The Anonymous Widower

South Korea Is On The Hunt For An Overseas Hydrogen Production Location

The title of this post, is the same as that of this article on Hydrogen Fuel News.

It is an interesting article, which talks about how both South Korea and Japan are looking to source hydrogen from another country and how Australia is in prime position.

This Wikipedia entry, which is entitled Energy In South Korea, has this breakdown of electricity production in South Korea.

  • Thermal – 65.3%
  • Nuclear – 31.1%
  • Hydro – 1.6%
  • Other – 2%

Note that at the time of writing the UK is producing 39.0% of electricity from renewables and 15.9% from low-carbon sources.

Consider.

  • As South Korea imports a lot of liquified natural gas and has no oil or gas resources of its own, importing hydrogen is just replacing a carbon-dioxide producing fuel with a zero-carbon one, that is produced from renewables.
  • Other than Australia, other possible sources of hydrogen mentioned include Saudi Arabia and the United States, but is their hydrogen produced from renewables or steam-reforming of methane?
  • I suspect another could be South Africa, as they can develop a lot of wind power around the Cape.

I think we’ll see more countries going down the same route as Japan and South Korea and importing large quantities of hydrogen.

  • Countries with lots of renewables like geothermal, hydro, solar and wind will benefit.
  • Countries with plenty of gas can use steam-reforming to create hydrogen.

But surely, the biggest beneficiaries will be world-class companies, like ITM Power in Rotherham, who build electrolysers.

 

June 25, 2020 Posted by | World | , , , | Leave a comment

Hydrogen To Become A Source Of Cleaner Power On A Massive Scale

The title of this post, is the same as that of this article on Power Technology.

This is the introductory paragraph.

Hydrogen is light, storable, energy-heavy and does not produce direct carbon emissions or greenhouse gases (GHG). Sectors such as soil refining, ammonia production, methanol production and steel production use hydrogen extensively. Hydrogen will likely play a crucial role in clean energy transition with an increase in its use in sectors such as transportation, buildings and power generation. Interest in the use of hydrogen technology is increasing in a range of niche transport market segments, besides other applications. In the short to medium term, hydrogen technology could be used to replace compressed natural gas (CNG) in some areas with minor changes to the existing infrastructure.

The article is very much a must-read.

June 24, 2020 Posted by | World | , , , | Leave a comment

Steam, But Not As You Know It…

The title of this post, is the same as that of a sub-section of this news article on the IMechE web site.

This is the introductory paragraph.

Burning vast amounts of coal, wood or oil, traditional steam locomotives are hardly environmentally friendly. Steamology Motion hopes to give steam a modern makeover with its W2W Zero Emissions Power System, a range extender for Vivarail Class 320 rolling stock.

This paragraph gives an outline of the technology.

Few details are available, but the project aims to boost air quality at stations and reduce noise and pollution. W2W stands for water-to-water, and the system has a compact energy dense steam generator at its heart. “Steam is generated using energy stored as compressed hydrogen and oxygen gas in tanks,” the project summary says. “High pressure, superheated steam is used to drive a turbine to do useful work by generating electricity.”

There is only a fine line between madness and genius.

 

June 17, 2020 Posted by | Transport | , , , , , | 5 Comments

After Coronavirus, What’s Next? China: More Coal, US: More Oil, EU: More Renewables

The title of this post, is the same as that of this article on CleanTechnica.

The title says it all, but read the article to get the detail.

June 2, 2020 Posted by | Health, World | , , , , , , , , , , | 3 Comments

Hydrogen Pilot Projects Could Eventually Boost Nuclear Plants’ Bottom Lines

The title of this post, is the same as that of this article on Energy News Network.

The article discusses in depth. how producing hydrogen can help to improve the economics of nuclear power plants in the Mid-West, with particular reference to a plant called Davis-Besse at Oak Harbor, Ohio.

June 2, 2020 Posted by | World | , , , | Leave a comment

Joint Venture With Linde AG And £38M Strategic Investment

The title of this post, is the same as that as this Press Release from ITM Power.

This is the first paragraph.

ITM Power plc  is pleased to announce its intention to raise at least £52.0 million (before expenses) through (i) a strategic investment of £38.0 million at 40 pence per share by Linde UK Holdings No. 2 Limited, a member of the Linde AG group (Linde) (the Share Subscription); and (ii) a conditional placing of £14.0 million at 40 pence per share (the Firm Placed Shares) with certain existing and new institutional investors (the Firm Placing).   The Group has also entered into a 50/50 joint venture with Linde (the Joint Venture) which will focus on delivering green hydrogen to large scale industrial projects, principally those with an installed electrolyser capacity of 10 Megawatts (“MW”) and above.

There is all the usual financial stuff and these sentences.

The net proceeds of the fundraising will be used principally to enhance the manufacturing capabilities of the Group, particularly for the development and production of large scale 5MW electrolysers, to facilitate product standardisation and manufacturing cost reduction.

The Joint Venture will focus on delivering green hydrogen to large scale industrial projects (generally being opportunities with installed electrolyser capacities of 10 Megawatts and above)

As ITM Power are constructing the largest electrolyser factory in the world, at Bessemer park in Sheffield, it appears to me that ITM Power are going for the larger scale hydrogen market.

Recently, I wrote these three posts.

News stories generated about the company or the production of hydrogen seem to require large electrolysers in excess of 5 MW.

It looks like ITM Power are setting themselves up to tap this market substantially.

How Much Hydrogen Would A 5 MW Electrolyser Create In A Day?

I found the key to the answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

I will use that figure in the calculation.

  • A 5MW electrolyser will consume 120 MWh in twenty-four hours.
  • This amount of electricity will produce 2,182 Kg or 2.182 tonnes of hydrogen.
  • It will also consume 19.64 tonnes of water.

In Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses, I described how Jo Bamford and his company; Ryse Hydrogen, have applied for planning permission to build the UK’s largest electrolyser at Herne Bay in Kent.

  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.

So could the electrolyser be a 25 MW unit built of five 5 MW modular electrolysers?

Linde and their UK subsidiary; BOC, must have a lot of knowledge in transporting tonnes of hydrogen by road. I can remember seeing BOC’s trucks behind ICI’s Castner-Kellner works in the 1970s, where they collected hydrogen to see to other companies.

 

May 29, 2020 Posted by | Transport, World | , , , , , , , | 2 Comments

Hydrogen Powered Tractors Could Be The Green Answer In That Industry

The title of this post, is the same as that of this article on Hydrogen Fuel News.

I agree with the title and the article is worth a read.

For some time, I’ve felt that hydrogen would be ideal to power a tractor and other agricultural machinery.

  • Now that companies like ITM Power have developed efficient electrolysers, the accessibility of the fuel is a lot easier.
  • Many farmers would have their own electrolyser.
  • Diesel is always getting nicked, but stealing hydrogen would probably be more difficult.
  • Hydrogen could also power the farmer’s cars.

Energy use on the farm could be very different.

May 21, 2020 Posted by | Transport, World | , | 2 Comments

Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses

The title of this post, is the same as that as this article in The Times.

This is the introductory paragraph.

Surplus power from wind farms will be used to run a network of giant electrolysers to make hydrogen for vehicles, under plans drawn up by a green energy company.

The following are points from the article.

  • The electrolysers will be installed by Ryse.
  • Ryse have submitted plans to build the UK’s largest electrolyser at Herne Bay in Kent.
  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.
  • More electrolysers could be built in Aberdeen, Northern Ireland, Runcorn, South Wales and other places.
  • It looks like the electrolysers will be built by ITM Power in the world’s largest electrolyser factory in Rotherham.
  • Keele University is replacing 20% of the natural gas in its gas network with hydrogen to heat buildings. I wrote about this in HyDeploy.

Note.

  1. The owner of Ryse is Jo Bamford, who also owns Wrightbus. I wrote about his plans in JCB Heir And Wrightbus Owner Jo Bamford: ‘We Can Sell Our Hydrogen Bus Around The World’.
  2. Jo Bamford also has a plan for Ireland, which I wrote about in Wrightbus Boss Eyes All-Island Green Transport Plan. He could build the Northern Ireland electrolyser conveniently for the border.
  3. Jo Bamford is the son of Lord Bamford; the chairman of JCB.
  4. According to Wikipedia, JCB made a £4.9m strategic investment in ITM Power in 2015. The early bird catches the worm?
  5. ITM Power recently had an order for an 8MW electrolyser, which I wrote about in Funding Award to Supply An 8MW Electrolyser.

It all seems to fit together like a large zero-carbon jigsaw.

I do have some questions.

How Much Electricity Is Needed To Produce Ten Tonnes Of Hydrogen?

I found an answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

Scaling up means that to produce ten tonnes of hydrogen will require 550 MWh and ninety tonnes of water. For comparison an Olympic swimming pool holds 2,500 tonnes of water, based on the fact that a cubic metre of water weighs a tonne and contains a thousand litres.

Is It Safe To Move Hydrogen In Trucks Around The UK?

I used to work as an instrument engineer in ICI’s hydrogen factory at Runcorn around 1970.

That plant electrolysed brine using the Castner-Kellner process to produce sodium hydroxide, chlorine and hydrogen. The first two products were used as feedstock to make various chemical products and the hydrogen was taken away by Air Products and BOC, in specially-designed trucks.

It can be said, that we have been moving hydrogen safely on the roads of the UK for at least fifty years and probably longer.

As an aside, I think, ICI found the hydrogen a bit of a problem, as in those days it didn’t have that many uses.

Are Ryse Building A Network Of Electrolysers To Serve The Whole Of The UK?

The five electrolysers named in The Times article, are in Ireland, North-West England, Scotland, South-East England and South Wales.

  • All electrolysers would be sited near to large offshore wind farms, except for Northern Ireland, where the wind power is onshore.
  • All areas of the British Isles would be close to an electrolyser for hydrogen delivery, except the South West and the North East of England and the Midlands.
  • The Midlands is to be served by a planned ITM Power electrolyser at Tyldesley.
  • The North East of England has a hydrogen supply from INEOS on Teesside.
  • The South West of England could probably support another electrolyser. But there is not the same amount of nearby wind power.

Ryse with a little help from their friends, could make sure that every bus depot in the UK has a reliable source of green hydrogen.

The Electrolyser At Herne Bay

This Google Map shows the Herne Bay and the surrounding area on the North Kent coast.

What is not shown is all the wind farms to the North of the town in the Thames Estuary. These include.

That is a total of 1241 MW, so working for twenty-four hours with a capacity factor of 30% would create almost 9 GWh of electricity.

  • A small fraction of this 9 GWh of renewable electricity would provide enough to run the electrolyser at full power.
  • The smallest wind farm; Kentish Flats will produce 139 x 24 x 0.3 = 1000 MWh on an average day.
  • Just 23 MWh of electricity per hour is needed to create the ten tonnes of hydrogen.

Where are these wind farms connected to the National Grid?

  • If just one connection is close to Herne Bay, then co-location must be desirable.
  • If there is no connection, only 23 MW would be needed from the National Grid.

Reading the Wikipedia entry for Herne Bay, it appears to be an improving town.

  • It has both a fast rail and a High Speed One connection to and from London.
  • There is a dual-carriageway road connection to the motorway network.
  • The town would probably welcome the jobs, that the development would create.

Herne Bay seems to be a good place to build the first electrolyser.

The Electrolyser At Aberdeen

I don’t know the Aberdeen area well, although the oil industry in the area has been good for my financial well-being.

There must be a good reason for building an electrolyser in the area.

  • Aberdeen have experience of hydrogen buses.
  • There are some large wind farms; both onshore and offshore close by.
  • Is there a convenient site, that once had a coal-fired power station, but still has good electrical connections?

According to the Wikipedia entry for Wind Power In Scotland, the country had 8423 MW of installed wind power in December 2018 and has the aim of using only renewable energy by 2020.

Searching the Internet, I found the Peterhead power station.

The power station is gas-fired.

The power station has changed technology over the years.

There was a plan to fuel the power station with hydrogen produced from methane, where the carbon dioxide would have been captured and stored in the Miller field.

This Google Map shows the power station, to the South of Peterhead.

Note, that the power station is close to the A90 road, which forms the Aberdeen Western Peripheral Route, that goes past Aberdeen to the South of Scotland.

Could this power station be the site of the Aberdeen electrolyser?

  • It looks to have good road connections.
  • It obviously has good electrical connections.
  • Peterhead would probably welcome the employment.

As you can see from the map, the power station is owned by SSE plc, who generate about a third  of their energy from renewables.

And then there is Hywind Scotland, which is the world’s first commercial floating wind farm.

  • This is a 30 MW wind farm.
  • It comprises five 6MW floating wind turbines.
  • It is situated eighteen miles off Peterhead.
  • In the first two years of operation it had a capacity factor of 50 %, according to Wikipedia.

On an average day, Hywind Scotland will generate 360 MWh. This is 65 % of the 550 MWh of energy needed to produce ten tonnes of hydrogen.

Are there undisclosed plans to create a fleet of floating wind turbines, out to sea from Peterhead, which would be ideal for both Scotland’s electricity and hydrogen supplies?

It should also be noted, that in the UK and I suspect other developed countries, if someone needs a large amount of electricity for a commercial purpose, like an aluminium smelter or a steelworks, electricity companies, whether state or privately-owned, have always been keen to oblige.

I suspect that everything could be coming together in Peterhead.

The Electrolyser In Northern Ireland

The Wrightbus factory, owned by Jo Bamford builds its buses at Ballymena.

  • Ballymena is 28 miles North of Belfast.
  • Dublin is 130 miles to the South.

I can see the mother of all arguments happening, as to whether the electrolyser is North or South of the border.

If you look at the Wikipedia entry entitled Electricity Sector In Ireland, this is the opening paragraph.

The electricity sectors of the Republic of Ireland and Northern Ireland are integrated and supply 2.5 million customers from a combination of coal, peat, natural gas, wind and hydropower.

The grid runs as a synchronous electrical grid and in terms of interconnections has undersea DC-only connection to the UK National Grid, alongside plans in the advanced stage for a higher power, planned Celtic Interconnector to France.

It looks like Jo Bamford will only have to deal with one entity, no matter, which side of the border, the electrolyser is situated.

This would surely make it easier for his All-Ireland Green transport plan, which  I wrote about in Wrightbus Boss Eyes All-Island Green Transport Plan.

My feeling is that he’ll get less grief, if the electrolyser was just on the North side of the border with a good road connection to the South. As there is a dual carriage-way road, all the way between Belfast and Dublin, this could probably be arranged.

This Google Map shows where the main dual-carriageway crosses the border.

Note.

  1. The border is shown as a white line to the North of the Centrepoint Business Park.
  2. The railway line between Dublin and Belfast can be seen to the West of the main cross-border road.

I certainly think, that a solution can be found to fuel all those Irish hydrogen buses, that Jo Bamford has proposed.

The Electrolyser At Runcorn

If Runcorn already has a good source of hydrogen at the former ICI factory, that is now owned by INEOS, why build an electrolyser at Runcorn?

There are several reasons.

  • Runcorn is involved in the hydrogen plans for North-West England, that I wrote about in A Hydrogen Mobility Roadmap For North-West England.
  • Runcorn can connect into the North West’s proposed hydrogen network.
  • Runcorn is close to the zero-carbon wind energy of Liverpool Bay.
  • INEOS can pool their zero-carbon hydrogen into that produced by Ryse.
  • Will INEOS with all their hydrogen experience in the area, host the electrolyser?
  • Runcorn is convenient for the large cities of Liverpool and Manchester.
  • Runcorn has good access to the motorway network for the Midland of England and North Wales.
  • There must be the possibility of building a rail terminal to deliver hydrogen.

Runcorn would also connect the interests of Jim Ratcliffe and the Bamfords.

The Electrolyser In South Wales

South Wales has an extensive public transport network.

  • The South Wales Main Line runs between the Severn Tunnel and Swansea and the West via Newport and Cardiff.
  • The Cardiff Valley Lines are being transformed into a modern South Wales Metro, which will make use of electric and battery technology.
  • There are a lot of buses, running around in South Wales.

The buses and possibly some of the trains must be candidates for hydrogen power.

Transport for Wales Rail Services have ordered 77 Class 197 diesel trains from CAF, who have a factory at Newport.

Given CAF’s record on innovation and the Welsh Government’s stance on the environment, I wouldn’t be surprised to find out that these trains could be converted to zero-carbon trains. I’m sure Ryse would be pleased to provide green hydrogen for Welsh trains.

I think there are two possible sites for a large electrolyser in South Wales.

The first is the site of the former Aberthaw power stations, which are shown in this Google Map.

Note.

  1. Aberthaw power stations were South of Gileston.
  2. The complex stopped generating power at the end of March this year.
  3. The site has rail access.
  4. Road access would need to be improved.
  5. The power station must have had a good very connection to the National Grid.
  6. The site is near to Cardiff Airport, who might want to go zero-carbon for all their ground vehicles.

The second possible site, is on the site of the former Llanwern steel works, which is shown in this Google Map.

Note.

  1. It is a very large site, which probably has a very good connection to the National Grid.
  2. The CAF rolling stock factory is marked by a red arrow.
  3. CAF could start building and/or selling hydrogen-powered trains in the UK, at some date in the future.
  4. The site has rail and road access.
  5. The site is fifteen miles to the East of Cardiff.
  6. The site is thirty miles to the West of Bristol.

If it was my decision, I’d put the electrolyser on the Llanwern site.

Will The Electrolysers Need A Battery To Cover On Days Without Wind?

I can envisage a system, where several trailer-tankers are filled at once in a continuous process. Once filled, they would be disconnected and replaced by an empty one. It would act like a automatic bottling plant for beer, but with much bigger bottles.

The filled trailer-tankers would be energy stores, whilst they awaited being taken to the customers.

What Infrastructure Will Be Needed At Bus Depots?

The infrastructure is minimal and would be a tank and the means of filling the buses.

I also wonder, if trucks with a proven design of hydrogen trailer-tanker were to be used, these could be filled up at the electrolyser and the trailer-tankers would then be taken to the bus depots, where they would be plugged into the hydrogen delivery system for the buses.

  • Each delivery would be a drop-off and connection of a full trailer-tanker of hydrogen and a return with the empty trailer-tanker to the electrolyser.
  • The trailer-tankers could be fitted with a hydrogen vehicle-filling connection, so that bus operators could trial a small fleet of hydrogen buses or other vehicles, without putting in any infrastructure, other than safe parking for the trailer-tankers. But then most bus depots have lots of secure parking for large buses.
  • This would surely be faster and more efficient, as the delivery driver wouldn’t have to wait, whilst the hydrogen is transferred.
  • Deliveries could be arranged during the night.

I would also use a fleet of quiet, emission-free zero-carbon hydrogen-powered trucks. Do what I say and do what I do!

Why Not Generate The Hydrogen At The Depot?

At Pau, ITM Power have installed a hydrogen generator for the hydrogen-powered buses.

So why not do this all over the UK?

  • A large bus depot could need a very large amount of electricity in a congested part of a city, where the electricity supply may be dodgy.
  • It could also be safer, as venting the oxygen produced as a by-product of electrolysis, in an uncontrolled environment can be dangerous. But generated in a large electrolyser, it could be captured and used for another purpose or safely vented to the atmosphere. This section in Wikipedia, gives a brief outline of the applications of oxygen.
  • I truck-based delivery system, is ideal for trials of hydrogen-powered buses, taxis, delivery vans, trucks and local authority vehicles, as no infrastructure is needed.

I suspect that, it might be more affordable and convenient to use centralised production of the hydrogen.

Conclusion

Jo Bamford has developed a well-thought out plan.

May 17, 2020 Posted by | Transport, World | , , , , , , , | 1 Comment

A Hydrogen Mobility Roadmap For North-West England

In the last few days, the North West Hydrogen Alliance has published a document entitled A Hydrogen Mobility Roadmap.

Some information from a well-written and very informative document.

Vehicle Types Covered In The Roadmap

A composite picture at the start of the document shows the following hydrogen-powered vehicles.

  • A double-deck bus.
  • A heavy goods vehicle.
  • A passenger car.
  • A passenger train.

Other vehicles, which exist or are under development, could have been added.

  • A refuse truck.
  • A high capacity fork lift or dump truck.
  • A freight locomotive.
  • The availability of hydrogen fuel in an area, must encourage the use of hydrogen-powered vehicles.

Comparison Of Electric And Hydrogen

The document gives a comparison between electric and hydrogen power.

Speed Of Refuelling

  • Electric – The current long duration of battery recharges rules out many forms of transport
  • Hydrogen – Hydrogen refuelling speed is largely similar to current petrol and diesel fuelling

Distance On Single Charge/Tank

  • Electric – At the present time, cars will travel 150-250 miles per charge, but current battery weight means they are unsuitable for HGVs
  • Hydrogen – Vehicles can travel 500+ miles on a single tank of hydrogen, which can be scaled up to suit vehicle size

Availability Of Fuel

  • Electric – Growing network of charge points, but this is creating problems for power networks
  • Hydrogen – Only 12 refuelling stations in the UK

Availability Of Vehicles

  • Electric – Various cars to choose from, buses and trains readily available, with HGVs and ships in development
  • Hydrogen – Cars, buses and trains largely available. HGVs and ships in development

Note.

  1. The speed of refuelling and the range for hydrogen.
  2. The need for more hydrogen refuelling stations.
  3. Both battery and hydrogen ships are in development.

I think their points are fair.

Road, Rail And Marine

The document discusses the various modes of transport and how hydrogen can help, with respect to both carbon-emissions and pollution.

The Alstom Breeze Trains

This picture is a visualisation of the Alston Breeze.

This is said about the Alstom Breeze trains.

Alstom in Widnes is ready to deploy its new Breeze trains and is working with Northern Rail to identify routes that are suitable for conversion to hydrogen.

A map also shows hydrogen train symbols on the Liverpool and Manchester Line, that goes via Widnes and Warrington and conveniently passes the Alstom factory at Widnes.

I wonder, if we’ll see an acceleration of this project?

Consider.

  • Northern Rail is now directly controlled by the Government.
  • Some Class 321 trains for conversion, will surely be available this summer.
  • The updating of the trains, except for the hydrogen system has been developed in the Renatus project.
  • Alstom have the experience of the successful hydrogen-powered Alstom Coradia iLint from Germany.
  • Supplying the Alstom factory with hydrogen, shouldn’t be too difficult.
  • I doubt any extra infrastructure is needed to run the trains.
  • Alstom have sold two or three fleets of iLints on the back of a successful introduction into service of two prototype trains.

I don’t think, Alstom and all the various partners and stakeholders would object if the project were to be accelerated.

What’s Already Happening In The North West?

These hydrogen-powered projects are mentioned.

  • Twenty double-deck buses for Liverpool City Centre.
  • Alstom Breeze trains.
  • storengy refuse trucks for Cheshire.
  • ULEMCo are converting trucks and ferries.
  • Port of Liverpool air quality.

It does seem to be that if you give an area a hydrogen network, possible users will find ways to use it to their advantage.

Rising To The Challenge

This section answers these questions.

Where Will The Hydrogen Come From?

Initially from INEOS at Runcorn, where I used to work around 1970 and BOC at St. Helens.

How Will It Be Transported?

Mainly by innovative use of new and existing pipelines.

How Do We Get To Critical Mass?

It looks like they’ll start slowly with hydrogen from Runcorn and St. Helens and build from there.

I would add a further question.

Will They Be Adding Hydrogen Filling Stations To The Network?

The North West needs them!

Hydrogen Storage

This is said about storing hydrogen.

Geologically, Cheshire is one of the few places in the UK where major underground gas storage in salt caverns has been delivered, paving the way for potential hydrogen storage, which is already done at scale elsewhere.

When I worked at ICI, I was given a tour of one of salt caverns. One is rumoured to be large enough to enable a full-size replica of Salisbury cathedral to be built inside.

Research

This is said about research.

Esteemed universities, and a wealth of innovative research companies, mean the region can deliver new hydrogen technologies. With academia working side-by-side with industry, the North West’s institutions can equip the next generation of skilled workers to support the hydrogen economy.

As a graduatev of one of those esteemed universities, how can I disagree?

Carbon Capture And Storage

This is said about carbon capture and storage.

Offshore reservoirs in the East Irish Sea can store carbon dioxide (CO2) produced from hydrogen production. Carbon Capture Utilisation and Storage (CCUS) is essential technology to help the UK in its fight against climate change. CCUS can capture up to 95% of the CO2 emissions associated with producing hydrogen from natural gas.

Whether you want to produce hydrogen this way is another matter. But the oil refineries and chemical plants along the Mersey are surely prime candidates for CCUS.

An Alliance

Not for nothing is the project called the North West Hydrogen Alliance!

Sixteen partners are mentioned at the end of the document.

 

May 8, 2020 Posted by | Transport | , , , , , , , , | 4 Comments

Hydrogen House Is ‘Greenest In Europe’

The title of this post is the same as that of this article in The Times.

This is the introductory paragraph.

A hydrogen-powered house that is off-grid and said to be the first of its kind in Europe is being built by a family in Devon.

These are some features.

  • Solar panels
  • Hydrogen from electrolysis.
  • Hydrogen storage
  • Hydrogen boiler
  • Water from a borehole
  • Own sewage plant
  • Air source heat pump.

The article says that “Any spare hydrogen can power the hydrogen cars they plan to buy”

This sounds like my ideal house!

May 4, 2020 Posted by | Transport, World | , , , | 3 Comments