The Anonymous Widower

Thor Point

In his Informed Sources column in the August 2021 Edition of Modern Railways, Roger Ford has a section with the same sub-title as this post.

He discusses what is to happen to the Class 22x fleets of 125 mph diesel trains and then says this about Project Thor, which was an idea of a few years back.

I still believe the addition of a pantograph transformer car to convert a ‘22x’ to a bi-mode has even more potential than the first time round. Routes operated by the CrossCountry ‘22x’ should be early candidates for electrification, and bi-modes are a simple way of boosting the benefits of electrification.

Project Thor is described in a section in the Wikipedia entry for the Voyager train, which is entitled Proposed Conversion To Electrical Operation. This is said.

In 2010 Bombardier proposed the conversion of several Voyager multiple units into hybrid electric and diesel vehicles capable of taking power from an overhead pantograph (electro-diesels EDMUs). The proposal was named Project Thor.

It appears that, one of the reasons the project foundered was that Bombardier had no capability to make steel carriages in the UK.

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial |Director and Global Head of Regional and Intercity.

This is a paragraph.

He also confirmed Bombardier is examining the option of fitting batteries to Voyager DEMUs for use in stations.

Nothing more was said.

In the three years since that brief sentence, technology has moved on.

Perhaps most significantly, Hitachi have launched the Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Note that one engine is replaced with batteries.

My engineering experience, leads me to believe that Hitachi’s battery pack supplier; Hyperdrive Innovation, is developing a battery-pack that is plug-compatible with the MTU diesel engine, so that batteries and diesel engines can be swapped as required.

For this to be possible, there needs to be a power bus connecting all carriages of the train.

  • This is common practice in the design of electric multiple units.
  • I am certain this power bus exists on the Hitachi Class 800 trains as they have pantographs on both driver cars and all the motor cars are between the driver cars. So it is needed to supply power to the train.
  • A power-bus could be used in a diesel-electric multiple unit like the Voyager, to ensure that in the case of engine failure in one of the cars, the car would still be supplied with hotel power.

Are the Bombardier Voyagers designed with a similar power bus?

If they are, I wonder, if one of the intermediate cars could be converted as follows.

  • Replace the diesel engine and electrical generator with a plug-compatible battery pack of an appropriate size.
  • Fit a lightweight pantograph in the roof of the train.
  • Squeeze in all the electrical gubbins like a transformer underneath the train.

It would probably be a challenging piece of engineering, but if there is sufficient space under the train it should be possible.

But the outcome would be a genuine 125 mph bi-mode multiple unit.

August 15, 2021 Posted by | Transport/Travel | , , , | 13 Comments

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments

Thoughts On Batteries On A Hitachi Regional Battery Train

This article is a repeat of Thoughts On Batteries On A Hitachi Intercity Tri-Mode Battery Train, but for their other train with batteries; the Hitachi Regional Battery Train.

This Hitachi infographic describes a Hitachi Regional Battery Train.

Hitachi are creating the first of these battery trains, by replacing one of the diesel power-packs in a Class 802 train with a battery-pack from Hyperdrive Innovation of Sunderland.

The Class 802 train has the following characteristics.

  • Five cars.
  • Three diesel power-packs, each with a power output of 700 kW.
  • 125 mph top speed on electricity.
  • I believe all intermediate cars are wired for diesel power-packs, so can all intermediate cars have a battery?

In How Much Power Is Needed To Run A Train At 125 Or 100 mph?, I estimated that the trains need the following amounts of energy to keep them at a constant speed.

  • Class 801 train – 125 mph 3.42 kWh per vehicle mile
  • Class 801 train – 100 mph 2.19 kWh per vehicle mile

The figures are my best estimates.

We also know that according to Hitachi, the battery train has a range of 90 kilometres or 56 miles at a speed of 100 mph.

So applying the formula for energy needed gives that the battery size to cover 56 miles at a constant 100 mph will be.

56 * 2.19 * 5 = 613.2 kWh.

In the calculation for the Hitachi Intercity Tri-Mofr Battery Train, I had assumed that a 600 kWh battery was feasible, as it would lay less than the diesel engine it replaced.

I can also apply the formula for a four-car train.

56 * 2.19 * 4 = 490.6 kWh.

That too, would be very feasible.

Conclusion

I can’t wait to ride in one of Hitachi’s two proposed battery-electric trains.

 

June 1, 2021 Posted by | Transport/Travel | , , , | 2 Comments

Thoughts On Batteries On A Hitachi Intercity Tri-Mode Battery Train

This Hitachi infographic describes a Hitachi Intercity Tri-Mode Battery Train.

Hitachi are creating the first of these battery trains, by replacing one of the diesel power-packs in a Class 802 train with a battery-pack from Hyperdrive Innovation of Sunderland.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%, gives a few more details.

The Class 802 train has the following characteristics.

  • Five cars.
  • Three diesel power-packs, each with a power output of 700 kW.
  • 125 mph top speed on electricity.
  • I believe all intermediate cars are wired for diesel power-packs, so can all intermediate cars have a battery?

In How Much Power Is Needed To Run A Train At 125 Or 100 mph?, I estimated that the trains need the following amounts of energy to keep them at a constant speed.

  • Class 801 train – 125 mph 3.42 kWh per vehicle mile
  • Class 801 train – 100 mph 2.19 kWh per vehicle mile

The figures are my best estimates.

The Wikipedia entry for the Class 800 train, also gives the weight of the diesel power-pack and all its related gubbins.

The axle load of the train is given as 15 tonnes, but for a car without a diesel engine it is given as 13 tonnes.

As there are four axles to a car, I can deduce that the diesel power-pack and the gubbins, weigh around eight tonnes.

How much power would a one tonne battery hold?

This page on the Clean Energy institute at the University of Washington is entitled Lithium-Ion Battery.

This is a sentence from the page.

Compared to the other high-quality rechargeable battery technologies (nickel-cadmium or nickel-metal-hydride), Li-ion batteries have a number of advantages. They have one of the highest energy densities of any battery technology today (100-265 Wh/kg or 250-670 Wh/L).

Using these figures, a one-tonne battery would be between 100 and 265 kWh in capacity, depending on the energy density.

As it is likely that if the diesel power-pack replacement would probably leave things like fuel tanks and radiators behind, so that the diesel engines could be reinstalled, I would expect that a battery of around four tonnes would be fitted.

On the basis of the University of Washington’s figures a 400 kWh battery pack would certainly be feasible.

Using. the energy use at 100 mph of 2.19 kWh per vehicle mile, I can get the following ranges for different battery sizes.

  • 400 kWh battery – 36.53 miles
  • 500 kWh battery – 45.67 miles
  • 600 kWh battery – 54.80 miles
  • 800 kWh battery – 73.06 miles

As Lincoln and Newark are just 16.6 miles apart, it looks to me that a 500 or 600 kWh battery could be a good choice for that route, as it would leave enough hotel power for the turnround.

It should also handle shorter routes like these.

  • Newbury and Bedwyn – 13.3 miles.
  • Didcot and Oxford – 10.3 miles
  • Newark and Lincoln – 16.6 miles
  • Leeds and Harrogate – 18.3 miles
  • Northallerton and Middlesbrough – 20 miles
  • Hull and Temple Hirst Junction and Hull – 36.1 miles

Some routes like Temple Hirst Junction and Hull would need charging at the destination.

The Range Of A Five Car Train With Three Batteries

Suppose a Hitachi Intercity Tri-Mode Battery Train had three battery-packs and no diesel engines.

  • It would be based on Hitachi Intercity Tri-Mode Battery Train technology.
  • It would have two driver cars without batteries.
  • It would have three intermediate cars with 600 kWh batteries.
  • It would have 1800 kWh in the batteries.
  • The train would be optimised for 100 mph running.
  • My estimate says it would need 2.19 kWh per vehicle mile to cruise at 100 mph.

It could have a range of up to 164 miles.

If the batteries were only 500 kWh, the range would be 137 miles.

The Ultimate Battery Train

I think it would be possible to put together a nine car battery-electric train with a long range.

  • It would be based based on Hitachi Intercity Tri-Mode Battery Train technology, which would be applied to a Class 800 or Class 802 train.
  • It would have two driver cars without batteries.
  • It would have seven intermediate cars with 600 kWh batteries.
  • It would have a total battery capacity of 4200 kWh.
  • The train would be optimised for 100 mph running.
  • My estimate in How Much Power Is Needed To Run A Train At 125 Or 100 mph?, said it would need 2.19 kWh per vehicle mile to cruise at 100 mph.

That would give a range of over 200 miles.

If the batteries were only 500 kWh, the range would be 178 miles.

Aberdeen, Inverness, Penzance and Swansea here we come.

Can Hitachi Increase The Range Further?

There are various ways that the range can be improved.

  • More electrically-efficient on-board systems like air-conditioning.
  • A more aerodynamic nose.
  • Regenerative braking to the batteries.
  • Batteries with a higher energy density.
  • Better driver assistance software.

Note.

  1. Hitachi have already announced that the Class 810 trains for East Midlands Railway will have a new nose profile.
  2. Batteries are improving all the time.

I wouldn’t be surprised to see a ten percent improvement in range by 2030.

Conclusion

I was surprised at some of the results of my estimates.

But I do feel that Hitachi trains with 500-600 kWh batteries could bring a revolution to train travel in the UK.

Edinburgh And Aberdeen

Consider.

  • The gap in the electrification is 130 miles between Edinburgh Haymarket and Aberdeen.
  • There could be an intermediate charging station at Dundee.
  • Charging would be needed at Aberdeen.

I think Hitachi could design a train for this route.

Edinburgh And Inverness

Consider.

  • The gap in the electrification is 146 miles between Stirling and Inverness.
  • This could be shortened by 33 miles, if there were electrification between Stirling and Perth.
  • Charging would be needed at Inverness.

I think Hitachi could design a train for this route.

 

May 31, 2021 Posted by | Transport/Travel | , , , , , , , | 6 Comments

What Is Possible On The East Coast Main Line?

In the Wikipedia entry for the Class 91 locomotive, there is an amazing story.

This picture shows one of these locomotives at Kings Cross.

Note.

  1. They have a design speed of 140 mph.
  2. They have a power output of 4.8 MW.
  3. They were built around 1990 by British Rail at Crewe.

They were designed to run services between London King’s Cross and Edinburgh as fast as possible, as the motive power of the InterCity 225 trains.

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Note.

  1. For the British locomotive speed record, locomotive was actually pushing the train and going backwards, as the driving van trailer (DVT) was leading.
  2. How many speed records of any sort, where the direction isn’t part of the record, have been set going backwards?
  3. I feel that this record could stand for many years, as it is not very likely anybody will build another 140 mph locomotive in the foreseeable future. Unless a maverick idea for a high speed freight locomotive is proposed.

I have a few general thoughts on the record run between Kings Cross and Edinburgh in three-and-a-half hours.

  • I would assume that as in normal operation of these trains, the Class 91 locomotive was leading on the run to the North.
  • For various reasons, they would surely have had at least two of British Rail’s most experienced drivers in the cab.
  • At that time, 125 mph InterCity 125 trains had been the workhorse of East Coast Main Line for well over ten years, so British Rail wouldn’t have been short of experienced high speed drivers.
  • It was a Thursday, so they must have been running amongst normal traffic.
  • On Monday, a typical run between Kings Cross and Edinburgh is timetabled to take four hours and twenty minutes.
  • High Speed Two are predicting a time of three hours and forty-eight minutes between Euston and Edinburgh via High Speed Two and  the West Coast Main Line.

The more you look at it, a sub-three-and-and-a-half hour time, by 1980s-technology on a less-than-perfect railway was truly remarkable.

So how did they do it?

Superb Timetabling

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I talk about how Network Rail and Greater Anglia created a fast service between Liverpool Street and Norwich.

I suspect that British Rail put their best timetablers on the project, so that the test train could speed through unhindered.

Just as they did for Norwich-in-Ninety and probably will be doing to the East Coast Main Line to increase services and decrease journey times.

A Good As ERTMS Signalling

Obviously in 1991, there was no modern digital in-cab signalling and I don’t know the standard of communication between the drivers and the signallers.

On the tricky sections like Digswell Viaduct, through Hitchin and the Newark Crossing were other trains stopped well clear of any difficult area, as modern digital signalling can anticipate and take action?

I would expect the test train got a signalling service as good as any modern train, even if parts of it like driver to signaller communication may have been a bit experimental.

There may even have been a back-up driver in the cab with the latest mobile phone.

It must have been about 1991, when I did a pre-arranged airways join in my Cessna 340 on the ground at Ipswich Airport before take-off on a direct flight to Rome. Air Traffic Control had suggested it to avoid an intermediate stop at say Southend.

The technology was arriving and did it help the drivers on that memorable run North ensure a safe and fast passage of the train?

It would be interesting to know, what other equipment was being tested by this test train.

A Possible Plan

I suspect that the plan in 1991 was to use a plan not unlike one that would be used by Lewis Hamilton, or in those days Stirling Moss to win a race.

Drive a steady race not taking any chances and where the track allows speed up.

So did British Rail drive a steady 125 mph sticking to the standard timetable between Kings Cross and Edinburgh?

Then as the Wikipedia extract indicated, at several times during the journey did they increase the speed of the train to 140 mph.

And the rest as they say was an historic time of 3 hours, 29 minutes and 30 seconds. Call it three-and-a-half-hours.

This represented a start-to-stop average speed of 112.5 mph over the 393 miles of the East Coast Main Line.

Can The Current Trains Achieve Three-And-A-Half-Hours Be Possible Today?

Consider.

  • The best four hours and twenty minutes timings of the Class 801 trains, represents an average speed of 90.7 mph.
  • The Class 801 trains and the InterCity 225 trains have similar performance.
  • There have been improvements to the route like the Hitchin Flyover.
  • Full ERTMS in-cab signalling is being installed South of Doncaster.
  • I believe ERTMS and ETC could solve the Newark Crossing problem! See Could ERTMS And ETCS Solve The Newark Crossing Problem?
  • I am a trained Control Engineer and I believe if ERTMS and ETC can solve the Newark Crossing problem, I suspect they can solve the Digswell Viaduct problem.
  • The Werrington Dive Under is being built.
  • The approaches to Kings Cross are being remodelled.

I can’t quite say easy-peasy. but I’m fairly certain the Kings Cross and Edinburgh record is under serious threat.

  • A massive power supply upgrade to the North of Doncaster is continuing. See this page on the Network Rail web site.
  • ERTMS and ETC probably needs to be installed all the way between Kings Cross and Edinburgh.
  • There may be a need to minimise the number of slower passenger trains on the East Coast Main Line.
  • The Northumberland Line and the Leamside Line may be needed to take some trains from the East Coast Main Line.

Recent Developments Concerning the Hitachi Trains

There have been several developments  since the Hitachi Class 800 and Class 801 trains were ordered.

  • Serious engineers and commentators like Roger Ford of Modern Railways have criticised the lugging of heavy diesel engines around the country.
  • Network Rail have upgraded the power supply South of Doncaster and have recently started to upgrade it between Doncaster and Edinburgh. Will this extensive upgrade cut the need to use the diesel power-packs?
  • Hitachi and their operators must have collected extensive in-service statistics about the detailed performance of the trains and the use of the diesel power-packs.
  • Hitachi have signed an agreement with Hyperdrive Innovation of Sunderland to produce battery-packs for the trains and two new versions of the trains have been announced; a Regional Battery Train and an Intercity Tri-Mode Battery Train.
  • East Coast Trains have ordered five five-car Class 803 trains, each of which will have a small battery for emergency use and no diesel power-packs.
  • Avanti West Coast have ordered ten seven-car Class 807 trains, each of which have no battery or diesel power-packs.

And these are just the ones we know about.

The Class 807 Trains And Liverpool

I find Avanti West Coast’s Class 807 trains the most interesting development.

  • They have been partly financed by Rock Rail, who seem to organise train finance, so that the train operator, the train manufacturer all get the best value, by finding good technical solutions.
  • I believe that these trains have been designed so they can run between Euston and Liverpool Lime Street stations in under two hours.
  • Does the absence of battery or diesel power-packs save weight and improve performance?
  • Euston and Liverpool Lime Street in two hours would be an average of only 96.8 mph.
  • If the Class 807 trains could achieve the same start-stop average of 112.5 mph achieved by the InterCity 225 test run between Kings Cross and Edinburgh, that would mean a Euston and Liverpool Lime Street time of one hour and forty-three minutes.
  • Does Thunderbird provision on the West Coast Main Line for the Class 390 trains mean that the Class 807 trains don’t need emergency power?
  • Have diesel power-packs been rarely used in emergency by the Hitachi trains?

I believe the mathematics show that excellent sub-two hour times between Euston and Liverpool Lime Street are possible by Avanti West Coast’s new Class 807 trains.

The Class 803 Trains And Edinburgh

East Coast Trains ordered their Class 803 trains in March 2019,  nine months before Avanti West Coast ordered their Class 807 trains.

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, I outlined brief details of the trains and the proposed service.

  • FirstGroup is targeting the two-thirds of passengers, who fly between London and Edinburgh.
  • They are also targeting business passengers, as the first train arrives in Edinburgh at 10:00.
  • The trains are five-cars.
  • The trains are one class with onboard catering, air-conditioning, power sockets and free wi-fi.
  • Stops will be five trains per day with stops at Stevenage, Newcastle and Morpeth.
  • The trains will take around four hours.
  • The service will start in Autumn 2021.

I also thought it would be a successful service

As I know Edinburgh, Liverpool and London well, I believe there are similarities between the Euston-Liverpool Lime Street and Kings Cross-Edinburgh routes.

  • Both routes are between two cities known all over the world.
  • Both routes are fully-electrified.
  • Both routes have the potential to attract passengers from other transport modes.

The two services could even be run at similar speeds.

  • Euston-Liverpool Lime Street in two hours will be at 96.8 mph
  • Kings Cross-Edinburgh in four hours will be at 98.3 mph.

Does this explain the similar lightweight trains?

Could Lightweight Trains Help LNER?

There is one important factor, I haven’t talked about in detail in this post. Batteries and diesel power-packs on the Hitachi trains.

I have only mentioned them in the following circumstances.

  • When trains are not fitted with battery and/or diesel power-packs.
  • When battery developments are being undertaken.

Let’s consider the LNER fleet.

  • LNER has thirteen nine-car Class 800 trains, each of which has five diesel power-packs
  • LNER has ten five-car Class 800 trains, each of which has three diesel power-packs
  • LNER has thirty nine-car Class 801 trains, each of which has one diesel power-pack
  • LNER has twelve five-car Class 801 trains, each of which has one diesel power-pack

There are sixty-five trains, 497 coaches and 137 diesel power-packs.

And look at their destinations.

  • Aberdeen – No Electrification from Edinburgh
  • Alnmouth – Fully Electrified
  • Berwick-upon-Tweed – Fully Electrified
  • Bradford Forster Square – Fully Electrified
  • Darlington – Fully Electrified
  • Doncaster – Fully Electrified
  • Durham – Fully Electrified
  • Edinburgh – Fully Electrified
  • Glasgow – Fully Electrified
  • Grantham – Fully Electrified
  • Harrogate – No Electrification from Leeds – Possible Battery Destination
  • Huddersfield – No Electrification from Leeds – Possible Battery Destination – Probable Electrification
  • Hull – No Electrification from Temple Hirst Junction – Possible Battery Destination
  • Inverness – No Electrification from Stirling
  • Leeds – Fully Electrified
  • Lincoln – No Electrification from Newark North Gate – Possible Battery Destination
  • Middlesbrough – No Electrification from Northallerton – Possible Battery Destination
  • Newcastle – Fully Electrified
  • Newark North Gate – Fully Electrified
  • Northallerton – Fully Electrified
  • Peterborough – Fully Electrified
  • Skipton – Fully Electrified
  • Retford – Fully Electrified
  • Stevenage – Fully Electrified
  • Stirling – Fully Electrified
  • Sunderland – No Electrification from Northallerton – Possible Battery Destination
  • Wakefield Westgate – Fully Electrified
  • York – Fully Electrified

The destinations can be summarised as followed.

  • Not Electrified – 2
  • Possible Battery Destination – 6
  • Fully Electrified – 20

This gives a total of 28.

Could the trains be matched better to the destinations?

  • Some routes like Edinburgh, Glasgow, Newcastle and Stirling could possibly be beneficially handled by lightweight trains without any diesel or battery power-packs.
  • Only Aberdeen and Inverness can’t be reached by all-electric or battery-electric trains.
  • In LNER Seeks 10 More Bi-Modes, I proposed a hydrogen-electric flagship train, that would use hydrogen North of the existing electrification.

There certainly appear to be possibilities.

Example Journey Times To Edinburgh

This table shows the various time for particular start-stop average speeds between Kings Cross and Edinburgh.

  • 80 mph – 4:54
  • 85 mph – 4:37
  • 90 mph – 4:12
  • 98.2 mph – 4:00
  • 100 mph – 3:56
  • 110 mph – 3:34
  • 120 mph – 3:16
  • 125 mph – 3:08

Note.

  • Times are given in h:mm.
  • A few mph increase in average speed reduces journey time by a considerable amount.

The figures certainly show the value of high speed trains and of removing bottlenecks, as average speed is so important.

Decarbonisation Of LNER

LNER Seeks 10 More Bi-Modes was based on an article in the December 2020 Edition of Modern Railways, with the same title. These are the first two paragraphs of the article.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast main line services.

In a Prior Information Notice published on 27 October, the operator states it is seeking trains capable of operating under 25kW overhead power with ‘significant self-power capability’ for operation away from overhead wires. ‘On-board Energy Storage for traction will be specified as a mandatory requirement to reduce, and wherever practical eliminate, diesel usage where it would otherwise be necessary, although LNER anticipates some degree of diesel traction may be required to meet some self-power requirements. Suppliers tendering are asked to detail their experience of designing and manufacturing a fleet of multi-mode trains with a range of traction options including battery-electric, diesel-electric, hydrogen-electric, battery-diesel, dual fuel and tri-mode.

From this, LNER would appear to be serious about decarbonisation and from the destination list I published earlier, most services South of the Scottish Central Belt can be decarbonised by replacing diesel-power packs with battery power-packs.

That last bit, sounds like a call for innovation to provide a solution to the difficult routes to Aberdeen and Inverness. It also looks as if it has been carefully worded not to rule anybody out.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

It announces the Hitachi Intercity Tri-mode Battery Train, which is described in this Hitachi infographic.

As the Hitachi press release is dated the 15th of December 2020, which is after the publication of the magazine, it strikes me that LNER and Hitachi had been talking.

At no point have Hitachi stated what the range of the train is on battery power.

To serve the North of Scotland these gaps must be bridged.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

It should also be noted that distances in Scotland are such, that if these gaps could be bridged by battery technology, then probably all of the North of Scotland’s railways could be decarbonised. As Hitachi are the major supplier of Scotland’s local and regional electric trains, was the original Prior Information Notice, written to make sure Hitachi responded?

LNER run nine-car Class 800 trains on the two long routes to Aberdeen and Inverness.

  • These trains have five diesel power-packs under coaches 2,3, 5, 7 and 8.
  • As five-car Class 800 trains have diesel power-packs under coaches 2, 3 and 4, does this mean that Hitachi can fit diesel power-packs under all cars except for the driver cars?
  • As the diesel and battery power-packs appear to be interchangeable, does this mean that Hitachi could theoretically build some very unusual trains?
  • Hitachi’s trains can be up to twelve-cars in normal mode and twenty-four cars in rescue mode.
  • LNER would probably prefer an all Azuma fleet, even if a few trains were a bit longer.

Imagine a ten-car train with two driver and eight intermediate cars, with all of the intermediate cars having maximum-size battery-packs.

Supposing, one or two of the battery power-packs were to be replaced with a diesel power-pack.

There are a lot of possibilities and I suspect LNER, Hitachi and Hyperdrive Innovation are working on a train capable of running to and from the North of Scotland.

Conclusion

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

 

 

 

May 15, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Will Hitachi Announce A High Speed Metro Train?

As the UK high speed rail network increases, we are seeing more services and proposed services, where local services are sharing tracks, where trains will be running at 125 mph or even more.

London Kings Cross And Cambridge/Kings Lynn

This Great Northern service is run by Class 387 trains.

  • Services run between London Kings Cross and King’s Lynn or Cambridge
  • The Class 387 trains have a maximum operating speed of 110 mph.
  • The route is fully electrified.
  • The trains generally use the fast lines on the East Coast Main Line, South of Hitchin.
  • Most trains on the fast lines on the East Coast Main Line are travelling at 125 mph.

When in the future full digital in-cab ERTMS signalling is implemented on the East Coast Main Line, speeds of up to 140 mph should be possible in some sections between London Kings Cross and Hitchin.

The Digswell Viaduct Problem

I also believe that digital signalling may be able to provide a solution to the twin-track bottleneck over the Digswell Viaduct.

Consider.

  • Airliners have been flown automatically and safely from airport to airport for perhaps four decades.
  • The Victoria Line in London, has been running automatically and safely at over twenty trains per hour (tph) for five decades. It is now running at over 30 tph.
  • I worked with engineers developing a high-frequency sequence control system for a complicated chemical plant in 1970.

We also can’t deny that computers are getting better and more capable.

For these reasons, I believe there could be an ERTMS-based solution to the problem of the Digswell Viaduct, which could be something like this.

  • All trains running on the two track section over the Digswell Viaduct and through Welwyn North station would be under computer control between Welwyn Garden City and Knebworth stations.
  • Fast trains would be slowed as appropriate to create spaces to allow the slow trains to pass through the section.
  • The train drivers would be monitoring the computer control, just as they do on the Victoria Line.

Much more complicated automated systems have been created in various applications.

The nearest rail application in the UK, is probably the application of digital signalling to London Underground’s Circle, District, Hammersmith & City and Metropolitan Lines.

This is known at the Four Lines Modernisation and it will be completed by 2023 and increase capacity by up to twenty-seven percent.

I don’t think it unreasonable to see the following maximum numbers of services running over the Digswell Viaduct by 2030 in both directions in every hour.

  • Sixteen fast trains
  • Four slow trains

That is one train every three minutes.

Currently, it appears to be about ten fast and two slow.

As someone, who doesn’t like to be on a platform, when a fast train goes through, I believe that some form of advanced safety measures should be installed at Welwyn North station.

It would appear that trains between London Kings Cross and King’s Lynn need to have this specification.

  • Ability to run at 125 mph on the East Coast Main Line
  • Ability to run at 140 mph on the East Coast Main Line, under control of full digital in-cab ERTMS signalling.

This speed increase could reduce the journey time between London Kings Cross and Cambridge to just over half-an-hour with London Kings Cross and King’s Lynn under ninety minutes.

The only new infrastructure needed would be improvements to the Fen Line to King’s Lynn to allow two tph, which I think is needed.

Speed improvements between Hitchin and Cambridge could also benefit timings.

London Kings Cross And Cambridge/Norwich

I believe there is a need for a high speed service between London Kings Cross and Norwich via Cambridge.

  • The Class 755 trains, that are capable of 100 mph take 82 minutes, between Cambridge and Norwich.
  • The electrification gap between Ely and Norwich is 54 miles.
  • Norwich station and South of Ely is fully electrified.
  • Greater Anglia’s Norwich and Cambridge service has been very successful.

With the growth of Cambridge and its incessant need for more space, housing and workers, a high speed train  between London Kings Cross and Norwich via Cambridge could tick a lot of boxes.

  • If hourly, it would double the frequency between Cambridge and Norwich until East-West Rail is completed.
  • All stations between Ely and Norwich get a direct London service.
  • Cambridge would have better links for commuting to the city.
  • Norwich would provide the quality premises, that Cambridge is finding hard to develop.
  • London Kings Cross and Cambridge would be just over half an hour apart.
  • If the current London Kings Cross and Ely service were to be extended to Norwich, no extra paths on the East Coast Main Line would be needed.
  • Trains could even split and join at Cambridge or Ely to give all stations a two tph service to London Kings Cross.
  • No new infrastructure would be required.

The Cambridge Cruiser would become the Cambridge High Speed Cruiser.

London Paddington And Bedwyn

This Great Western Railway service is run by Class 802 trains.

  • Services run between London Paddington and Bedwyn.
  • Services use the Great Western Main Line at speeds of up to 125 mph.
  • In the future if full digital in-cab ERTMS signalling is implemented, speeds of up to 140 mph could be possible on some sections between London Paddington and Reading.
  • The 13.3 miles between Newbury and Bedwyn is not electrified.

As the service would need to be able to run both ways between Newbury and Bedwyn, a capability to run upwards of perhaps thirty miles without electrification is needed. Currently, diesel power is used, but battery power would be better.

London Paddington And Oxford

This Great Western Railway service is run by Class 802 trains.

  • Services run between London Paddington and Oxford.
  • Services use the Great Western Main Line at speeds of up to 125 mph.
  • In the future if full digital in-cab ERTMS signalling is implemented, speeds of up to 140 mph could be possible on some sections between London Paddington and Didcot Parkway.
  • The 10.3 miles between Didcot Parkway and Oxford is not electrified.

As the service would need to be able to run both ways between Didcot Parkway and Oxford, a capability to run upwards of perhaps thirty miles without electrification is needed. Currently, diesel power is used, but battery power would be better.

Local And Regional Trains On Existing 125 mph Lines

In The UK, in addition to High Speed One and High Speed Two, we have the following lines, where speeds of 125 mph are possible.

  • East Coast Main Line
  • Great Western Main Line
  • Midland Main Line
  • West Coast Main Line

Note.

  1. Long stretches of these routes allow speeds of up to 125 mph.
  2. Full digital in-cab ERTMS signalling is being installed on the East Coast Main Line to allow running up to 140 mph.
  3. Some of these routes have four tracks, with pairs of slow and fast lines, but there are sections with only two tracks.

It is likely, that by the end of the decade large sections of these four 125 mph lines will have been upgraded, to allow faster running.

If you have Hitachi and other trains thundering along at 140 mph, you don’t want dawdlers, at 100 mph or less, on the same tracks.

These are a few examples of slow trains, that use two-track sections of 125 nph lines.

  • East Midlands Railway – 1 tph – Leicester and Lincoln – Uses Midland Main Line
  • East Midlands Railway – 1 tph – Liverpool and Norwich – Uses Midland Main Line
  • East Midlands Railway – 2 tph – St. Pancras and Corby – Uses Midland Main Line
  • Great Western Railway – 1 tph – Cardiff and Portsmouth Harbour – Uses Great Western Main Line
  • Great Western Railway – 1 tph – Cardiff and Taunton – Uses Great Western Main Line
  • Northern – 1 tph – Manchester Airport and Cumbria – Uses West Coast Main Line
  • Northern – 1 tph – Newcastle and Morpeth – Uses East Coast Main Line
  • West Midlands Trains – Some services use West Coast Main Line.

Conflicts can probably be avoided by judicious train planning in some cases, but in some cases trains capable of 125 mph will be needed.

Southeastern Highspeed Services

Class 395 trains have been running Southeastern Highspeed local services since 2009.

  • Services run between London St. Pancras and Kent.
  • Services use Speed One at speeds of up to 140 mph.
  • These services are planned to be extended to Hastings and possibly Eastbourne.

The extension would need the ability to run on the Marshlink Line, which is an electrification gap of 25.4 miles, between Ashford and Ore.

Thameslink

Thameslink is a tricky problem.

These services run on the double-track section of the East Coast Main Line over the Digswell Viaduct.

  • 2 tph – Cambridge and Brighton – Fast train stopping at Hitchin, Stevenage and Finsbury Park.
  • 2 tph – Cambridge and Kings Cross – Slow train stopping at Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • 2 tph – Peterborough and Horsham – Fast train stopping at Hitchin, Stevenage and Finsbury Park.

Note.

  1. These services are run by Class 700 trains, that are only capable of 100 mph.
  2. The fast services take the fast lines South of the Digswell Viaduct.
  3. South of Finsbury Park, both fast services cross over to access the Canal Tunnel for St, Pancras station.
  4. I am fairly certain, that I have been on InterCity 125 trains running in excess of 100 mph in places between Finsbury Park and Stevenage.

It would appear that the slow Thameslink trains are slowing express services South of Stevenage.

As I indicated earlier, I think it is likely that the Kings Cross and King’s Lynn services will use 125 mph trains for various reasons, like London and Cambridge in under half an hour.

But if 125 mph trains are better for King’s Lynn services, then they would surely improve Thameslink and increase capacity between London and Stevenage.

Looking at average speeds and timings on the 25 miles between Stevenage and Finsbury Park gives the following.

  • 100 mph – 15 minutes
  • 110 mph – 14 minutes
  • 125 mph – 12 minutes
  • 140 mph – 11 minutes

The figures don’t appear to indicate large savings, but when you take into account that the four tph running the Thameslink services to Peterborough and Cambridge stop at Finsbury Park and Stevenage and have to get up to speed, I feel that the 100 mph Class 700 trains are a hindrance to more and faster trains on the Southern section of the East Coast Main Line.

It should be noted, that faster trains on these Thameslink services would probably have better acceleration and and would be able to execute faster stops at stations.

There is a similar less serious problem on the Midland Main Line branch of Thameslink, in that some Thameslink services use the fast lines.

A couple of years ago, I had a very interesting chat with a group of East Midlands Railway drivers. They felt that the 100 mph Thameslink and the 125 mph Class 222 trains were not a good mix.

The Midland Main Line services are also becoming more complicated, with the new EMR Electric services between St. Pancras and Corby, which will be run by 110 mph Class 360 trains.

Hitachi’s Three Trains With Batteries

Hitachi have so far announced three battery-electric trains. Two are based on battery packs being developed and built by Hyperdrive Innovation.

Hyperdrive Innovation

Looking at the Hyperdrive Innovation web site, I like what I see.

Hyperdrive Innovation provided the battery packs for JCB’s first electric excavator.

Note that JCB give a five-year warranty on the Hyperdrive batteries.

Hyperdrive have also been involved in the design of battery packs for aircraft push-back tractors.

The battery capacity for one of these is given as 172 kWh and it is able to supply 34 kW.

I was very surprised that Hitachi didn’t go back to Japan for their batteries, but after reading Hyperdrive’s web site about the JCB and Textron applications, there would appear to be good reasons to use Hyperdrive.

  • Hyperdrive have experience of large lithium ion batteries.
  • Hyperdrive have a design, develop and manufacture model.
  • They seem to able to develop solutions quickly and successfully.
  • Battery packs for the UK and Europe are made in Sunderland.
  • Hyperdrive are co-operating with Nissan, Warwick Manufacturing Group and Newcastle University.
  • They appear from the web site to be experts in the field of battery management, which is important in prolonging battery life.
  • Hyperdrive have a Taiwanese partner, who manufactures their battery packs for Taiwan and China.
  • I have done calculations based on the datasheet for their batteries and Hyperdrive’s energy density is up with the best

I suspect, that Hitachi also like the idea of a local supplier, as it could be helpful in the negotiation of innovative applications. Face-to-face discussions are easier, when you’re only thirty miles apart.

Hitachi Regional Battery Train

The first train to be announced was the Hitachi Regional Battery Train, which is described in this Hitachi infographic.

Note.

  1. It is only a 100 mph train.
  2. The batteries are to be designed and manufactured by Hyperdrive Innovation.
  3. It has a range of 56 miles on battery power.
  4. Any of Hitachi’s A Train family like Class 800, 802 or 385 train can be converted to a Regional Battery Train.

No orders have been announced yet.

But it would surely be very suitable for routes like.

  • London Paddington And Bedwyn
  • London Paddington And Oxford

It would also be very suitable for extensions to electrified suburban routes like.

  • London Bridge and Uckfield
  • London Waterloo and Salisbury
  • Manchester Airport and Windermere.
  • Newcastle and Carlisle

It would also be a very sound choice to extend electrified routes in Scotland, which are currently run by Class 385 trains.

Hitachi InterCity Tri-Mode Battery Train

The second train to be announced was the Hitachi InterCity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Note.

  1. Only one engine is replaced by a battery.
  2. The batteries are to be designed and manufactured by Hyperdrive Innovation.
  3. Typically a five-car Class 800 or 802 train has three diesel engines and a nine-car train has five.
  4. These trains would obviously be capable of 125 mph on electrified main lines and 140 mph on lines fully equipped with digital in-cab ERTMS signalling.

Nothing is said about battery range away from electrification.

Routes currently run from London with a section without electrification at the other end include.

  • London Kings Cross And Harrogate – 18.3 miles
  • London Kings Cross And Hull – 36 miles
  • London Kings Cross And Lincoln – 16.5 miles
  • London Paddington And Bedwyn – 13.3 miles
  • London Paddington And Oxford – 10.3 miles

In the March 2021 Edition of Modern Railways, LNER are quoted as having aspirations to extend the Lincoln service to Cleethorpes.

  • With all energy developments in North Lincolnshire, this is probably a good idea.
  • Services could also call at Market Rasen and Grimsby.
  • Two trains per day, would probably be a minimum frequency.

But the trains would need to be able to run around 64 miles each way without electrification. Very large batteries and/or charging at Cleethorpes will be needed.

Class 803 Trains For East Coast Trains

East Coast Trains have ordered a fleet of five Class 803 trains.

  • These trains appear to be built for speed and fast acceleration.
  • They have no diesel engines, which must save weight and servicing costs.
  • But they will be fitted with batteries for emergency power to maintain onboard  train services in the event of overhead line failure.
  • They are planned to enter service in October 2021.

Given that Hyperdrive Innovation are developing traction batteries for the other two Hitachi battery trains, I would not be the least bit surprised if Hyperdrive were designing and building the batteries for the Class 803 trains.

  • Hyperdrive batteries are modular, so for a smaller battery you would use less modules.
  • If all coaches are wired for a diesel engine, then they can accept any power module like a battery or hydrogen pack, without expensive redesign.
  • I suspect too, that the battery packs for the Class 803 trains could be tested on an LNER Class 801 train.

LNER might also decide to replace the diesel engines on their Class 801 trains with an emergency battery pack, if it were more energy efficient and had a lighter weight.

Thoughts On The Design Of The Hyperdrive innovation Battery Packs

Consider.

  • Hitachi trains have a sophisticated computer system, which on start-up can determine the configuration of the train or whether it is more than one train running as a longer formation or even being hauled by a locomotive.
  • To convert a bi-mode Class 800 train to an all-electric Class 801 the diesel engines are removed. I suspect that the computer is also adjusted, but train formation may well be totally automatic and independent of the driver.
  • Hyperdrive Innovation’s battery seem to be based on a modular system, where typical modules have a capacity of 5 kWh, weighs 32 Kg and has a volume of 0.022 cu metres.
  • The wet mass of an MTU 16V 1600 R80L diesel engine commonly fitted to AT-300 trains of different types is 6750 Kg or nearly seven tonnes.
  • The diesel engine has a physical size of 1.5 x 1.25 x 0.845 metres, which is a volume of 1.6 cubic metres.
  • In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.
  • It is likely, than any design of battery pack, will handle the regenerative braking.

To my mind, the ideal solution would be a plug compatible battery pack, that the train’s computer thought was a diesel engine.

But then I have form in the area of plug-compatible electronics.

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

What Size Of Battery Would Be Possible?

If Hyperdrive are producing a battery pack with the same volume as the diesel engine it replaced, I estimate that the battery would have a capacity defined by.

5 * 1.6 / 0.022 = 364 kWh

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

As a figure of 3.42 kWh per vehicle-mile to maintain 125 mph, applies to a Class 801 train, I suspect that a figure of 3 kWh or less could apply to a five-car Class 800 train trundling at around 80-100 mph to Bedwyn, Cleethorpes or Oxford.

  • A one-battery five-car train would have a range of 24.3 miles
  • A two-battery five-car train would have a range of 48.6 miles
  • A three-battery five-car train would have a range of 72.9 miles

Note.

  1. Reducing the consumption to 2.5 kWh per vehicle-mile would give a range of 87.3 miles.
  2. Reducing the consumption to 2 kWh per vehicle-mile would give a range of 109.2 miles.
  3. Hitachi will be working to reduce the electricity consumption of the trains.
  4. There will also be losses at each station stop, as regenerative braking is not 100 % efficient.

But it does appear to me, that distances of the order of 60-70 miles would be possible on a lot of routes.

Bedwyn, Harrogate, Lincoln and Oxford may be possible without charging before the return trip.

Cleethorpes and Hull would need a battery charge before return.

A Specification For A High Speed Metro Train

I have called the proposed train a High Speed Metro Train, as it would run at up to 140 mph on an existing high speed line and then run a full or limited stopping service to the final destination.

These are a few thoughts.

Electrification

In some cases like London Kings Cross and King’s Lynn, the route is already electrified and batteries would only be needed for the following.

  • Handling regenerative braking.
  • Emergency  power in case of overhead line failure.
  • Train movements in depots.

But if the overhead wires on a branch line. are in need of replacement, why not remove them and use battery power? It might be the most affordable and least disruptive option to update the power supply on a route.

The trains would have to be able to run on both types of electrification in the UK.

  • 25 KVAC overhead.
  • 750 VDC third rail.

This dual-voltage capability would enable the extension of Southeastern Highspeed services.

Operating Speed

The trains must obviously be capable of running at the maximum operating speed on the routes they travel.

  • 125 mph on high speed lines, where this speed is possible.
  • 140 mph on high speed lines equipped with full digital in-cab ERTMS signalling, where this speed is possible.

The performance on battery power must be matched with the routes.

Hitachi have said, that their Regional Battery trains can run at up to 100 mph, which would probably be sufficient for most secondary routes in the UK and in line with modern diesel and electric multiple units.

Full Digital In-cab ERTMS Signalling

This will be essential and is already fitted to some of Hitachi’s trains.

Regenerative Braking To Batteries

Hitachi’s battery electric  trains will probably use regenerative braking to the batteries, as it is much more energy efficient.

It also means that when stopping at a station perhaps as much as 70-80% of the train’s kinetic energy can be captured in the batteries and used to accelerate the train.

In Kinetic Energy Of A Five-Car Class 801 Train, I showed that at 125 mph the energy of a full five-car train is just over 100 kWh, so batteries would not need to be unduly large.

Acceleration

This graph from Eversholt Rail, shows the acceleration and deceleration of a five-car Class 802 electric train.

As batteries are just a different source of electric power, I would think, that with respect to acceleration and deceleration, that the performance of a battery-electric version will be similar.

Although, it will only achieve 160 kph instead of the 200 kph of the electric train.

I estimate from this graph, that a battery-electric train would take around 220 seconds from starting to decelerate for a station to being back at 160 kph. If the train was stopped for around eighty seconds, a station stop would add five minutes to the journey time.

London Kings Cross And Cleethorpes

As an example consider a service between London Kings Cross and Cleethorpes.

  • The section without electrification between Newark and Cleethorpes is 64 miles.
  • There appear to be ambitions to increase the operating speed to 90 mph.
  • Local trains seem to travel at around 45 mph including stops.
  • A fast service between London Kings Cross and Cleethorpes would probably stop at Lincoln Central, Market Rasen and Grimsby Town.
  • In addition, local services stop at Collingham, Hykeham, Barnetby and Habrough.
  • London Kings Cross and Newark takes one hour and twenty minutes.
  • London Kings Cross and Cleethorpes takes three hours and fifteen minutes with a change at Doncaster.

I can now calculate a time between Kings Cross and Cleethorpes.

  • If a battery-electric train can average 70 mph between Newark and Cleethorpes, it would take 55 minutes.
  • Add five minutes for each of the three stops at Lincoln Central, Market Rasen and Grimsby Town
  • Add in the eighty minutes between London Kings Cross and Newark and that would be  two-and-a-half hours.

That would be very marketing friendly and a very good start.

Note.

  1. An average speed of 80 mph would save seven minutes.
  2. An average speed of 90 mph would save twelve minutes.
  3. I suspect that the current bi-modes would be slower by a few minutes as their acceleration is not as potent of that of an electric train.

I have a feeling London Kings Cross and Cleethorpes via Lincoln Central, Market Rasen and Grimsby Town, could be a very important service for LNER.

Interiors

I can see a new lightweight and more energy efficient interior being developed for these trains.

In addition some of the routes, where they could be used are popular with cyclists and the current Hitachi trains are not the best for bicycles.

Battery Charging

Range On Batteries

I have left this to last, as it depends on so many factors, including the route and the quality of the driving or the Automatic Train Control

Earlier, I estimated that a five-car train with all three diesel engines replaced by batteries, when trundling around Lincolnshire, Oxfordshire or Wiltshire could have range of up to 100 miles.

That sort of distance would be very useful and would include.

  • Ely and Norwich
  • Newark and Cleethorpes
  • Salisbury and Exeter

It might even allow a round trip between the East Coast Main Line and Hull.

The Ultimate Battery Train

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

This is a paragraph.

The projected improvements in battery technology – particularly in power output and charge – create opportunities to replace incrementally more diesel engines on long distance trains. With the ambition to create a fully electric-battery intercity train – that can travel the full journey between London and Penzance – by the late 2040s, in line with the UK’s 2050 net zero emissions target.

Consider.

  • Three batteries would on my calculations give a hundred mile range.
  • Would a train with no diesel engines mean that fuel tanks, radiators and other gubbins could be removed and more or large batteries could be added.
  • Could smaller batteries be added to the two driving cars?
  • By 2030, let alone 2040, battery energy density will have increased.

I suspect that one way or another these trains could have a range on battery power of between 130 and 140 miles.

This would certainly be handy in Scotland for the two routes to the North.

  • Haymarket and Aberdeen, which is 130 miles without electrification.
  • Stirling and Inverness, which is 111 miles without electrification, if the current wires are extended from Stirling to Perth, which is being considered by the Scottish Government.

The various sections of the London Paddington to Penzance route are as follows.

  • Paddington and Newbury – 53 miles – electrified
  • Newbury and Taunton – 90 miles – not electrified
  • Taunton and Exeter – 31 miles – not electrified
  • Exeter and Plymouth – 52 miles – not electrified
  • Plymouth and Penzance – 79 miles – not electrified

The total length of the section without electrification between Penzance and Newbury  is a distance of 252 miles.

This means that the train will need a battery charge en route.

I think there are three possibilities.

  • Trains can take up to seven minutes for a stop at Plymouth. As London and Plymouth trains will need to recharge at Plymouth before returning to London, Plymouth station could be fitted with comprehensive recharge facilities for all trains passing through. Perhaps the ideal solution would be to electrify all lines and platforms at Plymouth.
  • Between Taunton and Exeter, the rail line runs alongside the M5 motorway. This would surely be an ideal section to electrify, as it would enable battery electric trains to run between Exeter and both Newbury and Bristol.
  • As some trains terminate at Exeter, there would probably need to be charging facilities there.

I believe that the date of the late 2040s is being overly pessimistic.

I suspect that by 2040 we’ll be seeing trains between London and Aberdeen, Inverness and Penzance doing the trips without a drop of diesel.

But Hitachi are making a promise of London and Penzance by zero-carbon trains, by the late-2040s, because they know they can keep it.

And Passengers and the Government won’t mind the trains being early!

Conclusion

This could be a very useful train to add to Hitachi’s product line.

 

 

 

March 9, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Hitachi Targets Next Year For Testing Of Tri-Mode IET

The title of this post, is the same as that of this article on Rail Magazine.

This is the first two paragraphs.

Testing of a five-car Hitachi Class 802/0 tri-mode unit will begin in 2022, and the train could be in traffic the following year.

It is expected that the train will save more than 20% of fuel on Great Western Railway’s London Paddington-Penzance route.

This is the Hitachi infographic, which gives the train’s specification.

I have a few thoughts and questions.

Will The Batteries Be Charged At Penzance?

Consider.

  • It is probably not a good test of customer reaction to the Intercity Tri-Mode Battery Train, if it doesn’t work on batteries in stations through Cornwall.
  • Every one of the eight stops in Cornwall will need an amount of battery power.
  • London trains seem to take at least half-an-hour to turn round at Penzance.
  • London trains seem to take around 7-13 minutes for the stop at Plymouth.

So I think, that batteries will probably need to be charged at Penzance and possibly Plymouth, to achieve the required battery running,

There is already sufficient time in the timetable.

A charging facility in Penzance station would be a good test of Hitachi’s method to charge the trains.

Will Hyperdrive Innovation’s Battery Pack Be A Simulated Diesel Engine?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

How Many Trains Can Eventually Be Converted?

Great Western Railway have twenty-two Class 802/0 trains.

  • They are five-cars.
  • They have three diesel engines in cars 2, 3 and 4.
  • They have a capacity of 326 passengers.
  • They have an operating speed of 125 mph on electrification.
  • They will have an operating speed of 140 mph on electrification with in-cab ERTMS digital signalling.
  • They have an operating speed of 110 mph on diesel.
  • They can swap between electric and diesel mode at line speed.

Great Western Railway also have these trains that are similar.

  • 14 – nine-car Class 802/1 trains
  • 36 – five-car Class 800/0 trains
  • 21 – nine-car Class 800/3 trains

Note.

  1. The nine-car trains have five diesel engines in cars 2,3, 5, 7 and 8
  2. All diesel engines are similar, but those in Class 802 trains are more powerful, than those in Class 800 trains.

This is a total of 93 trains with 349 diesel engines.

In addition, there are these similar trains in service or on order with other operators.

Note.

  1. Class 801 trains have one diesel engine for emergency power.
  2. Class 803 trains have no diesel engines, but they do have a battery for emergency power.
  3. Class 805 trains have an unspecified number of diesel engines. I will assume three.
  4. Class 807 trains have no batteries or diesel engines.
  5. Class 810 trains have four diesel engines.

This is a total  of 150 trains with 395 diesel engines.

The Rail Magazine finishes with this paragraph.

Hitachi believes that projected improvements in battery technology, particularly in power output and charge, could enable diesel engines to be incrementally replaced on long-distance trains.

Could this mean that most diesel engines on these Hitachi trains are replaced by batteries?

Five-Car Class 800 And Class 802 Trains

These trains are mainly regularly used to serve destinations like Bedwyn, Cheltenham, Chester, Harrogate, Huddersfield, Hull, Lincoln, Oxford and Shrewsbury, which are perhaps up to fifty miles beyond the main line electrification.

  • They have three diesel engines, which are used when there is no electrification.
  • I can see many other destinations, being added to those reached by the Hitachi trains, that will need similar trains.

I suspect a lot of these destinations can be served by five-car Class 800 and Class 802 trains, where a number of the diesel engines are replaced by batteries.

Each operator would add a number of batteries suitable for their routes.

There are around 150 five-car bi-mode Hitachi trains in various fleets in the UK.

LNER’s Nine-Car Class 800 Trains

These are mainly used on routes between London and the North of Scotland.

In LNER Seeks 10 More Bi-Modes, I suggested that to run a zero-carbon service to Inverness and Aberdeen, LNER might acquire rakes of carriages hauled by zero-carbon hydrogen electric locomotives.

  • Hydrogen power would only be used North of the current electrification.
  • Scotland is looking to have plenty of hydrogen in a couple of years.
  • No electrification would be needed to be erected in the Highlands.
  • InterCity 225 trains have shown for forty years, that locomotive-hauled trains can handle Scottish services.
  • I also felt that the trains could be based on a classic-compatible design for High Speed Two.

This order could be ideal for Talgo to build in their new factory at Longannet in Fife.

LNER’s nine-car Class 800 trains could be converted to all-electric Class 801 trains and/or moved to another operator.

There is also the possibility to fit these trains with a number of battery packs to replace some of their five engines.

If the planned twenty percent fuel savings can be obtained, that would be a major improvement on these long routes.

LNER’s Class 801 Trains

These trains are are all-electric, but they do have a diesel engine for emergencies.

Will this be replaced by a battery pack to do the same job?

  • Battery packs are probably cheaper to service.
  • Battery packs don’t need diesel fuel.
  • Battery packs can handle regenerative braking and may save electricity.

The installation surely wouldn’t need too much test running, as a lot of testing will have been done in Class 800 and Class 802 trains.

East Coast Trains’ Class 803 Trains

These trains have a slightly different powertrain to the Class 801 trains. Wikipedia says this about the powertrain.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

The trains are in the process of being built, so I suspect batteries can be easily fitted.

Could it be, that all five-car trains are identical body-shells, already wired to be able to fit any possible form of power? Hitachi have been talking about fitting batteries to their trains since at least April 2019, when I wrote, Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

  • I suspect that Hitachi will use a similar Hyperdrive Innovation design of battery in these trains, as they are proposing for the Intercity Tri-Mode Battery Train.
  • If all trains fitted with diesel engines, use similar MTU units, would it not be sensible to only use one design of battery pack?
  • I suspect, that as the battery on a Class 803 train, will be mainly for emergency use, I wouldn’t be surprised to see that these trains could be the first to run in the UK, with a battery.
  • The trains would also be simpler, as they are only battery-electric and not tri-mode. This would make the software easier to develop and test.

If all trains used the same battery pack design, then all features of the pack, would be available to all trains to which it was fitted.

Avanti West Coast’s Class 805 Trains

In Hitachi Trains For Avanti, which was based on an article with the same time in the January 2020 Edition of Modern Railways, I gave this quote from the magazine article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Note.

  1. Hitachi use diesel engines with different ratings in Class 800 and Class 802 trains, so can probably choose something suitable.
  2. The Class 805 trains are scheduled to be in service by 2022.
  3. As they are five-cars like some Class 800 and Class 802 trains will they have the same basic structure and a powertrain with three diesel engines in cars 2, 3 and 4?

I think shares a basic structure and powertrain will be very likely, as there isn’t enough time to develop a new train.

I can see that as Hitachi and Great Western Railway learn more about the performance of the battery-equipped Class 802 trains on the London and Penzance route, that batteries could be added to Avanti West Coast’s Class 805 trains. After all London Euston and North Wales and London Paddington and Cornwall are routes with similar characteristics.

  • Both routes have a high speed electrified section out of London.
  • They have a long section without electrification.
  • Operating speeds on diesel are both less than 100 mph, with sections where they could be as low as 75 mph.
  • The Cornish route has fifteen stops and the Welsh route has seven, so using batteries in stations will be a welcome innovation for passengers and those living near the railway.

As the order for the Avanti West Coast trains was placed, whilst Hitachi were probably designing their battery electric upgrade to the Class 800 and Class 802 trains, I can see batteries in the Class 805 trains becoming an early reality.

In Hitachi Trains For Avanti, I also said this.

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Note.

  1. The extract says that they are expected savings not an objective for some years in the future.
  2. I have not done any calculations on how it might be achieved, as I have no data on things like engine size and expected battery capacity.
  3. Hitachi are aiming for 20 % fuel and carbon savings on London Paddington and Cornwall services.
  4. Avanti West Coast will probably only be running Class 805 trains to Chester, Shrewsbury and North Wales.
  5. The maximum speed on any of the routes without electrification is only 90 mph. Will less powerful engines be used to cut carbon emissions?

As Chester is 21 miles, Gobowen is 46 miles, Shrewsbury is 29.6 miles and Wrexham General is 33 miles from electrification, could these trains have been designed with two diesel engines and a battery pack, so that they can reach their destinations using a lot less diesel.

I may be wrong, but it looks to me, that to achieve the expected reduction in CO2 emissions, the trains will need some radical improvements over those currently in service.

Avanti West Coast’s Class 807 Trains

In the January 2020 Edition of Modern Railways, is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric Class 807 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

I believe that these trains have been designed to be able to go between London Euston and Liverpool Lime Street stations in under two hours.

I show how in Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Consider.

  • Current London Euston and Liverpool Lime Street timings are two hours and thirteen or fourteen minutes.
  • I believe that the Class 807 trains could perhaps be five minutes under two hours, with a frequency of two trains per hour (tph)
  • I have calculated in the linked post, that only nine trains would be needed.
  • The service could have dedicated platforms at London Euston and Liverpool Lime Street.
  • For comparison, High Speed Two is promising one hour and thirty-four minutes.

This service would be a Marketing Manager’s dream.

I can certainly see why they won’t need any diesel engines or battery packs.

East Midland Railway’s Class 810 Trains

The Class 810 trains are described like this in their Wikipedia entry.

The Class 810 is an evolution of the Class 802s with a revised nose profile and facelifted end headlight clusters, giving the units a slightly different appearance. Additionally, there will be four diesel engines per five-carriage train (versus three on the 800s and 802s), and the carriages will be 2 metres (6.6 ft) shorter.

In addition, the following information has been published about the trains.

  • The trains are expected to be capable of 125 mph on diesel.
  • Is this speed, the reason for the fourth engine?
  • It is planned that the trains will enter service in 2023.

I also suspect, that like the Class 800, Class 802 and Class 805 trains, that diesel engines will be able to be replaced with battery packs.

Significant Dates And A Possible Updating Route For Hitachi Class 80x Trains

I can put together a timeline of when trains are operational.

  • 2021 – Class 803 trains enter service.
  • 2022 – Testing of prototype Intercity Tri-Mode Battery Train
  • 2022 – Class 805 trains enter service.
  • 2022 – Class 807 trains enter service.
  • 2023 – First production Intercity Tri-Mode Battery Train enters service.
  • 2023 – Class 810 trains enter service.

Note.

  1. It would appear to me, that Hitachi are just turning out trains in a well-ordered stream from Newton Aycliffe.
  2. As testing of the prototype Intercity Tri-Mode Battery Train proceeds, Hitachi and the operators will learn how, if batteries can replace some or even all of the diesel engines, the trains will have an improved performance.
  3. From about 2023, Hitachi will be able to design tri-mode trains to fit a customer’s requirements.
  4. Could the powertrain specification of the Class 810 trains change, in view of what is shown by the testing of the prototype Intercity Tri-Mode Battery Train?
  5. In parallel, Hyperdrive Innovation will be building the battery packs needed for the conversion.

Batteries could be fitted to the trains in three ways,

  • They could be incorporated into new trains on the production line.
  • Batteries could be fitted in the depots, during a major service.
  • Trains could be returned to Newton Aycliffe for battery fitment.

Over a period of years as many trains as needed could be fitted with batteries.

Conclusion

I believe there is a plan in there somewhere, which will convert many of Hitachi’s fleets of trains into tri-mode trains with increased performance, greater efficiency and less pollution and carbon emissions.

 

 

January 8, 2021 Posted by | Transport/Travel | , , , , , , , | 3 Comments

Shooter Urges Caution On Hydrogen Hubris

The title of this post is the same as that of an article in the January 2021 Edition of Modern Railways.

This is the first paragraph.

Vivarail Chairman Adrian Shooter has urges caution about the widespread enthusiasm for hydrogen technology. In his keynote speech to the Golden Spanner Awards on 27 November, Mr. Shooter said the process to create ‘green hydrogen’ by electrolysis is ‘a wasteful use of electricity’ and was skeptical about using electricity to create hydrogen to then use a fuel cell to power a train, rather than charging batteries to power a train. ‘What you will discover is that a hydrogen train uses 3.5 times as much electricity because of inefficiencies in the electrolysis process and also in the fuel cells’ said Mr. Shooter. He also noted the energy density of hydrogen at 350 bar is only one-tenth of a similar quantity of diesel fuel, severely limiting the range of a hydrogen-powered train between refuelling.

Mr. Shooter then made the following points.

  • The complexity of delivering hydrogen to the railway depots.
  • The shorter range available from the amount of hydrogen that can be stored on a train compared to the range of a diesel train.
  • He points out limitations with the design of the Alstom Breeze train.

This is the last paragraph.

Whilst this may have seemed like a challenge designed purely to promote the battery alternatives that Vivarail is developing, and which he believes to be more efficient, Mr. Shooter explained: ‘I think that hydrogen fuel cell trains could work in this country, but people just need to remember that there are downsides. I’m sure we’ll see some, and in fact we should because competition improves the breed.’

i think Mr. Shooter may have made several good points.

These are my thoughts.

Creating Green Hydrogen

I haven’t done an analysis of the costs of creating green hydrogen from electrolysis, but I have a feeling, that electrolysis won’t be the only way to create large amounts of carbon-free hydrogen, in a few years.

These methods are currently available or under development or construction.

  • The hydrogen tram-buses in Pau have a personal electrolyser, that provides hydrogen at 350 bar.
  • London’s hydrogen buses will be provided with hydrogen from an electrolyser at Herne Bay by truck. Will the trucks be hydrogen-powered?

Some industrial processes like the Castner-Kellner process create hydrogen as a by-product.

In Shell Process To Make Blue Hydrogen Production Affordable, I describe the Shell Blue Hydrogen Process, which appears to be a way of making massive amounts of carbon-free hydrogen for processes like steel-making and cement production. Surely some could be piped or transported by truck to the rail depot.

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I describe how ITM Power and Ørsted plan to create the hydrogen off shore and bring it by pipeline to the shore.

Note.

  1. The last two methods could offer savings in the cost of production of carbon-free hydrogen.
  2. Surely, the delivery trucks if used, must be hydrogen-powered.
  3. The Shell Blue Hydrogen Process uses natural gas as a feedstock and converts it to hydrogen using a newly-developed catalyst. The carbon-dioxide is captured and used or stored.
  4. If the local gas network has been converted to hydrogen, the hydrogen can be delivered to the depot or filling station through that gas network.

I very much feel that affordable hydrogen can be supplied to bus, train, tram or transport depot. For remote or difficult locations. personal electrolysers, powered by renewable electricity, can be used, as at Pau.

Hydrogen Storage On Trains

Liquid hydrogen could be the answer and Airbus are developing methods of storing large quantities on aircraft.

In What Size Of Hydrogen Tank Will Be Needed On A ZEROe Turbofan?, I calculated how much liquid hydrogen would be needed for this ZEROe Turbofan.

I calculate that to carry the equivalent amount of fuel to an Airbus A320neo would need a liquid hydrogen tank with a near 100 cubic metre capacity. This sized tank would fit in the rear fuselage.

I feel that in a few years, a hydrogen train will be able to carry enough liquid hydrogen in a fuel tank, but the fuel tank will be large.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I calculated how much liquid hydrogen would be needed to provide the same amount of energy as that carried in a full diesel tank on a Class 68 locomotive.

The locomotive would need 19,147 litres or 19.15 cubic metres of liquid hydrogen, which could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.

Hydrogen Locomotives Or Multiple Units?

We have only seen first generation hydrogen trains so far.

This picture shows the Alstom Coradia iLint, which is a conversion of a Coradia Lint.

It is a so-so train and works reasonably well, but the design means there is a lot of transmission noise.

This is a visualisation of an Alstom Breeze or Class 600 train.

Note that the front half of the first car of the train, is taken up with a large hydrogen tank. It will be the same at the other end of the train.

As Mr. Shooter said, Alstom are converting a three-car train into a two-car train. Not all conversions live up to the hype of their proposers.

I would hope that the next generation of a hydrogen train designed from scratch, will be a better design.

I haven’t done any calculations, but I wonder if a lighter weight vehicle may be better.

Hydrogen Locomotives

I do wonder, if hydrogen locomotives are a better bet and easier to design!

  • There is a great need all over the world for zero-carbon locomotives to haul freight trains.
  • Powerful small gas-turbine engines, that can run on liquid hydrogen are becoming available.
  • Rolls-Royce have developed a 2.5 MW gas-turbine generator, that is the size of a beer-keg.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I wondered if the Rolls-Royce generator could power a locomotive, the size of a Class 68 locomotive.

This was my conclusion.

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

In the UK, it might be possible to convert some existing locomotives to zero-carbon, using either liquid hydrogen, biodiesel or aviation biofuel.

Perhaps, hydrogen locomotives could replace Chiltern Railways eight Class 68 locomotives.

  • A refuelling strategy would need to be developed.
  • Emissions and noise, would be reduced in Marylebone and Birmingham Moor Street stations.
  • The rakes of carriages would not need any modifications to use existing stations.

It could be a way to decarbonise Chiltern Railways without full electrification.

It looks to me that a hydrogen-powered locomotive has several advantages over a hydrogen-powered multiple unit.

  • It can carry more fuel.
  • It can be as powerful as required.
  • Locomotives could work in pairs for more power.
  • It is probably easier to accommodate the hydrogen tank.
  • Passenger capacity can be increased, if required by adding more coaches.

It should also be noted that both hydrogen locomotives and multiple units can build heavily on technology being developed for zero-carbon aviation.

The Upward Curve Of Battery Power

Sparking A Revolution is the title an article in Issue 898 of Rail Magazine, which is mainly an interview with  Andrew Barr of Hitachi Rail.

The article contains a box, called Costs And Power, where this is said.

The costs of batteries are expected to halve in the next years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2030 and £47/kWh in 3030.

United Kingdom Research and Innovation (UKRI) are predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1400 Wh/l in 2-35, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg to 12 kW/kg in 2035.

These are impressive improvements that can only increase the performance and reduce the cost of batteries in all applications.

Hitachi’s Regional Battery Train

This infographic gives the specification of Hitachi Regional Battery Train, which they are creating in partnership with Hyperdrive Innovation.

Note that Hitachi are promising a battery life of 8-10 years.

Financing Batteries

This paragraph is from this page on BuyaCar, which is entitled Electric Car Battery Leasing: Should I Lease Or Buy The Batteries?

When you finance or buy a petrol or diesel car it’s pretty simple; the car will be fitted with an engine. However, with some electric cars you have the choice to finance or buy the whole car, or to pay for the car and lease the batteries separately.

I suspect that battery train manufacturers, will offer similar finance models for their products.

This paragraph is from this page on the Hyperdrive Innovation web site.

With a standardised design, our modular product range provides a flexible and scalable battery energy storage solution. Combining a high-performance lithium-ion NMC battery pack with a built in Battery Management System (BMS) our intelligent systems are designed for rapid deployment and volume manufacture, supplying you with class leading energy density and performance.

I can envisage that as a battery train ages, every few years or so, the batteries will get bigger electrically, but still be the same physical size, due to the improvements in battery technology, design and manufacture.

I have been involved in the finance industry both as a part-owner of a small finance company and as a modeller of the dynamics of their lending. It looks to me, that train batteries could be a very suitable asset for financing by a fund. But given the success of energy storage funds like Gore Street and Gresham House, this is not surprising.

I can envisage that battery electric trains will be very operator friendly, as they are likely to get better with age and they will be very finance-friendly.

Charging Battery Trains

I must say something about the charging of battery trains.

Battery trains will need to be charged and various methods are emerging.

Using Existing Electrification

This will probably be one of the most common methods used, as many battery electric services will be run on partly on electrified routes.

Take a typical route for a battery electric train like London Paddington and Oxford.

  • The route is electrified between London Paddington and Didcot Junction.
  • There is no electrification on the 10.4 miles of track between Didcot Junction and Oxford.

If a full battery on the train has sufficient charge to take the train from Didcot Junction to Oxford and back, charging on the main line between London Paddington and Didcot Junction, will be all that will be needed to run the service.

I would expect that in the UK, we’ll be seeing battery trains using both 25 KVAC overhead and 750 VDC third rail electrification.

Short Lengths Of New Strategic Electrification

I think that Great Western Railway would like to run either of Hitachi’s two proposed battery electric trains to Swansea.

As there is 45.7 miles pf track without .electrification, some form of charging in Swansea station, will probably be necessary.

The easiest way would probably be to electrify Swansea station and perhaps for a short distance to the North.

This Google Map shows Swansea station and the railway leading North.

Note.

  1. There is a Hitachi Rail Depot at the Northern edge of the map.
  2. Swansea station is in South-West corner of the map.
  3. Swansea station has four platforms.

Swansea station would probably make an excellent battery train hub, as trains typically spend enough time in the station to fully charge the batteries before continuing.

There are other tracks and stations of the UK, that I would electrify to enable the running of battery electric trains.

  • Leeds and York, which would enable carbon-free London and Edinburgh services via Leeds and help TransPennine services. This is partially underway.
  • Leicester and East Midlands Parkway and Clay Cross North Junction and Sheffield – These two sections would enable EMR InterCity services to go battery electric.
  • Sheffield and Leeds via Meadowhall, Barnsley Dearne Valley and the Wakefield Line, which would enable four trains per hour (tph) between Sheffield and Leeds and an extension of EMR InterCity services to Leeds.
  • Hull and Brough, would enable battery electric services to Hull and Beverley.
  • Scarborough and Seamer, would enable electric services services to Scarborough and between Hull and Scarborough.
  • Middlesbrough and Redcar, would enable electric services services to Teesside.
  • Crewe and Chester and around Llandudno Junction station – These two sections would enable Avanti West Coast service to Holyhead to go battery electric.
  • Shrewsbury station – This could become a battery train hub, as I talked about for Swansea.
  • Taunton and Exeter and around Penzance, Plymouth and Westbury stations – These three sections would enable Great Western Railway to cut a substantial amount of carbon emissions.
  • Exeter, Yeovil Junction and Salisbury stations. – Electrifying these three stations would enable South Western Railway to run between London and Exeter using Hitachi Regional Battery Trains, as I wrote in Bi-Modes Offered To Solve Waterloo-Exeter Constraints.

We will also need fast chargers for intermediate stations, so that a train can charge the batteries on a long route.

I know of two fast chargers under development.

I believe it should be possible to battery-electrify a route by doing the following.

  • Add short lengths of electrification and fast charging systems as required.
  • Improve the track, so that trains can use their full performance.
  • Add ERTMS signalling.
  • Add some suitable trains.

Note.

  1. I feel ERTMS  signalling with a degree of automatic train control could be used with automatic charging systems, to make station stops more efficient.
  2. In my view, there is no point in installing better modern trains, unless the track is up to their performance.

January 4, 2021 Posted by | Energy, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Limach And Hyperdrive Partner On Electric Machines

The title of this post, is the same as that as of this article on International Rental News.

This second deal from Hyperdrive Innovation is with Dutch excavator manufacturer Limach.

This paragraph from the article is important.

The construction industry is responsible for 40% of European carbon emissions, making it an urgent priority for decarbonisation to meet net zero targets.

That is a lot of carbon.

December 12, 2020 Posted by | Business, Energy Storage | , , , | 2 Comments

Multi-Million-Pound Battery Partnership Announced

The title of this post, is the same as that as of this article on Eureka magazine.

This is the introductory paragraph.

Hyperdrive Innovation, the UK’s leading designer and manufacturer of lithium-ion battery technology, today announces a new multi-million-pound 4-year supply agreement with Moffett, part of Hiab and world leading forklift truck manufacturer, to supply state-of-the-art battery packs for zero-emission machinery.

This seems to be a big deal for the Sunderland-based manufacturer, who are also working with Hitachi to provide battery packs for Hitachi’s Regional Battery Train.

Hyperdrive Innovation certainly must be developing some of the best battery technology available.

December 12, 2020 Posted by | Business, Energy Storage, Transport/Travel | , , , | Leave a comment