The Anonymous Widower

Energy In North-East Lincolnshire

A few weeks ago, I took a train from Doncaster to Cleethorpes and back.

The area is all about energy.

Keadby Power Station

Keadby power station is a 734 MW gas-fired power-station.

Keadby 2 Power Station

Keadby 2 is described on this page of the sseThermal web site.

These are the three opening paragraphs.

Keadby 2 is a new 840MW gas-fired power station in North Lincolnshire currently being constructed by our EPC contractor Siemens Energy. The project is adjacent to our operational Keadby 1 Power Station.

SSE Thermal has partnered with Siemens Energy to introduce first-of-a-kind, high-efficiency gas-fired generation technology to the UK. When completed, Keadby 2 is expected to become the cleanest and most-efficient gas-fired power station in Europe.

The station will also be capable of being upgraded to further decarbonise its generation through carbon capture or hydrogen technology, as routes to market develop.

Krsdby 2 is the under-construction power station in my pictures.

Keadby 3 Power Station

Keadby 3 is described on this page of the sseThermal web site.

These are the two opening paragraphs.

SSE Thermal is developing the option for a low-carbon combined cycle gas turbine (CCGT) at our Keadby site in North Lincolnshire, which will be known as Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

Keadby 3 is still in the consultation and planning stage.

This newsletter on the sseThermal web site, gives some useful information about Keadby 3.

These are the first three paragraphs.

We are proposing to build a new gas fired power station at Keadby, North Lincolnshire. The project, known as Keadby 3, will have a generating capacity of up to 910 megawatts (MW) and will provide the essential back up to renewable generation and reliable and flexible energy during the country’s transition to Net Zero.

Keadby 3 will be a highly efficient gas fired power station. It will either use natural gas as the fuel and be fitted with a Carbon Capture Plant (CCP) to remove carbon dioxide (CO2) from the emissions to air from the plant, or it will be fired on primarily hydrogen, with no carbon dioxide emissions to air from its operation. Both options are currently being considered, and government is also currently considering the roles of carbon capture and hydrogen in the power sector nationally.

Keadby 3 will require connections for natural gas and possibly hydrogen fuel, water for use in the process
and for cooling and possibly for a pipeline to export the captured CO2 into a gathering network being provided by others and from there to a permanent geological storage site. An electricity connection to export the generated electricity to the UK transmission system will also be required. The plant would be capable of operating as a dispatchable low-carbon generating station to complement the increasing role of renewables in supplying the UK with electricity

Note.

  1. The three Keadby gas-fired power stations can generate 2484 MW of electricity in total.
  2. By comparison, the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.
  3. The addition of a Keadby 4 power station, if it were the same size as Keadby 3, would mean the Keadby cluster of gas-fired power stations had a capacity of 3394 MW and they would be larger than the big nuclear station.

In terms of power output, it is an interesting alternative to a larger nuclear power station.

What About The Carbon?

If you’re burning natural gas, you will produce some carbon dioxide.

Power generation from natural gas creates 0.2 Kg of CO2 per kWh according to this web page.

So a 3000 MW station that produces 3000 MW, will produce 3000 MWh or 3000000 kWh in an hour.

This will create 600,000 Kg or 600 tonnes of carbon dioxide in an hour.

As there are roughly 9000 hours in a year, that is roughly 5.4 million tonnes of carbon dioxide.

This newsletter on the sseThermal web site, gives some information about sseThermal are going to do with the carbon dioxide.

As a low-carbon CCGT, Keadby 3 comprises one high efficiency gas turbine and associated steam turbine and either the infrastructure required to allow the CCGT to fire primarily on hydrogen gas, r inclusionof a post combustion Carbon Capture Plant (CCP) in a scenario where natural gas is used as the fuel. In the latter scenario, this is required in order that CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

A diagram of these components, and optional components, is shown below.

Note.

  1. Click on the image to get a larger view.
  2. The CCGT Power Plant is on the left.
  3. Most of the power is generated by the gas-turbine.
  4. Heat is recovered to create steam, which drives a turbine to create more electricity
  5. The Carbon Capture Plant is on the right.
  6. Carbon dioxide is extracted from the exhaust.

There are two outputs from the plant; electricity and carbon dioxide.

As the carbon dioxide is in a pipe from the drying and compression unit, it is easy to handle.

The newsletter says this about what will happen to the carbon dioxide.

CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

As there are several worked out gas fields in the area, there are places to store the carbon dioxide.

Storing The Carbon Dioxide

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to gas fields in the North Sea and also imports natural gas from Norway using the Langeled pipeline.
  5. There are fourteen gas feels connected to Easington terminal. Some have been converted to gas storage.

I can see this network being extended.

Using The Carbon Dioxide

But I would prefer , that the carbon dioxide were to be put to use. Under Carbon Capture and Utilisation on Wikipedia, a variety of uses are shown.

Surprisingly, they don’t talk about using the carbon dioxide to promote the growing of crops in green houses.

I do think, though, that some clever chemists will find ways to convert the carbon into some form of advanced engineering plastics to replace steel.

Hydrogen-Fuelled Power Stations

Note how on the map the hydrogen pipeline goes through the Keadby cluster of power stations.

  • Hydrogen is a zero-carbon fuel.
  • It will be produced offshore by wind turbines connected to electrolysers.
  • The hydrogen will be brought ashore using the existing gas pipeline network.
  • Excess hydrogen could be stored in the worked out gas fields.

I suspect there will be a massive increase in the number of wind turbines in the North Sea to the East of Hull.

Hydrogen Steelmaking

In ten years time, this will surely be the way steel will be made. British Steel at Scunthorpe would surely be an ideal site.

It would also be an ideal site for the HIsarna steelmaking process, which generates much less carbon dioxide and because it is a continuous process, what carbon dioxide is generated is easily captured.

Conclusion

Installations like this will mean that large nuclear power stations built with Chinese money are not needed.

 

October 20, 2020 Posted by | Energy, Hydrogen | , , , , , | 2 Comments

Funding Award to Supply An 8MW Electrolyser

The title of this post, is the same as that of this Press Release from ITM Power.

This is the main body of the Press Release.

ITM Power, the energy storage and clean fuel company, is pleased to announce it has signed an agreement to supply an 8MW electrolyser in the UK.  The agreement, including associated project costs, has a total value of £10m and funding will fall across FY2021 and FY2022.  Further details will be announced in due course.

I bet they’re pleased!

To get a hold on what 8 MW looks like, these Class 90 locomotive each have a power output of just under 4 MW and are capable of hauling an eight-coach express train at 110 mph.

Working at full rate, the electrolyser will be able in a year to convert 70 GWh of electricity into hydrogen.

Why Would You Want An 8MW Electrolyser?

These are a few ideas.

Green Hydrogen For Humberside

This is a project described in this ITM Power Press Release.

This is the first three paragraphs.

ITM Power, the energy storage and clean fuel company, is pleased to announce that it has won, with partner Element Energy, a first stage deployment project in the UK Government’s Industrial Strategy Challenge Fund competition “Decarbonisation of Industrial Clusters” to assess the feasibility and scope of deploying green hydrogen with some major industrial partners in Humberside.

“Green Hydrogen for Humberside” will lead to the production of renewable hydrogen at the Gigawatt (GW) scale distributed to a mix of industrial energy users in Immingham, Humberside. Decarbonisation of this cluster is critical in reaching the UK’s legally binding 2050 net zero emission targets. Humberside, the UK’s largest cluster by industrial emissions, (12.4Mt of CO2 per year), contributes £18bn to the national economy each year and has access to a large renewable resource from offshore wind in the North Sea.

The project will work with customers in the region to establish the feasibility of switching to renewable hydrogen and justify a number of 100MW deployments of electrolysers. The project will cost the supply of hydrogen to these end users. This includes the electricity supply to the electrolyser, the hydrogen production facility, hydrogen distribution across the Humber and conversion of existing processes to use renewable hydrogen.

The study talks about a number of 100 MW deployments of electrolysers.

Will the 8MW electrolyser be a demonstrator for this project?

To Convert Surplus Renewable Energy Into Hydrogen Which Is Injected Into The Gas Grid

The Wikipedia entry for ITM Power has a section entitled Energy Storage Power To Gas. This is the first paragraph.

Power-to-Gas is a methodology of introducing such hydrogen to the natural gas network, essentially converting renewable electrical power to a clean gas that can be more conveniently stored using existing assets. There are two main Power-to-Gas mechanisms. The first involves metering pressurised hydrogen into the gas network directly. The second involves combining hydrogen with carbon dioxide via a methanation process to produce synthetic natural gas prior to introduction to the grid.

The electrolyser could be used to convert a lot of electricity into zero-carbon hydrogen for use in the UK gas network.

Improving The Resilience Of The UK Gas Network

This article on the BBC is entitled Major Power Failure Affects Homes And Transport and it describes a major power failure, when two generators failed in August 2019.

Could the 8MW electrolyser be part of the solution to make the UK power network more robust, if parts of the network fail?

To Create Feedstock For An Oil Refinery Or Petro-Chemical Plant

Hydrogen can be used as a feedstock for an oil refinery or petro-chemical plant.

This ITM Power Press Release, describes such a project, where wind power from the North Sea is used to create hydrogen for Phillips 66 Limited’s Humber Refinery.

As Part Of An Experimental Steel-Making Plant

This is pure speculation on my part, but steel-making creates lot of carbon-dioxide.

I do believe that using hydrogen to make steel is possible and ITM Power are based in the steel-city of Sheffield.

On the other hand look at the HYBRIT web site.

This is the introductory paragraph.

In 2016, SSAB, LKAB and Vattenfall joined forces to create HYBRIT – an initiative that endeavors to revolutionize steel-making. HYBRIT aims to replace coking coal, traditionally needed for ore-based steel making, with hydrogen. The result will be the world’s first fossil-free steel-making technology, with virtually no carbon footprint.

During 2018, work started on the construction of a pilot plant for fossil-free steel production in Luleå, Sweden. The goal is to have a solution for fossil-free steel by 2035. If successful, HYBRIT means that together we can reduce Sweden’s CO2 emissions by 10% and Finland’s by 7%.

This page on their web site is entitled Steel Making Today And Tomorrow. This image compares traditional blast furnace steelmaking with HYBRIT.

Note that at the heart of the process is the production of hydrogen from renewable electricity. This process will need a large electrolyser.

 

Could someone be doing something similar in Sheffield or more likely, Scunthorpe?

  • British Steel may be owned by the Chinese, but it has a record of innovation.
  • We will need a lot of long steel products, like railway rails and girders, in which British Steel specialise.
  • In a few years, Humberside will have enough renewable electricity from North Sea wind to create an electro-magnetic gun to fire space capsules at Mars.

I will be watching out for hydrogen steelmaking.

Is Jim Ratcliffe Up To Something?

Jim Ratcliffe is a very rich man and the chairman and CEO  of INEOS, which has a turnover of $83billion.

Consider.

  • INEOS must know about hydrogen.
  • I read some years ago, how they were using waste hydrogen to generate electricity on Teesside.
  • I have a feeling that they have backed a hydrogen fuel-cell company.
  • They own the hydrogen factory in Runcorn, where I worked in 1970.
  • They have extensive interests in the North West, North East and Scotland.
  • The company probably has an enormous carbon-footprint, that they’d probably like to reduce, by perhaps using hydrogen instead of natural gas as a feedstock for some processes, like production of ammonia.

But above all the cost of an 8MW electrolyser would be small change and probably cost a lot less, than running the cycling team.

The Fallback

It could of course be used to produce a large amount of hydrogen to power buses, cars and trains.

May 3, 2020 Posted by | Uncategorized, World | , , , , , , , , , , , | 3 Comments