The Anonymous Widower

Network Rail’s Big Push

The title of this press release on the Network Rail web site is 11,000 Tonne Tunnel To Be Installed On The Railway In First For UK Engineering.

They have also released this aerial photograph of the tunnel, before it is pushed into place.

Note.

  1. The tunnel, which is just a curved concrete box is in the middle of the picture.
  2. To its left is the double-track Peterborough-Lincoln Line.
  3. Running across the far end of the tunnel are the multiple tracks of the East Coast Main Line.
  4. Peterborough is a few miles to the left, with the North to the right.

This Google Map shows the same area from directly above.

Note.

  1. The double-tracks of the Stamford Lines closest to the South-West corner of the map.  These link the Peterborough-Birmingham Line to Peterborough.
  2. Next to them are the triple tracks of the East Coast Main Line.
  3. The third rail line is the double-track of the Peterborough and Lincoln Line.
  4. The new tunnel can be seen at the top of the map.

This map from Network Rail, shows the new track layout.

The map shows that the Stamford Line will divide with two tracks (1 and 4) going North to Stamford as now. Two new tracks (2 and 3) will dive-under the East Coast Main Line to join the  existing Peterborough and Lincoln Line.

The tracks will run through the tunnel in the pictures, after it has been pushed under the East Coast Main Line.

  • This will mean that the many freight trains between Peterborough and Lincoln will not have to cross the East Coast Main Line on the flat.
  • This in turn could allow faster running of trains on the East Coast Main Line, that are not stopping at Peterborough.

This second Google Map shows the area to the North of the first map.

Note.

  1. The East Coast Main Line in the South-West corner of the map.
  2. The Peterborough and Lincoln Line curving from North-South across the map.
  3. A bridge would appear to be being constructed to take the A15 road over the new tracks, that will go through the tunnel.
  4. Another bridge will be constructed to take Lincoln Road over the new tracks.

It is certainly not a small project.

That is emphasised by this third Google Map, which is to the North of the previous map.

This map would appear to show space for more than a pair of tracks.

It looks to me, that space is being left for future rail-related development.

  • Could it be for a small freight yard, where trains could wait before proceeding?
  • If it were electrified, it could be where freight trains to and from London, switched between electric and diesel power.
  • Could it be passing loops, so that freight trains can keep out of the way of faster passenger trains?
  • Would it be a place for a possible new station?

If it is to be a full rail freight interchange, I can’t find any mention of it on the Internet.

The Big Push

Summarising, what is said in the press release, I can say.

  • Major works to occur over nine days between 16 and 24 January
  • It will be pushed at 150cm per hour.
  • A reduced level of service will operate.
  • It will take several weekends.

I hope it’s being filmed for later broadcasting.

Thoughts On Services

I have a few thoughts on passenger services.

London And Lincoln Via Spalding And Sleaford

Consider.

  • Peterborough and Lincoln is 57 miles.
  • The route has lots of level crossings.
  • Much of the route between Peterborough and Lincoln has an operating speed of 75 mph
  • There is a 50 mph limit through Spalding. Is this to cut down noise?
  • Trains between Peterborough and Lincoln take a shortest time of one hour and twenty-three minutes, with four stops.
  • Peterborough and Lincoln is 57 miles.
  • This is an average speed of 41 mph.

I wonder what time a five-car Class 800 train would take to do the journey.

  • At an average speed of 50 mph, the train would take 68 minutes and save 15 minutes.
  • At an average speed of 60 mph, the train would take 57 minutes and save 26 minutes.
  • At an average speed of 70 mph, the train would take 49 minutes and save 18 minutes.

As the fastest London Kings Cross and Peterborough time is 46 minutes, this would mean that with an average speed of 60 mph, a time between London Kings Cross of one hour and forty-three minutes could be possible.

  • There could be additional time savings by only stopping at Peterborough, Spalding and Sleaford.
  • The Werrington Dive Under looks to be built for speed and could save time.
  • If the 50 mph limit through Spalding is down to noise, battery electric trains like a Hitachi Intercity Tri-Mode Battery Train might be able to go through Spalding faster.
  • Could some track improvements save time between Peterborough and Lincoln?

As the fastest journeys via Newark to Lincoln take one hour and fifty-six minutes, it looks to me, that LNER might be able to save time by going via Spalding and Sleaford after the Werrington Dive Under opens.

London And Skegness

If there were a fast London train from Sleaford, it will take under an hour and thirty minutes between London Kings Cross and Sleaford.

  • Currently, the connecting train between Skegness and Sleaford takes an hour for the forty miles.
  • The service is currently run by Class 158 trains.
  • With some 100 mph trains on the Skegness and Sleaford service, it might be possible to travel between London and Skegness in two hours and fifteen minutes with a change at Sleaford.

There would appear to be possibilities to improve the service between London and Skegness.

Lincoln And Cambridge

I used to play real tennis at Cambridge with a guy, who was a Cambridge expansionist.

He believed that Cambridge needed more space and that it should strongly rcpand high-tech research, development and manufacturing all the way across the fens to Peterborough and beyond.

I listened to his vision with interest and one thing it needed is a four trains per hour express metro between Cambridge and Peterborough.

  • Ely and Peterborough should be electrified for both passenger and freight trains.
  • March and Spalding should be reopened.
  • Cambridge has the space for new services from the North.

Extending the Lincoln and Peterborough service to Cambridge could be a good start.

Conclusion

The Werrington Dive Under will certainly improve services on the East Coast Main Line.

I also feel, that it could considerably improve rail services between London and South Lincolnshire.

It certainly looks, like Network Rail have designed the Werrington Dive Under to handle more traffic than currently uses the route.

Towns like Boston, Skegness, Sleaford and Spalding aren’t going to complain.

 

 

 

 

 

January 11, 2021 Posted by | Transport | , , , , , , , , | Leave a comment

Thoughts On Powering Electrification Islands

In The Concept Of Electrification Islands, I didn’t say anything about how electrification islands would be powered. Although, I did link to this post.

The Need For A Substantial Electrical Supply

Electrification can use a lot of electricity.

This was illustrated by the electrification of the Midland Main Line, where a high-capacity feed from the National Grid had to be provided at Market Harborough.

But then the Government cancelled electrification North of Kettering leaving a twelve mile gap to be filled. I wrote about the problem in MML Wires Could Reach Market Harborough. In the end the sensible decision was taken and the electrification will now reach to Market Harborough station.

So places like Cambridge, Darlington, Doncaster, Leeds Norwich and York. which are fully electrified and on a main route probably have enough electrical power to charge passing or terminating battery-electric trains on secondary routes.

In Thoughts On The Actual Battery Size In Class 756 Trains And Class 398 Tram-Trains, I quoted the reply to a Freedom of Information Request sent to Transport for Wales, which said.

A four-car Class 756 train will have a battery capacity of 600 kWh.

A Class 756 train is similar to a Greater Anglia Class 755 train, which in Battery Power Lined Up For ‘755s’, I estimated weighs about 135 tonnes when full of passengers.

Weights for the Hitachi trains are difficult to find with a figure of 41 tonnes per car given for a Class 801 train on Wikipedia. In Kinetic Energy Of A Five-Car Class 801 Train, I estimated a full weight of a five-car Class 801 train at 233.35 tonnes.

Based on the Stadler figure, I would estimate that every train passing an electrification island will need to pick up as much as somewhere between 600-1000 kWh.

An Electrification Island At Sleaford

In The Concept Of Electrification Islands, I proposed an electrification island at Sleaford station.

  • Sleaford is a market town of around 18,000 people.
  • I doubt the power in the town has much surplus capacity.
  • This station is served by four trains per hour (tph), one to each to Lincoln, Nottingham, Peterborough and Skegness.
  • So it looks like a feed of three to four MW will be needed to charge passing trains.

Can the electricity supply in a town like Sleaford provide that sort of power for perhaps eighteen hours a day?

The only ways to provide that sort of power is to build a new power station or provide energy storage capable of boosting the supply.

Could Highview Power Provide The Solution?

I have been following Highview Power and their CRYOBatteries for some time.

They have already built a 5 MW pilot plant in Manchester and are currently aiming to build a plant with 250 MWh of energy storage, that can supply up to 50 MW. The company and this plant is discussed in this article on The Chemical Engineer.

One of these CRYOBatteries, would surely be ideal to power an electrification island, like the one at Sleaford.

  • It could be scaled to the electricity needs of the town and the railway.
  • It would be charged using renewable or excess energy.
  • There is a lot of wind power in Lincolnshire and just off the coast, which needs energy storage.
  • Similar systems could also be installed at other electrification islands at Cleethorpes, Lincoln, Skegness and other places, where the grid needs strengthening.

I have used Highview Power in this example, but there are other systems, that would probably boost the electricity just as well.

April 14, 2020 Posted by | Energy Storage, Transport, World | , , , , , | Leave a comment