeds

As an example consider the rumoured splitting and joining of trains at Leeds to provide direct services between London and Bradford, Harrogate, Huddersfield, Ilkley, Skipton and other places, that I wrote about in Dancing Azumas At Leeds.

In the related post, I gave some possible destinations.

  • Bradford – 13 miles – 25 minutes – Electrified
  • Harrogate – 18 miles – 30 minutes
  • Huddersfield – 17 miles – 35 minutes
  • Hull – 20 miles – 60 minutes
  • Ilkley – 16 miles – 26 minutes – Electrified
  • Skipton – 26 miles – 43 minutes – Electrified
  • York – 25 miles – 30 minutes

Note, that the extended services would have the following characteristics.

They would be run by one five-car train.

  1. Services to Bradford, Ilkley and Skipton would be electric
  2. Electrification is planned from Leeds to Huddersfield and York, so these services could be electric in a few years.
  3. All other services would need independent power; battery, diesel or hydrogen to and from Leeds.
  4. Two trains would join at Leeds and run fast to London on the electrified line.
  5. Services would probably have a frequency of six trains per day, which works out at a around a train every two hours and makes London and back very possible in a day.
  6. They would stop at most intermediate stations to boost services to and from Leeds and give a direct service to and from London.

As there are thirty trains per day between London and Leeds in each direction, there are a lot of possible services that could be provided.

Currently, LNER are only serving Harrogate via Leeds.

  • LNER are using either a nine-car train or a pair of five-car trains.
  • The trains reverse in Platforms 6 or 8 at Leeds, both of which can handle full-length trains.
  • LNER allow for a generous time for the reverse, which would allow the required splitting and joining.
  • All trains going to Harrogate are Class 800 bi-mode trains.

Note that the Class 800 trains are capable of 125 mph on diesel, whereas the average speed between Harrogate and Leeds is just 35 mph. Obviously, some of this slow speed is due to the route, but surely a train with a maximum speed of 90-100 mph, with an appropriate total amount of diesel power, would be the following.

  • Lighter in weight.
  • More efficient.
  • Emit less pollution.
  • Still capable of high speed on electrified lines.
  • Bi-mode and electric versions could run in pairs between Leeds and London.

LNER would probably save on track access charges and diesel fuel.

LNER To Other Places

Could LNER split and join in a similar way to other places?

  • Doncaster for Hull and Sheffield
  • Edinburgh for Aberdeen and Inverness
  • Newark for Lincoln and Nottingham
  • York for Middlesbrough and Scarborough.

It should be noted that many of the extended routes are quite short, so I suspect some train diagrams will be arranged, so that trains are only filled up with diesel overnight,

GWR

Great Western Railway are another First Group company and I’m sure some of their routes could benefit, from similar planning to that of Avanti West Coast.

Splitting and joining might take place at Reading, Swindon, Bristol and Swansea.

South Western Railway

South Western Railway will need to replace the three-car Class 159 trains to Exeter, that generally work in pairs with a total number of around 400 seats, in the next few years.

These could be replaced with a fleet of third-rail Hitachi trains of appropriate length.

  • Seven cars sating 420 passengers?
  • They would remove diesel trains from Waterloo station.
  • All South Western Railway Trains running between Waterloo and Basingstoke would be 100 mph trains.

I wonder, if in-cab digital signalling on the route, would increase the capacity? It is sorely needed!

Southeastern

Southeastern need bi-mode trains to run the promised service to Hastings.

  • Trains would need a third-rail capability.
  • Trains need to be capable of 140 mph for High Speed One.
  • Trains need to be able to travel the 25 miles between Ashford International and Ore stations.
  • Trains would preferably be battery-electric for working into St. Pancras International station.

Would the trains be made up from six twenty-metre cars, like the Class 395 trains?

The Simple All-Electric Train

The Modern Railways article, also says this about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It strikes me as strange, that Hitachi are throwing out one of their design criteria, which is the ability of the train to rescue itself, when the overhead wires fail.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I published this extract from this document on the Hitachi Rail web site.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

This is a very comprehensive power system, with a backup in case of power or catenary failure.

So why does it look like Hitachi are throwing that capability out on the trains for Avanti West Coast.

There are several possibilities.

  • The reliability of the trains and the overhead wire is such, that the ability of a train to rescue itself is not needed.
  • The auxiliary generator has never been used for rescuing the train.
  • The West Coast Main Line is well-provided with Thunderbird locomotives for rescuing Pendelinos, as these trains have no auxiliary generator or batteries.
  • Removal of the excess weight of the auxiliary engine and batteries, enables the Hitachi AT-300 trains to match the performance of the Pendelinos, when they are using tilt.

Obviously, Hitachi have a lot of train performance statistics, from the what must be around a hundred trains in service.

It looks like Hitachi are creating a lightweight all-electric train, that has the performance or better of a Pendelino, that it achieves without using tilt.

  • No tilt means less weight and more interior space.
  • No auxiliary generator or batteries means less weight.
  • Wikipedia indicates, that Hitachi coaches are around 41 tonnes and Pendelino coaches are perhaps up to ten tonnes heavier.
  • Less weight means fast acceleration and deceleration.
  • Less weight means less electricity generated under regenerative braking.
  • Pendelinos use regenerative braking, through the catenary.
  • Will the new Hitachi trains do the same instead of the complex system they now use?

If the train fails and needs to be rescued, it uses the same Thunderbird system, that the Pendelinos use when they fail.

Will The New Hitachi Trains Be Less Costly To Run?

These trains will be lighter in weight than the Pendelinos and will not require the track to allow tilting.

Does this mean, that Avanti West Coast will pay lower track access charges for their new trains?

They should also pay less on a particular trip for the electricity, as the lighter trains will need less electricity to accelerate them to line speed.

Are Avanti West Coast Going To Keep The Fleets Apart?

Under a heading of Only South Of Preston, the Modern Railways article says this.

Unlike the current West Coast fleet, the Hitachi trains will not be able to tilt. Bid Director Caroline Donaldson told Modern Railways this will be compensated for by their improved acceleration and deceleration characteristics and that the operator is also working with Network Rail to look at opportunities to improve the linespeed for non-tilting trains.

The routes on which the Hitachi trains will operate have been chosen with the lack of tilt capability in mind, with this having the greatest impact north of Preston, where only Class 390 Pendelinos, which continue to make use of their tilting capability will be used.

Avanti West Coast have said that the Hitachi trains will run from London to Birmingham, Blackpool and Liverpool.

All of these places are on fully-electrified branches running West from the West Coast Main Line, so it looks like there will be separation.

Will The New Hitachi Trains Be Faster To Birmingham, Blackpool And Liverpool?

Using data from Real Time Trains, I find the following data about the current services.

  • Birmingham and Coventry is 19 miles and takes 20 minutes at an average speed of 57 mph
  • Blackpool and Preston is 16.5 miles and takes 21 minutes at an average speed of 47 mph
  • Liverpool and Runcorn is 3.15 miles and takes 15 minutes at an average speed of 52 mph

All the final legs when approaching the terminus seem to be at similar speeds, so I doubt there are much savings to be made away from the West Coast Main Line.

Most savings will be on the West Coast Main Line, where hopefully modern in-cab digital signalling will allow faster running at up to the design speed of both the Hitachi and Pendelino trains of 140 mph.

As an illustration of what might be possible, London to Liverpool takes two hours and thirteen minutes.

The distance is 203 miles, which means that including stops the average speed is 91.6 mph.

If the average speed could be raised to 100 mph, this would mean a journey time of two hours and two minutes.

As much of the journey between London and Liverpool is spent at 125 mph, which is the limit set by the signalling, raising that to 135 mph could bring substantial benefits.

To achieve the journey in two hours would require an overall average speed of 101.5 mph.

As the proportion of track on which faster speeds, than the current 125 mph increase over the next few years, I can see Hitachi’s lightweight all-electric expresses breaking the two hour barrier between London and Liverpool.

What About The Pendelinos And Digital Signalling?

The January 2020 Edition of Modern Railways also has an article entitled Pendolino Refurb Planned.

These improvements are mentioned.

  • Better standard class seats! (Hallelujah!)
  • Refreshed First Class.
  • Revamped shop.

Nothing is mentioned about any preparation for the installation of the equipment to enable faster running using digital in-cab signalling, when it is installed on the West Coast Main Line.

Surely, the trains will be updated to be ready to use digital signalling, as soon as they can.

Just as the new Hitachi trains will be able to take advantage of the digital signalling, when it is installed, the Pendellinos will be able to as well.

Looking at London and Glasgow, the distance is 400 miles and it takes four hours and thirty minutes.

This is an average speed of 89 mph, which compares well with the 91.6 mph between London and Liverpool.

Raise the average speed to 100 mph with the installation of digital in-cab signalling on the route, that will allow running at over 125 mph for long sections and the journey time will be around four hours.

This is a table of average speeds and journey times.

  • 100 mph – four hours
  • 105 mph – three hours and forty-eight minutes
  • 110 mph – three hours and thirty-eight minutes
  • 115 mph – three hours and twenty-eight minutes
  • 120 mph – three hours and twenty minutes
  • 125 mph – three hours and twelve minutes
  • 130 mph – three hours and four minutes

I think that I’m still young enough at 72 to be able to see Pendelinos running regularly between London and Glasgow in three hours twenty minutes.

The paragraph is from the Wikipedia entry for the Advanced Passenger Train.

The APT is acknowledged as a milestone in the development of the current generation of tilting high speed trains. 25 years later on an upgraded infrastructure the Class 390 Pendolinos now match the APT’s scheduled timings. The London to Glasgow route by APT (1980/81 timetable) was 4hrs 10min, the same time as the fastest Pendolino timing (December 2008 timetable). In 2006, on a one off non-stop run for charity, a Pendolino completed the Glasgow to London journey in 3hrs 55min, whereas the APT completed the opposite London to Glasgow journey in 3hrs 52min in 1984.

I think it’s a case of give the Pendelinos the modern digital in-cab signalling they need and let them see what they can do.

It is also possible to give an estimate for a possible time to and from Manchester.

An average speed of 120 mph on the route would deliver a time of under one hour and forty minutes.

Is it possible? I suspect someone is working on it!

Conclusion

I certainly think, that Avanti West Coast, Hitachi and Network Rail, have been seriously thinking how to maximise capacity and speed on the West Coast Main Line.

I also think, that they have an ultimate objective to make Avanti West Coast an operator, that only uses diesel fuel in an emergency.

 

 

January 1, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 5 Comments

Does One Of Baldrick’s Descendents Work For Avanti West Coast?

I have been looking at the problems of maximising traffic and reducing journey times on the West Coast Main Line to the North of Crewe.

I think that what Avanti West Coast intend to do has a touch of the Baldricks about it.

Trains that go North from Crewe include the following Avanti West Coast services.

  • Blackpool, which branches off at Preston.
  • Glasgow, which goes up the West Coast Main Line via Preston, Lancaster, Oxenholme and Carlisle.
  • Liverpool, which branches off at Weaver Junction, between Crewe and Warrington.
  • Manchester, which branches off at Crewe.

I find it interesting that according to Wikipedia, Avanti West Coast will be running their new Hitachi electric trains to Blackpool and Liverpool, but not Manchester.

Could it be that as these trains will be sharing tracks to the North of Crewe in the future with High Speed Two services to Preston, Carlisle and Scotland, that these trains will be built to have the same operating speed on the West Coast Main Line, as the classic-compatible High Speed Two trains, that will serve the route?

The Manchester Branch is slower, so will remain 125 mph Pendelino territory.

The Number Of Electric Trains Ordered

Doing a rough estimate< I reckon the following.

  • One train per hour (tph) to Liverpool needs five 125 mph Pendelinos.
  • One tph to Blackpool needs six 125 mph Pendelinos.
  • .Two tph to Liverpool needs ten 125 mph Pendelinos.
  • If the new Hitachi trains, are capable of 140 mph, I reckon two tph to Liverpool might need eight 140 mph trains.

The order of new Hitachi trains is not large enough to run both Blackpool and Liverpool services.

Will The New Hitachi Trains Be Used On London and Liverpool?

Consider.

  • It would probably the best policy to run each route with one class of train.
  • A two tph London and Liverpool service is much needed.
  • Running the new Hitachi trains on London and Liverpool, would release extra trains for London and Blackpool and London and Birmingham.
  • Two tph to Liverpool needs eight 125 mph Pendelinos or eight 140 mph Hitachi trains.

But it would also mean installing ERTMS signalling on the London and Liverpool route to enable 140 mph running.

It does appear that ten new Hitachi trains, able to run at 140 mph could service the London and Liverpool route and release five Pendelinos for other routes.

Could The Pendelinos Run At 140 mph?

They were designed for this speed, as were the InterCity 225 trains and only don’t run at this speed because of the lack of digital signalling on the West Coast Main Line.

The Wikipedia entry for the Class 390 Pendelino train says this about the speed of the train.

The Class 390 Pendolino is one of the fastest domestic electric multiple units operating in Britain, with a design speed of 140 mph (225 km/h); however, limitations to track signalling systems restrict the trains to a maximum speed of 125 mph (200 km/h) in service. In September 2006, the Pendolino set a new speed record, completing the 401 mi (645 km) length of the West Coast Main Line from Glasgow Central to London Euston in 3 hours, 55 minutes.

Perhaps it is time to unleash the Pendelinos?

Could the planned refurbishment of the Pendelinos install the required equipment, allow the trains to run using digital signalling at 140 mph?

What Is The Cunning Plan?

These are the possible objectives of adding the extra ten trains.

  • One tph between London and Glasgow in around four hours.
  • Two tph between London and Liverpool in around two hours.

Would this be one possible way to achieve these objectives?

  • Install digital signalling on the West Coast Main Line to allow 140 mph in places, where the track allows.
  • Improve the track of the West Coast Main Line, where necessary.
  • Run new Hitachi trains between London and Liverpool.
  • Release the current Pendelinos to other routes.
  • Upgrade the Pendelinos with digital signalling to allow 140 mph running, where possible.
  • Run 140 mph Pendelinos between London and Blackpool, Edinburgh and Glasgow.

The real plan will probably be a lot better and more comprehensive, but it does show how the two objectives can be met.

Conclusion

To improve services between London and Birmingham, Blackpool, Liverpool and Scotland, appears to need the following.

  • Ten new Hitachi trains.
  • Full digital signalling on the West Coast Main Line.
  • Track improvements on the West Coast Main Line
  • Upgrading of the Pendelinos to allow 140 mph running.

This should reduce London and Glasgow to around four hours and London and Liverpool to around two hours.

 

 

 

December 15, 2019 Posted by | Transport | , , , , , , , , | 4 Comments

TransPennine Express’s New Liverpool Lime Street And Glasgow Central Service

Transpennine Express are introducing a new service between Liverpool Lime Street and Glasgow Central stations at the December 2019 timetable change.

So I examined the service for the the 21st January, 2020.

  • There are three Northbound trains at 08:12, 12:12 and 16:12.
  • There are three Southbound trains at 07:45, 11:44 and 16:29
  • Journey times vary between three hours and 17 minutes and three hours and 47 minutes.
  • Trains appear to always stop at Wigan North Western, Preston, Penrith North Lakes and Carlisle.
  • Selective services call at other stations including Lancaster and St. Helens Central.

As passengers can always travel the route with a change at Preston, it is a useful start. It should also be born in mind that there are currently, two trains per hour (tph) between Glasgow Central and Preston stations, so the route with a change at Preston can be quicker than waiting for a direct train.

If you look at the Transpennine service between Manchester Airport and Glasgow Central stations, it appears that there are gaps in the hourly service at 08:00, 12:00 and 16:00.

These gaps have now been filled with Liverpool services.

Current and Future Trains Between Liverpool or Manchester and Glssgow or Edinburgh

The current service is run by nine Class 350 trains, which includes the following.

  • One tph between Between Manchester Airport and Glasgow Central, with three services missing.
  • One train every two hours between Manchester Airport and Edinburgh.

The service from the December 2019 change will at some point be run by twelve Class 397 trains.

It will add three trains per day between Liverpool Lime Street and Glasgow Central, which will give an hourly TranPennine service between Glasgow Central and Preston.

I estimate that the new service will require two more trains, which is incorporated in the larger fleet size.

Timings Between Preston And Glasgow

If you look at the limitings between Preston and Glasgow, you find the following.

  • Virgin’s Class 390 trains take between two hours 21 minutes and two hours 34 minutes.
  • The new Liverpool service is timetabled to take two hours 53 minutes.

As the current Class 350 trains are only 110 mph trains, this is the explanation.

But the new Class 397 trains are 125 mph trains and can probably match the times set by Virgin.

So expect to see some timing reductions on TransPennine’s routes on the West Coast Main Line.

Will Services Between Liverpool And Manchester and Glasgow Split And Join At Preston?

TransPennine Express are meeting their franchise obligations, by providing three trains per day between Liverpool ad Glasgow, but could they do better by splitting and joining services at Preston.

  • Going North, a service from Manchester Airport and one from Liverpool would join at Preston, before proceeding to Glasgow as a ten-car train.
  • Coming South, a pair of trains from Glasgow, would split at Preston, with one train going to Liverpool and the other to Manchester Airport.

Obviously, the trains would need to be able to split and join in a minute or so, but it would open up the possibility of an hourly service from both Liverpool and Manchester to Glasgow.

Liverpool And Manchester To Edinburgh

After the December 2019 timetable change, TransPennine’s Liverpool and Newcastle service will be extend to Edinburgh, giving Liverpool a direct service to \Edinburgh and Manchester, a second service to Edinburgh.

Timings by the various routes will be.

  • Liverpool and Edinburgh via Manchester, Leeds and York – Four hours 28 minutes – Hourly
  • Manchester Piccadilly and Edinburgh via Preston and Carstairs – Three hours 10 minutes – Two hourly
  • Manchester Victoria  and Edinburgh via Leeds and York – Three hours 52 minutes – Hourly

These times compare well with the four hours drive predicted on the Internet.

Conclusion

Connections between Northern England and the Central Belt of Scotland will improve greatly after the December 2019 timetable change.

New trains on these routes will also mean faster services, where they run on the East and |West Coast Main Lines.

More trains will also increase frequency.

 

November 17, 2019 Posted by | Transport | , , , , , , , | 2 Comments

HS2 Railway To Be Delayed By Up To Five Years

The title of this post is the same as that of this article on the BBC.

These first few paragraphs indicate the current situation.

The first phase of the HS2 high-speed railway between London and Birmingham will be delayed by up to five years, Transport Minister Grant Shapps says.

That section of the line was due to open at the end of 2026, but it could now be between 2028 and 2031 before the first trains run on the route.

HS2’s total cost has also risen from £62bn to between £81bn and £88bn, but Mr Shapps said he was keeping an “open mind” about the project’s future.

The second phase has also been delayed.

What are the short term consequences of this delay in the building of High Speed Two?

  • No Capacity Increase Between London And Birmingham., until three or five years later.
  • Capacity increases to Glasgow, Hull, Leeds, Liverpool, Manchester, Nottingham and Preston will probably be five years or more later.

Are there any other things we can do to in the meantime to make the shortfall less damaging to the economy?

East Coast Main Line

Much of the East Coast Main Line (ECML) has been designed for 140 mph running. Wikipedia puts it like this..

Most of the length of the ECML is capable of 140 mph subject to certain infrastructure upgrades.

Wikipedia also says that Greengauge 21 believe that Newcastle and London timings using the shorter route could be comparable to those using HS2.

Track And Signalling Improvements

There are a number of improvements that can be applied to the ECML, with those at the Southern end summed up by this paragraph from Wikipedia.

Increasing maximum speeds on the fast lines between Woolmer Green and Dalton-on-Tees up to 140 mph (225 km/h) in conjunction with the introduction of the Intercity Express Programme, level crossing closures, ETRMS fitments, OLE rewiring and the OLE PSU – est. to cost £1.3 billion (2014). This project is referred to as “L2E4” or London to Edinburgh (in) 4 Hours. L2E4 examined the operation of the IEP at 140 mph on the ECML and the sections of track which can be upgraded to permit this, together with the engineering and operational costs.

Currently, services between London and Edinburgh take between twenty and forty minutes over four hours.

Who would complain if some or even all services took four hours?

To help the four hour target to be achieved Network Rail are also doing the following.

  • Building the Werrington Dive-under.
  • Remodelling the station throat at Kings Cross.
  • Adding extra tracks between Huntingdon and Woodwalton.
  • Devising a solution for the flat junction at Newark.

Every little helps and all these improvements will allow faster and extra services along the ECML.

Obviously, running between London and Edinburgh in four hours has implications for other services.

In Changes Signalled For HS2 Route In North, I said this.

Currently, the fastest non-stop trains between London and Doncaster take a few minutes over ninety minutes. With 140 mph trains, I think the following times are easily possible.

  • London and Doncaster – 80 minutes
  • London and Hull  – A few minutes over two hours, running via Selby.
  • London and Leeds – A few minutes less than two hours, running on the Classic route.

For comparison High Speed Two is quoting 81 minutes for London Euston and Leeds, via Birmingham and East Midlands Hub.

I suspect that North of Doncaster, improving timings will be more difficult, due to the slower nature of the route, but as services will go between Edinburgh and London in four hours, there must be some improvements to be made.

  • Newcastle – Current time is 170 minutes, with High Speed Two predicting 137 minutes. My best estimate shows that on an improved ECML, times of under 150 minutes should be possible.
  • York – Current time is 111 minutes, with High Speed Two predicting 84 minutes. Based on the Newcastle time, something around 100 minutes should be possible.

In Wikipedia,  Greengauge 21 are quoted as saying.

Upgrading the East Coast Main Line to 140 mph operation as a high priority alongside HS2 and to be delivered without delay. Newcastle London timings across a shorter route could closely match those achievable by HS2.

My estimate shows a gap of thirteen minutes, but they have better data than I can find on the Internet.

Filling Electrification Gaps East Of Leeds And Between Doncaster And Sheffield

In Changes Signalled For HS2 Route In North, I said this.

These are the lines East of Leeds.

  • A connection to the East Coast Main Line for York, Newcastle and Edinburgh.
  • An extension Eastwards to Hull.

These would not be the most expensive sub-project, but they would give the following benefits, when they are upgraded.

  • Electric trains between Hull and Leeds.
  • Electric trains between Hull and London.
  • Electric access to Neville Hill Depot from York and the North.
  • An electric diversion route for the East Coast Main Line between York and Doncaster.
  • The ability to run electric trains between London and Newcastle/Edinburgh via Leeds.

Hull and Humberside will be big beneficiaries.

In addition, the direct route between Doncaster and Sheffield should be electrified.

This would allow the following.

  • LNER expresses to run on electricity between London and Sheffield, if they were allowed to run the route.
  • Sheffield’s tram-trains could reach Doncaster and Doncaster Sheffield Airport.

A collateral benefit would be that it would bring 25 KVAC power to Sheffield station.

Better Use Of Trains

LNER are working the trains harder and will be splitting and joining trains, so that only full length trains run into Kings Cross, which will improve capacity..

Capacity might also be increased, if Cambridge, Kings Lynn and Peterborough services were run with 125 mph or even 140 mph trains. GWR is already doing this, to improve efficiency between Paddington and Reading.

Faster Freight Trains

Rail Operations Group has ordered Class 93 locomotives, which are hybrid and capable of hauling some freight trains at 110 mph.

Used creatively, these might create more capacity on the ECML.

Could the East Coast Main Line be the line that keeps on giving?

Especially in the area of providing faster services to Lincoln, Hull, Leeds, Huddersfield,Bradford Newcastle and Edinburgh.

Conclusion On East Coast Main Line

There is a lot of scope to create a high capacity, 140 mph line between London and Edinburgh.

An Upgraded Midland Main Line

Plans already exist to run 125 mph bi-mode Hitachi trains on the Midland Main Line between London and Leicester, Derby, Nottingham and Sheffield.

But could more be done in the short term on this line.

Electrification Between Clay Cross North Junction And Sheffield

This 15.5 mile section of the Midland Main Line will be shared with High Speed Two.

It should be upgraded to High Speed Two standard as soon as possible.

This would surely save a few minutes between London and Sheffield.

140 mph Running

The Hitachi bi-modes are capable of 140 mph,  if the signalling is digital and in-cab.

Digital signalling is used by the Class 700 trains running on Thameslink, so would there be time savings to be made by installing digital signalling on the Midland Main Line, especially as it would allow 140 mph running, if the track was fast enough.

Extension From Sheffield To Leeds Via New Stations At Rotherham And Barnsley

Sheffield and Transport for the North are both keen on this project and it would have the following benefits.

  • Rotherham and Barnsley get direct trains to and from London.
  • A fast service with a frequency of four trains per hour (tph) could run between Leeds and Sheffield in a time of twenty-eight minutes.

This extension will probably go ahead in all circumstances.

Use Of The Erewash Valley Line

The Erewash Valley Line is a route, that connects the Midland Main Line to Chesterfield and Sheffield, by bypassing Derby.

It has recently been upgraded and from my helicopter, it looks that it could be faster than the normal route through Derby and the World Heritage Site of the Derwent Valley Mills.

The World Heritage Site would probably make electrification of the Derby route difficult, but could some Sheffield services use the relatively straight Erewash Valley Line to save time?

Faster Services Between London And Sheffield

When East Midlands Railway receive their new Hitachi bi-mode trains, will the company do what their sister company; Greater Anglia is doing on the London and Norwich route and increase the number of hourly services from two to three?

If that is done, would the third service be a faster one going at speed, along the Erewash Valley Line?

I suspect that it could have a timing of several minutes under two hours.

Conclusion On An Upgraded Midland Main Line

There are various improvements and strategies, that can be employed to turn the Midland Main Line into a High Speed Line serving Leicester, Derby, Nottingham and Sheffield.

West Coast Main Line

The West Coast Main Line is not such a fruitful line for improvement, as is the East Coast Main Line.

Digital signalling, 140 mph running and faster freight trains, may allow a few more trains to be squeezed into the busy main line.

Increasing Capacity Between London and Birmingham New Street

I’ve seen increased capacity between London and Birmingham quoted as one of the reasons for the building of High Speed Two.

Currently, both Virgin Trains and West Midlands Trains, have three tph between London and Birmingham New Street.

  • This is probably not enough capacity.
  • The line between Birmingham New Street and Coventry stations is probably at capacity.

These points probably mean more paths between London and Birmingham are needed.

High Speed Two is planned to provide the following services between London and Birmingham after Phase 2 opens.

  • Three tph – London and Birmingham Curzon Street stations via Old Oak Common and Birmingham Interchange (2 tph)
  • Fourteen tph – London and Birmingham Interchange via Old Oak Common.

That is a massive amount of extra capacity between London and Birmingham.

  • It might be possible to squeeze another train into each hour.
  • Trains could be lengthened.
  • Does Birmingham New Street station have the capacity?

But it doesn’t look like the West Coast Main Line can provide much extra capacity between London and Birmingham.

Increasing Capacity Between London and Liverpool Lime Street

Over the last couple of years, Liverpool Lime Street station has been remodelled and the station will now be able to handle two tph from London, when the timetable is updated in a year or so.

Digital signalling of the West Coast Main Line would help.

Increasing Capacity Between London and Manchester Piccadilly

Manchester Piccadilly station uses two platforms for three Virgin Trains services per hour to and from London.

These platforms could both handle two tph, so the station itself is no barrier to four tph between London and Manchester.

Paths South to London could be a problem, but installing digital signalling on the West Coast Main Line would help.

Conclusion On The West Coast Main Line

Other improvements may be needed, but the major update of the West Coast Main Line, that would help, would be to use digital signalling to squeeze more capacity out of the route.

The Chiltern Main Line

Could the Chiltern Main Line be used to increase capacity between London and Birmingham?

Currently, there are hourly trains between Birmingham Moor Street and Snow Hill stations and London.

As each train has about 420 seats, compared to the proposed 1,100 of the High Speed Two trains, the capacity is fairly small.

Increasing capacity on the route is probably fairly difficult.

Digital Signalling

This could be used to create more paths and allow more trains to run between London and Bitmingham.

Electrification

The route is not electrified, but electrifying the 112 mile route would cause massive disruption.

Capacity At Marylebone Station

Marylebone station probably doesn’t have the capacity for more rains.

Conclusion On The Chiltern Main Line

I don’t think that there is much extra capacity available on the Chiltern Main Line between London and Birmingham.

Conclusion

I have looked at the four main routes that could help make up the shortfall caused by the delay to High Speed Two.

  • Planned improvements to the East Coast Main Line could provide valuable extra capacity to Leeds and East Yorkshire.
  • The Midland Main Line will increase capacity to the East Midlands and South Yorkshire, when it gets new trains in a couple of years.
  • Planned improvements to the West Coast Main Line could provide valuable extra capacity to North West England.
  • The Chiltern Main Line probably has little place to play.

As Birmingham has been planning for High Speed Two to open in 2026, some drastic rethinking must be done to ensure that London and Birmingham have enough rail capacity from that date.

 

 

 

September 4, 2019 Posted by | Transport | , , , , , , , , , , , , , | Leave a comment

First Trenitalia Awarded West Coast Partnership

The title of this post is the same as this article on Railway Gazette.

There is all the usual good things about more seats and services, but little of the plans for the trains except these two paragraphs.

A new fleet of 13 electro-diesel and 10 electric trainsets will be introduced from 2022. These would replace the Bombardier-built Class 221 Super Voyager tilting DEMUs used by Virgin Trains, which will get an intermediate ‘refresh’ by the end of 2020. The new bimode units would be used on services between London and North Wales, while the electric sets would provide capacity for the additional services to Liverpool. Eliminating diesel operation on the electrified sections of the route is expected to reduce CO2 emissions by 61%

First Trenitalia will invest £117m to refurbish the current fleet of 56 Alstom Class 390 Pendolino trainsets, providing ‘more comfortable’ standard class seats and additional luggage space, along with improved passenger information systems and enhanced toilets. More than £70m has been committed to providing free on train wi-fi and 5G capability.

This is all to be expected, as the replacement of the Class 221 trains has been indicated and the Pendelinos or Class 390 trains are now 

I will look at what this train order means.

West Coast Rail

There is now a Wikipedia entry for West Coast Rail, which will be the operating name of the new company.

The New Fleet

West Coast Rail are introducing a new fleet of thirteen electro-diesel and ten electric trains will be introduced from 2022.

I would suspect the following.

  • Both types of trains will be the same length and will appear identical.
  • Performance of both types of train will be identical.
  • Electro-diesel trains can probably stand in for the electric versions.
  • The trains could be faster, have better acceleration and braking and be able to make faster station stops, than the current Class 390 trains.
  • The trains will be ready for digital signalling.

Hitachi must be the front-runner to supply the trains, as they have sold lots of trains to First Group and some of the trains are built in Italy.

The lengths and seating capacity of the various trains are as follows.

  • Nine-car Pendelino – 217.5 metres  with 469 seats.
  • Elrven-car Pendelino – 265.3 metres  with 589 seats.
  • LNER Nine-car Class 801 – 234 metres with 637 seats

Note

  1. The Hitachi Class 801 train is only seventeen metres longer than a nine-car Pendelino, but has 36% more seats.
  2. The Class 801 train is also shorter than an eleven-car Pendelino, but has 8% more seats.

From personal experience, the LNER Class 801 trains appear less cramped than a Pendelino.

London and Liverpool Services

I will look at the direct Virgin services between Euston and Liverpool Lime Street stations

  • Northbound trains leave at XX:07 and take two hours and 12-14 minutes for the journey.
  • Trains wait for 26-28 minutes in the platform at Liverpool Lime Street station.
  • Sorthbound trains leave at XX:47 and take two hours and 12-16 minutes for the journey.
  • Trains wait for 4-8 minutes in the platform at Euston station.

It looks to me, that Virgin are using the platform at Lime Street station to balance the service. It does mean that trains probably keep more reliably to the timetable, but it hogs the platform at Liverpool Lime Street

The round trip time is five hours, so for an hourly service five trains are needed.

This frequency could need a second platform at Liverpool Lime Street station, but the station has now been remodelled and at least one extra platform has been added.

A second train to Liverpool in an hour, will need another five trains or a total of ten trains.

So does this mean that Euston and Liverpool service gets a dedicated fleet of new trains?

  • Liverpool Lime Street station used to have length issues, so are the trains the maximum length for the station.
  • Will the trains have better performance that the Pendelinos?
  • Will the trains be able to run at 140 mph on in-cab signalling?
  • The current journey times, probably date from before Norton Bridge Junction was improved.
  • The current journey time is two hours and twelve minutes.

A new timetable is coming in December 2022! Will this timetable and the new trains and improvements enable a Euston and Liverpool round trip of four hours?

This would mean.

  • A time between London and Liverpool of around one hour and fifty minutes, with a ten minute turnround time.
  • Two tph would need just eight trains, or only three more trains than the present.hourly service.
  • A clockface timetable.
  • A more than doubling of capacity between London and Liverpool.
  • It might also be possible to run all services into the same platforms at both ends of the route!

If the last point is is correct, West Coast Rail will need one less platform at both Euston and Liverpool Lime Street stations. It should be noted that platform space at Euston is at a premium.

It would also mean that passengers will always go to the same platform at Euston and Lime Street, so this should reduce the scrum at Euston.

Will All The New Electric Trains Be Assigned To London And Liverpool Services?

The new electric trains will probably be faster, have better acceleration and shorter station dwell times than the Pendelinos, so will be able to go between London and Liverpool in a shorter time.

  • In a mixed fleet of new trains and Pendelinos, some trains would be slower.
  • The new trains have more capacity than the Pendelinos.
  • If a Pendelino had to replace a new electric train, it would most likely be late and would cause problems for the booking system.
  • A mixed fleet on a route, would probably increase the cost of staff and their training.
  • If eight trains are needed for the two tph service, a fleet of ten new trains would allow for one in maintenance and a spare.

For these reasons, I feel that the London and Liverpool services will get the whole fleet of new electric trains, thus releasing the five current bog-standard Pendelinos  on the route, to strength other services.

London and Manchester Services

If the London and Liverpool services could be speeded up, I suspect that the same could happen to London and Manchester services.

  • At the present time trains can do the round trip in four hours and forty minutes, so fourteen trains are needed for the current three tph.
  • The current Class 390 trains are probably capable of doing a round trip in four hours and thirty minutes, but this doesn’t fit a three tph timetable very well.
  • But it does fit a four tph service and it would need eighteen trains to run the service.
  • Manchester would get a thirty-three percent increase in capacity to and from London.

So if the five Class 390 trains released by the new trains on London and Liverpool services are moved to London and Manchester services, these services can be increased to four tph.

There is nothing to say it will happen, but it is pathetically possible and West Coast Rail will have enough Class 390 trains.

The addition of a fourth service will be driven by passenger numbers and perhaps a need to introduce a better service to and from the intermediate stops of Milton Keynes Central, Stoke-on-Trent, Crewe, Macclesfield, Wilmslow and Stockport

London And Blackpool Services

Currently, Virgin Trains run four trains per day between Euston and Blackpool North stations, with  two Class 390 trains used for the service.

The Wikipedia entry for West Coast Rail, says that some of the new trains will be used on the Blackpool service.

This may happen, but the new trains will certainly release some Class 390 trains from the London and Liverpool service to reinforce the Blackpool service.

Alternatively, better performance of the new trains, may enable two trains on the Blackpool route to run to a much more passenger-friendly timetable.

London And Birmingham Services

The Wikipedia entry for West Coast Rail, says that some of the new trains will be used on the Birmingham service.

I can’t see this happening, although all current diesel services, through Birmingham will be replaced by Class 390 trains or the new bi-mode trains.

Class 221 Train Replacement

The Railway Gazette article says this about the replacement of theClass 221 trains.

These would replace the Bombardier-built Class 221 Super Voyager tilting DEMUs used by Virgin Trains, which will get an intermediate ‘refresh’ by the end of 2020. The new bimode units would be used on services between London and North Wales. Eliminating diesel operation on the electrified sections of the route is expected to reduce CO2 emissions by 61%.

Currently, there are twenty Class 221 trains.

  • They are five-car trains
  • They are 116 metres long
  • They can operate at 125 mph
  • They have a tilting capability.

These paragraphs from Wikipedia describe their Operation.

Virgin Trains (West Coast) uses the Class 221 units primarily from London Euston to Scotland via Birmingham New Street (despite the route being electrified throughout) and, from London Euston to Shrewsbury and, London Euston to Chester and North Wales. They are also used by a few London Euston to West Midland services.

The trains to and from Scotland often operate as double units and alternate between Glasgow Central and Edinburgh Waverley (in turn alternating with TransPennine Express trains to and from Manchester Airport). When longer trains are needed for some of the busier services, a Pendolino will run through from and to London Euston, and the Super Voyager then fills in for it on the London to West Midlands route.

The trains on the North Wales route sometimes operate as double units. They run from London Euston and Chester and terminate at any of Chester, Holyhead, Bangor or Wrexham.

Note that they normally run as double units, which are 232 metres long.

As a nine-car Hitachi Class 800/801/802 train is 234 metres long, they would probably be able to call at any station, where a pair of Class 221 trains can operate.

If the trains are always assumed to run in pairs, then this means that there are ten operational ten-car trains.

So it looks like West Coast Rail will be ordering three additional bi-mode trains, as cover or to develop new routes.

London And Chester Services

I doubt there will be a major improvement in train timings between Euston and Chester, unless the new trains will be able to run at 140 mph using in-cab signalling between Euston and Crewe on the West Coast Main Line.

I also think, that as the new trains will be bi-modes and will run between Euston and Crewe using the electrification, that the chances of electrifying between Crewe and Chester will have decreased.

Extra Services

The Wikipedia entry for West Coast Rail does give some details on extra services under Services.

Conclusion

With some rigorous mathematics and the addition of ten new electric trains, I believe West Coast Rail will be able to offer the following improved services.

  • London and Liverpool – two tph in perhaps one hour and fifty minutes.
  • London and Manchester – four tph in under two hours.

Will there be any other service improvements on this scale?

 

August 15, 2019 Posted by | Transport | , , , , | 7 Comments