The Anonymous Widower

Existing Stations Where High Speed Two Trains Will Call

The June 2020 Edition Of Modern Railways has an article called HS2 Minister Backs 18 tph Frequency, which gives a detailed diagram of the route structure of High Speed Two and it is possible to summarise the stations, where High Speed Two trains will call.

  • Carlisle – 3 tph – 400 metres – Split/Join
  • Chesterfield – 1 tph – 200 metres
  • Crewe – 2 tph – 400 metres – Split/Join
  • Darlington – 2 tph – 200 metres
  • Durham – 1 tph – 200 metres
  • East Midlands Hub HS2 – 7 tph – 400 metres – Split/Join
  • Edinburgh Haymarket – 2.5 tph – 200 metres
  • Edinburgh Waverley – 2.5 tph – 200 metres – Terminal
  • Glasgow Central – 2.5 tph – 200 metres – Terminal
  • Lancaster – 2 tph – 200 metres – Terminal
  • Leeds HS2 – 5 tph – 400 metres
  • Liverpool Lime Street – 2 tph – 200 metres – Terminal
  • Lockerbie – 1 tph – 200 metres
  • Macclesfield – 1 tph – 200 metres – Terminal
  • Manchester Airport HS2 – 5 tph – 400 metres
  • Manchester Piccadilly HS2 – 5 tph – 400 metres
  • Motherwell – 0.5 tph – 200 metres
  • Newcastle – 3 tph – 200 metres – Terminal
  • Oxenholme – 0.5 tph – 200 metres
  • Penrith – 0.5n tph – 200 metres
  • Preston – 4 tph – 400 metres
  • Runcorn – 2 tph – 200 metres
  • Sheffield – 2 tph – 200 metres
  • Stafford – 1 tph – 200 metres
  • Stoke-on-Trent – 1 tph – 200 metres
  • Warrington Bank  Quay – 1 tph – 200 metres
  • Wigan North Western – 1 tph – 200 metres
  • York – 4 tph – 200 metres

Note.

  1. HS2 after the station name indicates a new station for High Speed Two
  2. tph is trains per hour
  3. 0.5 tph is one train per two hours (tp2h).
  4. 200/400 metres is the maximum length of trains that will call.
  5. Terminal indicates that trains will terminate at these stations.
  6. Split/Join indicates that trains will split and join at these stations.

These are more detailed thoughts on how existing stations will need to be modified.

Train Lengths

Before, I look at the individual stations, I’ll look at the train lengths.

  • High Speed Two train – Single – 200 metres
  • High Speed Two train – Pair – 400 metres
  • Class 390 train – 11-car – 265.3 metres
  • Class 390 train – 9-car – 217.5 metres
  • Class 807 train – 7-car – 182 metres
  • Class 810 train – 5-car – 120 metres
  • Class 810 train – Pair of 5-car – 240 metres
  • InterCity 125 – 2+8 – 220 metres
  • InterCity 225 – 9-car – 245 metres
  • Class 222 train – 4-car – 93.34 metres
  • Class 222 train – 5-car – 116.16 metres
  • Class 222 train – 7-car – 161.8 metres
  • Class 222 train – 4-car+5-car – 209.5 metres
  • Class 222 train – 5-car+5-car – 232.32 metres

These are the thoughts on the individual stations.

Carlisle

Carlisle station will need two 400 metre through platforms, so each can accommodate a pair of 200 metre trains.

This Google Map shows the station.

 

I estimate the platforms are about 380 metres, but it looks like, they could be lengthened, without too much difficulty.

As High Speed Two trains to the North of Carlisle will be 200 metres long, there would probably be no need for platform lengthening North of Carlisle, as these trains are shorter than the Class 390 trains, that currently work the routes to Edinburgh and Glasgow.

Carlisle station is step-free, has good secondary rail connections and is within walking distance of the city centre.

The only thing it needs, is a connection to Edinburgh on a rebuilt Borders Railway.

Chesterfield

Consider.

  • Chesterfield station will need to handle 200 metre trains.
  • Chesterfield station may be rebuilt for High Speed Two.
  • Chesterfield station can handle an InterCity 125, which is 220 metres.
  • It will need to handle a pair of Class 810 trains, which would be 240 metres.

This Google Map shows Chesterfield station.

Note.

  1. The slow lines passing the station on the Eastern side.
  2. There are two long through platforms and a third bi-directional platform on the down slow line.

There is space to build two long platforms for High Speed Two, but is it worth it, when one one tph will stop?

  • According to High Speed Two’s Journey Time Calculator, trains will take just twelve minutes between Sheffield and Chesterfield stations.
  • This compares with 12-15 minutes for the current diesel trains.
  • The distance between the two stations is 14 miles, which means that a twelve minute trip has an average speed of 70 mph.
  • If there are still two tph to St. Pancras, there will be four tph, that run fast between the Sheffield and Chesterfield stations, of which three will stop at Chesterfield.

I think this could result in a simple and efficient design for the tracks between Sheffield and South of Clay Cross, where High Speed Two joins the Erewash Valley Line.

Chesterfield station is step-free.

Crewe

Crewe station will need two 400 metre through platforms, so each can accommodate a pair of 200 metre trains.

This Google Map shows the station.

There have been references to rebuilding of Crewe stations, but it does appear that some platforms are over 300 metres long.

Darlington

Darlington station will need to accommodate 200 metre trains.

As it already accommodates 245 metre InterCity 225 trains, there shouldn’t be too much of a problem.

Durham

Durham station will need to accommodate 200 metre trains.

As it already accommodates 245 metre InterCity 225 trains, there shouldn’t be too much of a problem.

Edinburgh Haymarket

Edinburgh Haymarket station will need to accommodate 200 metre trains.

As it already accommodates 245 metre InterCity 225 trains, there shouldn’t be too much of a problem.

Edinburgh Waverley

Edinburgh Waverley station will need to accommodate 200 metre trains.

As it already accommodates 245 metre InterCity 225 trains, there shouldn’t be too much of a problem.

Glasgow Central

Glasgow Central station will need to accommodate 200 metre trains.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem.

Currently, Avanti West Coast runs the following services to Glasgow Central.

  • One tph from London Euston calling at Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Oxenholme Lake District (1tp2h), Penrith (1tp2h) and Carlisle.
  • One tp2h from London Euston calling at Milton Keynes Central, Coventry, Birmingham International, Birmingham New Street, Sandwell and Dudley, Wolverhampton, Crewe, Warrington Bank Quay, Wigan North Western, Preston, Lancaster, Oxenholme Lake District (1tp2h), Penrith (1tp2h) and Carlisle.

High Speed Two is proposing to run the following trains to Glasgow Central.

  • Two tph from London Euston calling at Old Oak Common, Preston and Carlisle.
  • One tp2h from Birmingham Curzon Street calling at Wigan North Western, Preston, Lancaster, Oxenholme (1tp2h), Penrith (1tp2h), Carlisle, Lockerbie and Motherwell (1tp2h)

If the current services to Glasgow Central  were to be replaced by the High Speed Two services, most travellers would get a similar or better service.

But if Avanti West Coast decide to drop their classic services to Glasgow via Birmingham, will travellers starting between Milton Keynes and Crewe, be a bit miffed to lose their direct services to Glasgow?

Glasgow Central station would appear to be ready for High Speed Two.

Lancaster

I was initially surprised, that on High Speed Two, one tph would terminate at Lancaster station.

This Google Map shows the station.

Note.

  1. There are two bypass lines without any platforms on the Western side of the tracks, where trains can speed through.
  2. The station has five platforms.
  3. Some Avanti West Coast services terminate at Lancaster station.
  4. 265 metre, eleven-car Class 390 trains, stop in Lancaster station.

As High Speed Two services will use 200 metre trains, which are shorter than all Class 390 trains, I would suspect that High Speed Two services will be able to be turned at Lancaster station, without too much difficulty.

Liverpool Lime Street

Liverpool Lime Street station will need to be able to turn two 200 metre High Speed Two tph.

  • The remodelling of the station in 2018, probably allowed for two tph between London Euston and Liverpool Lime Street station.
  • From 2022-2023, it will be turning two Class 807 trains per hour, which will probably be 182 metres long.

Liverpool Lime Street station may well be ready for Phase One of High Speed Two. It’s also very much step-free.

There are also alternative plans for a new High Speed station in Liverpool.

  • It would be alongside the current Liverpool Lime Street station.
  • The station would have a route to High Speed Two at Crewe via Warrington and a junction at High Legh.
  • Northern Powerhouse Rail would start in the station and go to Manchester via Warrington, High Legh and Manchester Airport.
  • It would enable six tph between Liverpool and Manchester, in a time of just 26 minutes.

I talked about this plan in Changes Signalled For HS2 Route In North, where I included this map.

High Legh Junction is numbered 5 and 6.

Nothing published about High Speed Two, would appear to rule this plan out.

Lockerbie

Lockerbie station will need to accommodate 200 metre trains.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem.

Macclesfield

I was initially surprised, that on High Speed Two, one tph would terminal at Macclesfield station.

This Google Map shows the station.

Wikipedia says this about the platforms in the station.

There are three platforms but only two are in regular use, the up platform for services to Manchester and the down platform to Stoke-on-Trent and Birmingham. Platform 3 sees a small number of services. Evidence of a fourth platform can be seen, on which a Network Rail building now exists.

As the station has a regular Avanti West Coast service every hour, the platforms must be over 200 metres long and they will be long enough for the 200 metre High Speed Two trains.

So why would High Speed Two want to terminate a train at Macclesfield, rather than at Manchester Piccadilly as they do now?

Currently, Avanti West Coast runs these services between London Euston and Manchester Piccadilly.

  • One tph via Milton Keynes Central, Stoke-on-Trent and Stockport.
  • One tph via Stoke-on-Trent, Macclesfield and Stockport
  • One tph via Stafford, Crewe, Wilmslow and Stockport

The diagram in the Modern Railways article shows these High Speed Two services to Manchester Piccadilly.

  • One tph from London Euston via Old Oak Common, Birmingham Interchange and Manchester Airport
  • Two tph from London Euston via Old Oak Common and Manchester Airport
  • Two tph from Birmingham Curzon Street via Manchester Airport.

Note.

  1. None of these five tph serve Macclesfield, Milton Keynes Central, Stockport, Stoke-on-Trent or Wilmslow.
  2. All five proposed services are shown to call at Manchester Airport.
  3. It is likely, that a tunnel will be bored between Manchester Airport and Manchester Piccadilly stations.
  4. The High Speed Two station at Manchester Piccadilly might even be in a tunnel under the current Manchester Piccadilly station or central Manchester.
  5. A below-ground High Speed Two station for Manchester could also serve Northern Powerhouse Rail services to Leeds and the East.
  6. According to the plans, I talked about under Liverpool Lime Street earlier, there could also be up to six tph running between Liverpool and Manchester via Manchester Airport, as part of Northern Powerhouse Rail.

Plans need to be developed to serve the towns and cities, that will not be served by High Speed Two’s current proposals.

  • It appears Stafford, Stoke-on-Trent and Macclesfield will be served by an independent High Speed Two service from London Euston.
  • Terminating one tph at Macclesfield station doesn’t appear to be challenging.
  • A rail route between Macclesfield and Manchester Airport to link up with the proposed tunnel could be very difficult.
  • Manchester Piccadilly and Macclesfield stations have a frequent rail connection, with most trains calling at Stockport station.
  • Perhaps during construction work for High Speed Two in the centre of Manchester, Macclesfield station can be used as an alternative route into the city, using the existing Manchester Piccadilly station.

The London Euston and Macclesfield service via Stafford and Stoke-on-Trent could be a pragmatic solution to part of the problem, but what about Milton Keynes, Wilmslow and Stockport?

According to the title of the Modern Railways article, High Speed Two will have a maximum frequency of 18 tph.

When fully-developed, the current proposed timetable shows the following.

  • A frequency of 17 tph between London Euston and Birmingham Interchange stations.
  • A frequency of 11 tph between Birmingham and Crewe.
  • A frequency of 9 tph through East Midlands Hub station.

It would appear that if there is a capacity bottleneck, it is between London and Birmingham.

However if classic services to Manchester Piccadilly are replaced by the High Speed Two services to the city via the new tunnel from Manchester Airport to a new station in the City Centre, there will be spare capacity on the Crewe and Manchester Piccadilly route via Wilmslow and Stockport stations.

This could lead to a number of solutions.

  • A direct High Speed Two service runs using the spare path, between London and the current Manchester Piccadilly station.
  • Similar to the previous service, but the service splits and joins at Crewe, with one individual train going to Manchester Piccadilly and the other somewhere else. Blackpool?
  • One service between London and Liverpool is planned to split and join at Crewe with individual trains going to Lancaster and Liverpool. The other Liverpool service could split at Crewe with individual trains going to Liverpool and Manchester Piccadilly.
  • The service between London and Macclesfield is run by a pair of trains, that split at Birmingham Interchange, with individual trains going to Macclesfield and Manchester Piccadilly. The advantage of this service, is that if you got into the wrong train, you’d still be going to roughly the same destination.
  • Wikipedia says “At peak times, the current Avanti West Coast services may additionally call at one or more of: Watford Junction, Rugby, Nuneaton, Tamworth, Lichfield Trent Valley.” So why not run classic services on the West Coast Main Line between Euston and Manchester Piccadilly via Milton Keynes using suitably fast trains. Perhaps, the new Class 807 trains would be ideal.

Note.

  1. All services serving the current Manchester Piccadilly station would call at Crewe, Wilmslow and Stockport stations.
  2. Passengers going to or from Manchester Airport would change at Crewe.

The more I look at Macclesfield, the more I like using it as a High Speed Two destination.

Motherwell

Motherwell station will need to accommodate 200 metre trains.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem.

Newcastle

Newcastle station will need to accommodate 200 metre trains.

As it already accommodates 245 metre InterCity 225 trains, there shouldn’t be too much of a problem.

Oxenholme

Oxenholme station will need to accommodate 200 metre trains.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem.

Penrith

Penrith station will need to accommodate 200 metre trains.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem.

Preston

Preston station will need two 400 metre through platforms, so each can accommodate a pair of 200 metre trains.

This Google Map shows the station.

 

I estimate that the main through platforms aren’t much short of the required 400 metres.

But something must be done to make the station step-free.

Runcorn

Runcorn station will need to accommodate 200 metre trains.

As it already accommodates 217 metre Class 390 trains, there shouldn’t be too much of a problem. The station is also step-free.

Sheffield

Sheffield station will need to accommodate 200 metre trains.

This Google Map shows the station.

As the station can already handle a 220 metre InterCity 125, there shouldn’t be too much of a problem. The station is also substantially step-free.

Stafford

Stafford station will need to accommodate 200 metre trains.

This Google Map shows the station.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem. The station is also step-free.

Wikipedia says this about Stafford station and High Speed Two.

Under current proposals, Stafford will be a part of the High Speed 2 network, via a ‘Classic Compatible’ junction, which will allow HS2 trains to operate to Stafford, and further on towards Liverpool. This would shorten journey time from Stafford to London, to an estimated 53 minutes. Under current proposals it is expected that an hourly services will operate in both directions, however it is currently unclear if these services will terminate at Stafford, or Liverpool.

This does appear to be rather out of date with High Speed Two’s latest proposals as disclosed in the Modern Railways article, which say that Stafford is served by the following service.

  • One tph between London Euston and Macclesfield.
  • Calls at Old Oak Common, Stafford and Stoke-on-Trent.
  • A 200 metre train.

One possibility must surely be to run a pair of 200 metre trains to and from Stafford, where they would split and join.

  • One could go as currently proposed to Stoke-on-Trent and Macclesfield.
  • The second train could go to Liverpool via Crewe and Runcorn or Manchester Piccadilly via Crewe, Wilmslow and Stockport.
  • The recent works at Norton Bridge Junction will have improved the route for the second train.

There would need to be platform lengthening at Stafford to accommodate the 400 metre pair of trains.

A split and join at Stafford does show the possibilities of the technique.

Another possibility is mentioned for Stafford in Wikipedia.

There is also been proposals to reintroduce services to Stafford to terminate on the Chase Line which was cutback to Rugeley Trent Valley in 2008. The Key Corridors states “Extension of Chase Line services to Stafford”. This is proposed to be in development.

It will surely connect a lot of people to Stafford for High Speed Two.

The extract from Wikipedia, that I used earlier, mentions a Classic Compatible junction, which will allow High Speed Two trains to reach Stafford.

This map clipped from the High Speed Two web site, shows the junction North of Lichfield, where High Speed Two connects to the Trent Valley Line through Stafford.

Note.

  1. High Speed Two runs North-South across the map.
  2. After the Junction by Fradley South,
  3. High Speed Two to Crewe and the North, is the branch to the East.
  4. The other branch connects to the Trent Valley Line, which can be picked out North of Lichfield, where it passes through Lichfield Trent Valley station.

The Trent Valley Line is no Victorian double-track slow-speed bottleneck.

  • Most of the route between Rugby and Stafford is three or four tracks.
  • The speed limit is generally 125 mph.
  • I wouldn’t be surprised to see Avanti West Coast’s Class 390 and Class 807 trains running at 140 mph on the route.
  • This speed would probably be attained by High Speed Two trains.

London Euston and Stafford would only have under twenty miles of slower line and that could be 140 mph, so High Speed Two  times on the route could be very fast. High Speed Two is quoting 54 minutes on their Journey Time Calculator.

Stoke-on-Trent

Stoke-on-Trent station will need to accommodate 200 metre trains.

This Google Map shows the station.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem. The station is also step-free.

Warrington Bank Quay

Warrington Bank Quay station will need to accommodate 200 metre trains.

As it already accommodates 265 metre Class 390 trains, there shouldn’t be too much of a problem.

Wigan North Western

Wigan North Western station will need to accommodate 200 metre trains.

In Is Wigan North Western Station Ready For High Speed Two?, I said this.

Wigan North Western station would accept a single-train now, but the platforms would need lengthening to handle a double-train.

As all trains through Wigan North Western station will only be 200 metre single trains and the station is step-free, the station appears to be ready for High Speed Two.

York

York station will need to accommodate 200 metre trains.

As it already accommodates 245 metre InterCity 225 trains, there shouldn’t be too much of a problem.

Conclusion

I have come to these conclusions.

  • Because most of these stations have been rebuilt in the last few decades to accommodate the 200-plus metre InterCity 125s, InterCity 225s and Class 390 trains, all the stations can handle a 200 metre High Speed Two train without significant lengthening.
  • Some stations like Carlisle, Crewe, Preston and Stafford may need a small amount of platform lengthening to accommodate a pair of trains, but most of the improvements needed for a world-class High Speed railway will be more refurbishment than a complete rebuild.
  • Using existing platforms at Lancaster and Macclesfield stations as terminal platforms is an elegant and a much more affordable solution than building new stations or even platforms.
  • Because all five tph into the High Speed Two station at Manchester Piccadilly go via Manchester Airport, I would envisage that this will be in a tunnel, that can be part of a future Northern Powerhouse Rail.

I also think that the plan has been devised with the Project Management and minimising disruption to travellers in mind.

 

 

June 13, 2020 Posted by | Transport | , , , , , , , , , , , , | 6 Comments

The Fastest Ambulance In The World

This article on CityLab is entitled To Fight a Fast-Moving Pandemic, Get a Faster Hospital.

This is the introductory paragraph.

To move Covid-19 patients from the hardest-hit areas, authorities in France turned one of the nation’s famous TGV trains into a very fast ambulance.

It appears that French COVID-19 outbreaks are as patchy, as they are in the UK, where some towns and cities like Hull, Blackpool and Middlesbrough have only a few COVID-19 patients and major hospitals.

Evening up the numbers is probably a good idea.

Could we see a spare InterCity 125 train fitted out as an ambulance train to move patients around the country?

March 27, 2020 Posted by | Health, Transport | , , , | 5 Comments

The Cuckoo In The Nest

Look at these pictures of the passenger doors on Hitachi Class 802 trains, InterCity 125 trains and Mark 3 coaches.

All are single end doors at the two ends of the car.

But look at this pair of doors on one of Greater Anglia’s new Class 745 trains.

The doors are in the middle of the car.

  • Each car is only twenty metres long, as opposed to the twenty-six metres of a Class 802 train.
  • The pictures don’t show if the trains are fully walk-through.
  • They are also step-free between train and platform, which can’t be said for many trains.

I can’t wait to have a ride, which will hopefully be in a few weeks.

This is the comparison between a twelve-car Class 745 train and a nine-car Class 802 trains.

  • The Class 745 train is 237 metres long, and the Class 802 train is 225 metres long.
  • The Class 745 train has 757 seats and the Class 802 train has 647 seats.
  • The Class 745 train has 3.2 seats per metre and the Class 803 train has 2.9 seats per metre.
  • The pair of double doors on a Class 745 train will have to unload 64 passengers, when a full train arrives in Liverpool Street
  • The Class 745 train is step-free between train and platform, so buggies, baggage and wheel-chairs can be wheeled out.
  • The pair of single doors at each end of the car on a Class 802 train will have to handle 75 passengers, when a full train arrives at the destination.
  • The Class 902 train is not step-free between train and platform, so buggies, baggage and wheel-chairs will have to be lifted out!
  • The Class 745 trains running between Liverpool Street and Norwich via Ipswich will have a buffet.

Will the Stadler trains load and unload quicker than the various Hitachi trains?

 

December 8, 2019 Posted by | Transport | , , , | Leave a comment

Would It Have Been Better To Scrap HSTs, Abandon Class 769 Trains And Use Stadler Bi-Mode Flirts Instead?

I have ridden for several hours in Greater Anglia'[s new Class 755 trains and they seem to make good trains for scenic rural lines.

From December 16th, we’ll be seeing them work between Stansted and Norwich, which will show their mettle as true bi-modes working a partially-electrified route.

By mid-next year they will be working the following partially-electrified routes.

  • Liverpool Street and Lowestoft
  • Colchester and Peterborough
  • Norwich and Stansted
  • Ipswich and Cambridge
  • Sudbury and Colchester Town

I think that about forty percent of these routes are electrified and they also include a lot of 100 mph lines.

ScotRail

These Greater Anglia routes are not unlike some of the ScotRail Inter7City routes, which are to be run by shorterned four- and five-car HSTs.

Both trains have been late because of training and other issues, but delivery of the HSTs seems to have got stuck round various remanufacturing problems at Wabtec.

Would ScotRail have done better to follow their sister company Greater Anglia and buy some Class 755 trains to their specification?

Consider the advantages of the Inter7City over the Class 755 train.

  • Nostalgia
  • Well-known engineering
  • Comfortable

They could have been obtained at an affordable price.

But they do come with disadvantages.

  • Forty years old
  • Two big diesel engines
  • They are rather dark and dingy inside.

The Class 755 trains also have the following advantages.

  • They would help to remove diesel power from Edinburgh, Glasgow Queen Street and Stirling stations.
  • They have large picture windows ideal for looking at lakes and mountains.
  • Some seats are raised for a better view.
  • They are genuine 100 mph trains, which could be uprated to 125 mph, so would be ideal for incursions on the fast routes to England.
  • They’re probably ready to fit ERTMS.
  • They come in various lengths.
  • They are able to be modified for battery-electric operation.
  • I suspect hydrogen operation will be possible in the future.

But the biggest advantage is that they could extend Scotland’s electric network by using the bi-mode capability.

Think.

  • Fife Circle
  • Borders Railway
  • West Kilbride
  • Perth
  • West Highland Line

I think Scotland could really get to love these trains.

Great Western Railway

I could see a case for running shortened HSTs in the far South West, where GWR call them Castles, mainly on nostalgia and tourism grounds, but Class 755 trains would surely be better running the following partially-electrified services.

  • Henley and Paddington
  • Oxford and Gatwick via Reading
  • Oxford and Paddington
  • Cardiff and Taunton
  • Cardiff and Portsmouth Harbour

Often, they would be replacing Class 156 or Class 769 trains.

  • Some would need to be fitted with third-rail equipment.
  • The Gatwick services could be given an airport interior.
  • I suspect a 125 mph capability is available.
  • The Class 769 trains seem to be late in arriving.

I have no doubt in my mind, that the new Stadler trains are much better than the refurbished British Rail trains.

Transport For Wales

Transport for Wales have ordered a selection of bi-mode and tri-mode Flirts.

They must have good reasons for buying a selection of trains, rather than buying more Flirts.

Probably cost!

All these routes could be run using bi-mode Flirts

  • Cardiff and Holyhead
  • Birmingham International and Holyhead
  • Manchester Airport and Llandudno
  • Crewe and Chester
  • Chester and Liverpool Lime Street
  • Milford Haven and Manchester Piccadilly
  • Birmingham International and Aberystwyth via Shrewsbury
  • Birmingham International and Pwllheli via Shrewsbury
  • Heart of Wales Line
  • Conwy Valley Line

Some of these routes are partially electrified and use lines with a 125 mph operating speed.

Answering The Question In The Title

I very much feel that bi-mode Flirts would be better trains than shortened HSTs and Class 769 trains.

  • They are new trains.
  • They can use electrification, where it is present.
  • The appear to be capable of uprating to 125 mph.
  • They have good viewing for scenic routes because of large windows and some raised seats.
  • They are comfortable with a good ride.
  • They are able to be modified for battery-electric operation.
  • I suspect hydrogen operation will be possible in the future.

I  suspect their one downside is cost.

Conclusion

Bi-mode and tri-mode Flirts and other similar trains will proliferate and within ten years we’ll have seen the last of pure diesel trains in the UK.

I suspect that most of the shortened HSTs will have gone by 2030.

 

December 2, 2019 Posted by | Transport | , , , , , , , , | 4 Comments

Exploring Devon And Cornwall In Castles

Castle is the name given by Great Western Railway to their four- and five-car InterCity 125 trains, with which they run services in the West Country.

These pictures show the trains, as I meandered up and down the Cornish Main Line.

These are my observations.

The Doors

These trains now have electrically-controlled sliding doors and it seems to be a conversion, that has been carried out to a high standard.

Certainly, all the doors appeared to be working, as they should.

The Seats And Tables

The seats were comfortable, but not as comfortable as some seats I’ve used in Mark 3 coaches.

Could there be a few more tables?

The Ride

My pocket dynamometer was showing a speed of about 65 mph and the ride was as you’d expect from a well-maintained Mark 3 coach.

Access Between Platform And Train

This is not good as the pictures show.

This is the step on a Castle.

And this is the step on a new Class 755 train

Think buggies, heavy cases and wheelchairs.

The Class 755 train, really is the Gold Standard of step-free access between platform and train.

Conclusion

These iconic trains will do a good job for Great Western Railway.

You could certainly find a good hotel in Devon or Cornwall and have a few enjoyable days riding between Penzance and Exeter, to explore the area

I do hope that they eventually put a catering trolley on the train.

November 19, 2019 Posted by | Transport | , , , , , | Leave a comment

Thoughts On LNER’s New Harrogate Service

I wrote about LNER’s improved service to Harrogate station in New Harrogate-London Rail Times Revealed.

If you look at each service, they have a very rel;axed stop at Leeds.

Northbound services are scheduled to take the following times.

  • 0733 – 8 minutes
  • 0933 – 7 minutes
  • 1133 – 7 minutes
  • 1333 – 7 minutes
  • 1533 – 11 minutes
  • 1733 – 13 minutes.

Sorthbound services are scheduled to take the following times.

  • 0736 – 11 minutes
  • 0936 – 10 minutes
  • 1136 – 8 minutes
  • 1336 – 9 minutes
  • 1536 – 8 minutes
  • 1736 – 9 minutes.

It seems a long time to pass through Leeds station.

But this is because the train reverses direction at Leeds station, so the driver has to change ends.

Will Azumas make any difference?

Azumas were designed around forty years after the current InterCity 125 trains that work the service. A five-car Azuma is also half the length of a two+eight InterCity 125.

So I wouldn’t be surprised to see in the new timetable, the 7-9 minutes reverse are timed for Azumas and the longer times are to allow InterCity 125 trains to run the service.

The Azuma services to Leeds seem to be run by two five-car trains, running as a pair.

Could this be, so that the train can split and join at Leeds?

  • A pair of five-car Azumas would arrive in Leeds from London.
  • A second driver gets in the rear cab of the rear train.
  • The two trains automatically uncouple.
  • The rear train drives off to the West to Bradford, Harrogate, Huddersfield, Skipton or wherever.
  • The front train can drive off to the East to perhaps Hull, Middlesbrough, Scarborough, Scotland or Sunderland.
  • If required the driver could change ends and continue to the East.

The process would be reversed when going South.

Possible Destinations

These are possible destinations, distances and times.

  • Bradford – 13 miles – 25 minutes
  • Harrogate – 18 miles – 30 minutes
  • Huddersfield – 17 miles – 35 minutes
  • Hull – 20 miles – 60 minutes
  • Middlesbrough – – 76 miles – 84 minutes
  • Scarborough – 67 miles – 75 minutes
  • Skipton – 26 miles – 43 minutes
  • York – 25 miles – 30 minutes

It looks to me that Leeds will become a very important station for LNER.

Their timetabling team will certainly be having a large amount of mathematical fun!

I can certainly see.

  • Bradford,, Chesterfield and Skipton having similar service levels to those starting to and from Harrogste in December.
  • Battery-electric Azumas handling the last few miles on battery power.
  • Journey times of under two hours between Leeds and Kings Cross.

I also feel that LNER and TransPennine Express will create an integrated network between Leeds and Scotland along the East Coast Main Line.

Conclusion

This arrangement gives a large range of destinations from London and the South.

Passengers and train operators would like it.

October 31, 2019 Posted by | Transport, Uncategorized | , , , , , , | Leave a comment

A Selection Of Train Noses

I have put together a selection of pictures of train noses.

They are in order of introduction into service.

Class 43 Locomotive

The nose of a Class 43 locomotive was designed by Sir Kenneth Grange.

Various articles on the Internet, say that he thought British Rail’s original design was ugly and that he used the wind tunnel at Imperial College to produce one of the world’s most recognised train noses.

  • He tipped the lab technician a fiver for help in using the tunnel
  • Pilkington came had developed large armoured glass windows, which allowed the locomotives window for two crew.
  • He suggested that British Rail removed the buffers. Did that improve the aerodynamics, with the chisel nose shown in the pictures?

The fiver must be one of the best spent, in the history of train design.

In How Much Power Is Needed To Run A Train At 125 mph?, I did a simple calculation using these assumptions.

  • To cruise at 125 mph needs both engines running flat out producing 3,400 kW.
  • Two locomotives and eight Mark 3 carriages are a ten-car InterCity 125 train.

This means that the train needs 2.83 kWh per vehicle mile.

Class 91 Locomotive

These pictures show the nose of a Class 91 locomotive.

Note, the Class 43 locomotive for comparison and that the Driving Van Trailers have an identical body shell.

It does seem to me, that looking closely at both locomotives and the driving van trailers, that the Class 43s  look to have a smoother and more aerodynamic shape.

Class 800/801/802 Train

These pictures show the nose of a Class 800 train.

In How Much Power Is Needed To Run A Train At 125 mph?, I did a simple calculation to find out the energy consumption of a Class 801 train.

I have found this on this page on the RailUKForums web site.

A 130m Electric IEP Unit on a journey from Kings Cross to Newcastle under the conditions defined in Annex B shall consume no more than 4600kWh.

This is a Class 801 train.

  • It has five cars.
  • Kings Cross to Newcastle is 268.6 miles.
  • Most of this journey will be at 125 mph.
  • The trains have regenerative braking.
  • I don’t know how many stops are included

This gives a usage figure of 3.42 kWh per vehicle mile.

It is a surprising answer, as it could be a higher energy consumption, than that of the InterCity 125.

I should say that I don’t fully trust my calculations, but I’m fairly sure that the energy use of both an Intercity 125 and a Class 801 train are in the region of 3 kWh per vehicle mile.

Class 717 Train

Aerodynamically, the Class 700, 707 and 717 trains have the same front.

But they do seem to be rather upright!

Class 710 Train

This group of pictures show a Class 710 train.

Could these Aventra trains have been designed around improved aerodynamics?

  • They certainly have a more-raked windscreen than the Class 717 train.
  • The cab may be narrower than the major part of the train.
  • The headlights and windscreen seem to be fared into the cab, just as Colin Chapman and other car designers would have done.
  • There seems to be sculpting of the side of the nose, to promote better laminar flow around the cab. Does this cut turbulence and the energy needed to power the train?
  • Bombardier make aircraft and must have some good aerodynamicists and access to wind tunnels big enough for a large scale model of an Aventra cab.

If you get up close to the cab, as I did at Gospel Oak station, it seems to me that Bombardier have taken great care to create a cab, that is a compromise between efficient aerodynamics and good visibility for the driver.

Class 345 Train

These pictures shows the cab of a Class 345 train.

The two Aventras seem to be very similar.

Class 195 And Class 331 Trains

CAF’s Class 195 and Class 331 trains appear to have identical noses.

They seem to be more upright than the Aventras.

Class 755 Train

Class 755 trains are Stadler’s 100 mph bi-mode trains.

It is surprising how they seem to follow similar designs to Bombardier’s Aventras.

  • The recessed windscreen.
  • The large air intake at the front.

I can’t wait to get a picture of a Class 755 train alongside one of Greater Anglia’s new Class 720 trains, which are Aventras.

 

 

 

 

 

October 14, 2019 Posted by | Transport, Uncategorized | , , , , , , , , | 2 Comments

LNER Confirms Dates For Azuma Introduction Onto Highland Services

This title of this post is the same as that of this article on Rail Magazine.

The dates when Class 800 trains will enter service to the Highlands are as follows.

  • Aberdeen on November 25th 2019.
  • Inverness on December 9th 2019

InterCity 125s are being replaced.

Soon there won’t be many of these iconic trains running on the East Coast Main Line.

September 24, 2019 Posted by | Transport | , , , | Leave a comment

University Of Birmingham Leases HST For Alternative Fuel Tests

The title of this post is the same as that of this article on Rail Magazine.

This is the first paragraph.

A High Speed Train is being leased by the University of Birmingham to help analyse and test what alternative fuel could be used to power long-distance passenger or freight trains.

It will be interesting to see what results from the research.

A few of my thoughts.

Suitability Of A HST For Research

It must be suitable for research purposes, otherwise the University wouldn’t have obtained the train.

If you look at the Birmingham Centre for Railway Research and Education web site, they list the Research Areas.

  • Railway Control and Operations Simulation
  • Data Integration and Cybersecurity
  • Condition Monitoring and Sensing
  • Centre of Excellence in Digital Systems
  • Power Systems and Energy Use
  • Aerodynamics
  • Climate Change and Weather Impact

There must be a lot of scope for the use of a real train, especially one which has a lot of free space in the engine, where test equipment can be mounted.

Porterbrook’s Interest

I can think of several reasons, why Porterbrook might need to partner with the Research Centre, for sound commercial reasons.

Most will probably seem small in the eyes of the general public, but might be based on Porterbrook’s feedback from customers about their extensive fleet.

Understanding The HST’s Success

The HST or InterCity 125 has been an undoubted success with passengers, drivers, staff and train companies for forty years and understanding the reasons could be invaluable in improving rail transport in the future.

Education

I suspect too that the train will be used to educate students, especially those, who want to work in train or railway design.

When I left Liverpool University with my Control Engineering degree in 1968, I was one of the few, who’d worked on bg heavy machinery in a factory environment.

These days, with Heath and Safety rules much tighter, I doubt, today’s students can gewt the same experience.

Conclusion

I do hope that Porterbrook and the Research Centre, when they look back in a few years, feel that this venture has been a success.

September 21, 2019 Posted by | Transport | , , , , | Leave a comment

Kinetic Energy Of A Five-Car Class 801 Train

The standard argument against the bi-mode Class 800 train, was that it would be lugging heavy diesel engines around the country wasting energy.

The Class 801 train is the all-electric version of the Hitachi train.

  • Wikipedia says each coach weighs 41 tonnes.
  • An empty five car train will therefore weigh 205 tonnes.
  • A five-car train seats 315 passengers.
  • If each passenger with baggage, bikes and buggies weighs 90 Kg, this mean they weigh 28.35 tonnes.
  • So the train has a weight of 233.35 tonnes.
  • The train is travelling at 125 mph.

Putting these figurea into Omni’s Kinetic Engine Calculator gives a kinetic energy of 101.2 kWh.

Five-car Class 801 trains have one underfloor MTU 12V 1600 R80L diesel engine, which weigh seven tonnes, whereas the bi-mode Class 800 trains have three.

The engines have a rating pf 700 kW in the Class 802 trains and are derated to 560 kW in the other  two classes.

So adding engines and repeating the calculation gives.

  • One engine – 104.2 kWh
  • Two engines – 107.2 kWh
  • Three engines – 110.3 kWh

To accelerate a train with three engines to 125 mph will need an extra six kWh compared to a train with only one engine.

There will be a small acceleration penalty. But as three engines have a total power of 1,680 kW (Class 800) or 2,100 kW (Class 802), the penalty would be measured in seconds.

When the train is at the cruising speed of 125 mph, the only difference will be a two tonne difference in axle loading on some axles.

All Class 80x trains will have to overcome the same air resistance and provide similar hotel power., so I’m fairly certain, that all trains will consume very similar amounts of power in the cruise.

Power Comparison With An InterCity 125

Each Class 43 power car of an InterCity 125 has a single diesel engine rated at 1,700 kW.

Divide this by three and you get 566.7 kW

The de-rated MTU diesel engines in the Class 800 train are rated at 560 kW.

So did Hitachi look at the power of half an InterCity 125, feel that they could put diesel engines in three cars of a five-car train and then size the engines to get InterCity 125 power, with two trains working as a pair.

All they would then need to do is to design the cars of the new train to have aerodynamics, dynamics, performance and power usage as good or better than a forty-year-old train.

As they knew that the InterCity 125 had the capabilities needed for the routes, it would mean that their new train would perform, as required.

And if they needed more power for some routes, there was a 700 kW engine available.  Great Western Railway did need some more powerful trains and ordered thirty-six extra Class 802 trains with the larger engine.

If imitation is the sincerest form of flattery, the Japanese have been showing tremendous respect to the InterCity 125.

Conclusion

It really is extraordinary, that the installed power of two five-car Class 800 trains, is little different to that of an InterCity 125.

The vindication is that both trains work well.

 

 

July 14, 2019 Posted by | Transport | , , | 4 Comments