The Anonymous Widower

Scunthorpe Steelworks

On my way back from Cleethorpes, I passed Scunthorpe Steelworks.

It did seem rather quiet, although I did pass a train-load of new rails on their way to somewhere.

The Future Of Steel-Making

Steel-Making is on its uppers in the UK and it has a bad carbon footprint.

However, various processes are in development that could make the industry fit for the Twenty-First Century.

HIsarna Steelmaking

In Whitehaven Deep Coal Mine Plan Moves Step Closer, I said this.

In Wikipedia, there is an entry for the HIsarna ironmaking process.

This process is being developed by the Ultra-Low Carbon Dioxide Steelmaking (ULCOS) consortium, which includes Tata Steel and the Rio Tinto Group. Reduction in carbon-dioxide produced by the process compared to traditional steel-making are claimed to be as high as fifty percent.

This figure does not include carbon-capture to reduce the carbon-dioxide still further.

However, looking at descriptions of the process, I feel that applying carbon-capture to the HIsarna steelmaking process might be a lot easier, than with traditional steelmaking.

As Scunthorpe is close to Theddlethorpe Gas Terminal, the captured carbon-dioxide could probably be stored in wells connected to the terminal.

Hydrogen Steelmaking

North-East Lincolnshire is becoming the new Aberdeen, but instead of being based solely on oil and gas, there is a large proportion of wind energy being reaped.

In the future, I believe that a lot of this wind energy will be turned into hydrogen gas both onshore and increasing off-shore scores of miles out in the North Sea. There is talk of upwards of 70 GW of wind turbines being installed and much of it will be turned into hydrogen in North-East Lincolnshire.

In Funding Award to Supply An 8MW Electrolyser, I wrote about hydrogen steelmaking and the HYBRIT process in particular.

Will some of this massive amount of hydrogen be piped to Scunthorpe to make steel?

Conclusion

The future of steelmaking in Scunthorpe, doesn’t have to be all doom and gloom.

September 20, 2020 Posted by | Energy, Hydrogen, World | , , , , | Leave a comment

Sweden’s HYBRIT Starts Operations At Pilot Plant For Fossil-Free Steel

The title of this post, is the same as that of this article on Reuters UK.

These are the first paragraph.

Swedish green steel venture HYBRIT, owned by SSAB, state-owned utility Vattenfall [VATN.UL] and miner LKAB, on Monday started test operations at its pilot plant for fossil-free steel in Lulea, Sweden.

The HYBRIT web site outlines the process on its home page.

In 2016, SSAB, LKAB and Vattenfall joined forces to create HYBRIT – an initiative that endeavors to revolutionize steel-making. HYBRIT aims to replace coking coal, traditionally needed for ore-based steel making, with hydrogen. The result will be the world’s first fossil-free steel-making technology, with virtually no carbon footprint.

During 2018, work started on the construction of a pilot plant for fossil-free steel production in Luleå, Sweden. The goal is to have a solution for fossil-free steel by 2035. If successful, HYBRIT means that together we can reduce Sweden’s CO2 emissions by 10% and Finland’s by 7%.

This could be a very significant development.

August 31, 2020 Posted by | Hydrogen | , , | Leave a comment

Funding Award to Supply An 8MW Electrolyser

The title of this post, is the same as that of this Press Release from ITM Power.

This is the main body of the Press Release.

ITM Power, the energy storage and clean fuel company, is pleased to announce it has signed an agreement to supply an 8MW electrolyser in the UK.  The agreement, including associated project costs, has a total value of £10m and funding will fall across FY2021 and FY2022.  Further details will be announced in due course.

I bet they’re pleased!

To get a hold on what 8 MW looks like, these Class 90 locomotive each have a power output of just under 4 MW and are capable of hauling an eight-coach express train at 110 mph.

Working at full rate, the electrolyser will be able in a year to convert 70 GWh of electricity into hydrogen.

Why Would You Want An 8MW Electrolyser?

These are a few ideas.

Green Hydrogen For Humberside

This is a project described in this ITM Power Press Release.

This is the first three paragraphs.

ITM Power, the energy storage and clean fuel company, is pleased to announce that it has won, with partner Element Energy, a first stage deployment project in the UK Government’s Industrial Strategy Challenge Fund competition “Decarbonisation of Industrial Clusters” to assess the feasibility and scope of deploying green hydrogen with some major industrial partners in Humberside.

“Green Hydrogen for Humberside” will lead to the production of renewable hydrogen at the Gigawatt (GW) scale distributed to a mix of industrial energy users in Immingham, Humberside. Decarbonisation of this cluster is critical in reaching the UK’s legally binding 2050 net zero emission targets. Humberside, the UK’s largest cluster by industrial emissions, (12.4Mt of CO2 per year), contributes £18bn to the national economy each year and has access to a large renewable resource from offshore wind in the North Sea.

The project will work with customers in the region to establish the feasibility of switching to renewable hydrogen and justify a number of 100MW deployments of electrolysers. The project will cost the supply of hydrogen to these end users. This includes the electricity supply to the electrolyser, the hydrogen production facility, hydrogen distribution across the Humber and conversion of existing processes to use renewable hydrogen.

The study talks about a number of 100 MW deployments of electrolysers.

Will the 8MW electrolyser be a demonstrator for this project?

To Convert Surplus Renewable Energy Into Hydrogen Which Is Injected Into The Gas Grid

The Wikipedia entry for ITM Power has a section entitled Energy Storage Power To Gas. This is the first paragraph.

Power-to-Gas is a methodology of introducing such hydrogen to the natural gas network, essentially converting renewable electrical power to a clean gas that can be more conveniently stored using existing assets. There are two main Power-to-Gas mechanisms. The first involves metering pressurised hydrogen into the gas network directly. The second involves combining hydrogen with carbon dioxide via a methanation process to produce synthetic natural gas prior to introduction to the grid.

The electrolyser could be used to convert a lot of electricity into zero-carbon hydrogen for use in the UK gas network.

Improving The Resilience Of The UK Gas Network

This article on the BBC is entitled Major Power Failure Affects Homes And Transport and it describes a major power failure, when two generators failed in August 2019.

Could the 8MW electrolyser be part of the solution to make the UK power network more robust, if parts of the network fail?

To Create Feedstock For An Oil Refinery Or Petro-Chemical Plant

Hydrogen can be used as a feedstock for an oil refinery or petro-chemical plant.

This ITM Power Press Release, describes such a project, where wind power from the North Sea is used to create hydrogen for Phillips 66 Limited’s Humber Refinery.

As Part Of An Experimental Steel-Making Plant

This is pure speculation on my part, but steel-making creates lot of carbon-dioxide.

I do believe that using hydrogen to make steel is possible and ITM Power are based in the steel-city of Sheffield.

On the other hand look at the HYBRIT web site.

This is the introductory paragraph.

In 2016, SSAB, LKAB and Vattenfall joined forces to create HYBRIT – an initiative that endeavors to revolutionize steel-making. HYBRIT aims to replace coking coal, traditionally needed for ore-based steel making, with hydrogen. The result will be the world’s first fossil-free steel-making technology, with virtually no carbon footprint.

During 2018, work started on the construction of a pilot plant for fossil-free steel production in Luleå, Sweden. The goal is to have a solution for fossil-free steel by 2035. If successful, HYBRIT means that together we can reduce Sweden’s CO2 emissions by 10% and Finland’s by 7%.

This page on their web site is entitled Steel Making Today And Tomorrow. This image compares traditional blast furnace steelmaking with HYBRIT.

Note that at the heart of the process is the production of hydrogen from renewable electricity. This process will need a large electrolyser.

 

Could someone be doing something similar in Sheffield or more likely, Scunthorpe?

  • British Steel may be owned by the Chinese, but it has a record of innovation.
  • We will need a lot of long steel products, like railway rails and girders, in which British Steel specialise.
  • In a few years, Humberside will have enough renewable electricity from North Sea wind to create an electro-magnetic gun to fire space capsules at Mars.

I will be watching out for hydrogen steelmaking.

Is Jim Ratcliffe Up To Something?

Jim Ratcliffe is a very rich man and the chairman and CEO  of INEOS, which has a turnover of $83billion.

Consider.

  • INEOS must know about hydrogen.
  • I read some years ago, how they were using waste hydrogen to generate electricity on Teesside.
  • I have a feeling that they have backed a hydrogen fuel-cell company.
  • They own the hydrogen factory in Runcorn, where I worked in 1970.
  • They have extensive interests in the North West, North East and Scotland.
  • The company probably has an enormous carbon-footprint, that they’d probably like to reduce, by perhaps using hydrogen instead of natural gas as a feedstock for some processes, like production of ammonia.

But above all the cost of an 8MW electrolyser would be small change and probably cost a lot less, than running the cycling team.

The Fallback

It could of course be used to produce a large amount of hydrogen to power buses, cars and trains.

May 3, 2020 Posted by | Uncategorized, World | , , , , , , , , , , , | 3 Comments