The Anonymous Widower

Thoughts On Faster Trains On Thameslink

The Class 700 trains used by Thameslink only have an operating speed of 100 mph.

I do wonder, if that is a fast enough operating speed for all Thameslink routes.

Sharing The Midland Main Line With 125 mph Trains

A couple of years ago, I travelled back into St. Pancras with a group of East Midlands drivers in a Class 222 train.

They told me several things about the route including that the bridge at the South of Leicester station would be difficult to electrify, as it was low and the track couldn’t be lowered as one of Leicester’s main sewers was under the tracks at the bridge. Perhaps, this is one place, where discontinuous electrification could be used on the Midland Main Line.

They also told me, that sometimes the Thameslink trains were a nuisance, as because of their 100 mph operating speed, the 125 mph Class 222 trains had to slow to 100 mph.

Upgrading Of The Midland Main Line South Of Bedford

The electrification of the Midland Main Line South of Bedford is being updated, so that it is suitable for 125 mph running.

An Analysis Of Services On The Midland Main Line South Of Bedford

The current Class 222 trains are capable of 125 mph and will be replaced by Class 810 trains capable of the same speed on both diesel and electricity.

Currently, a Class 222 train is capable of doing the following on a typical non-stop run between St. Pancras and Leicester.

  • Covering the 30 miles between St. Albans and Bedford in 17 minutes at an average speed of 106 mph.
  • Covering the 50.3 miles between Bedford and Leicester in 30 minutes at an average speed of 100.6 mph.
  • Maintaining 125 mph for long stretches of the route, once the trains is North of London commuter traffic at St. Albans

I can estimate the timings on the 79.2 miles between Leicester and St. Albans, by assuming the train runs at a constant speed.

  • 100 mph – 47.5 minutes
  • 110 mph – 43.2 minutes
  • 125 mph – 38 minutes
  • 140 mph – 34 minutes

Note.

  1. I have done the calculation for 140 mph, as that is the maximum operating speed of the Class 810 train with full in-cab digital signalling.
  2. Trains have been running at 125 mph for a couple of decades on the Midland Main Line.
  3. To get a St. Pancras and Leicester time add another 14 minutes, which is the current time between St. Pancras and St. Albans of a Class 222 train.
  4. Some Off Peak trains are timed at 62-63 minutes between St. Pancras and Leicester.
  5. A time of under an hour between St. Pancras and Leicester might be possible and the Marketing Department would like it.
  6. As Thameslink trains between Bedford and St. Albans stop regularly, they are on the slow lines of the four-track railway, to the North of St. Albans.
  7. South of St. Albans, Thameslink trains often run on the fast lines.

I can expect that East Midlands Railway will want to be running their new Class 810 trains as far as far South as they can at 125 mph, to speed up their services. When the signalling allows it, they’ll want to run at 140 mph.

So they won’t want to see Thameslink’s slow trains on the fast lines.

  • But if you look at the Thameslink trains that do run on the fast lines between St. Albans and St. Pancras, they appear to be the four trains per hour (tph) that run to and from Bedford.
  • Of these trains, two tph terminate at Brighton and two tph terminate at Gatwick Airport.
  • The average speed of a Class 222 train between St. Albans and St. Pancras assuming 14 minutes for the 19.7 miles is 84.4 mph.

So it looks to me that a 100 mph Thameslink train could be able to get away without slowing the East Midland Railway expresses.

But then that is not surprising, as for many years, the Class 222 trains worked happily with 100 mph Class 319 trains.

Is There Scope For Extra And Faster Services Into St. Pancras?

I have only done a simple calculation, but I do wonder if there is scope for the following.

  • Increasing the frequency of trains for both Thameslink and East Midlands Railway.
  • Saving a few minutes on East Midlands Railway services.

Consider.

  • The new Class 810 electric trains will probably have better acceleration and deceleration than the current Class 222 diesel trains, when working using electric power.
  • East Midlands Railway is introducing Class 360 trains that were built as 100 mph trains by Siemens, who are now upgrading them to 110 mph trains.
  • Can Siemens do the same for the Class 700 trains and create a sub-fleet capable of 110 mph running?
  • All trains will be running under full in-cab digital signalling with a large degree of automatic train control.

I feel that if the Class 700 trains had the extra speed, they would make the planning of services South of St. Albans easier and allow the Class 810 trains to both run faster and provide more services.

Sharing The East Coast Main Line With 125 mph Trains

The following Thameslink services run up the East Coast Main Line past Stevenage.

  • Cambridge And Brighton – Two tph – Stops at Royston, Ashwell and Morden (1 tph), Baldock, Letchworth Garden City, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Gatwick Airport, Three Bridges, Balcombe, Haywards Heath and Burgess Hill
  • Cambridge and Kings Cross – Two tph – Stops at Foxton, Shepreth, Meldreth, Royston, Ashwell and Morden, Baldock, Letchworth Garden City, Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • Peterborough and Horsham – Two tph – Stops at Huntingdon, St Neots, Sandy, Biggleswade, Arlesey, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Coulsdon South, Merstham, Redhill, Horley, Gatwick Airport, Three Bridges, Crawley, Ifield, Faygate (limited) and Littlehaven

Note.

  1. Services are generally run by Class 700 trains, although lately the Kings Cross service seems to use Class 387 trains, which have a maximum speed of 110 mph and a more comfortable interior with tables.
  2. It is intended that the Cambridge and Kings Cross service will be extended to Maidstone East by 2021.

In addition there are two Cambridge Express and Fen Line services.

  • Kings Cross and Ely – One tph – Stops at Cambridge and Cambridge North.
  • Kings Cross and King’s Lynn – One tph – Stops at Cambridge, Cambridge North, Waterbeach, Ely, Littleport, Downham Market and Watlington

Note.

  1. These services are generally run by Class 387 trains.
  2. Cambridge and King’s Cross is timetabled at around fifty minutes.

Adding all of this together means that slower services on the East Coast Main Line are comprised of the following in both directions.

  • Three tph – 110 mph – Class 387 trains
  • Four tph – 100 mph – Class 700 trains

These seven trains will have to be fitted in with the 125 mph trains running services on the East Coast Main Line, for LNER, Grand Central, Hull Trains and East Coast Trains.

There are also the following problems.

  • All trains must navigate the double-track section of the East Coast Main Line over the Digswell Viaduct and through Welwyn North station.
  • The King’s Cross and Cambridge service stops in Welwyn North station.
  • Full in-cab digital signalling is being installed on the East Coast Main Line, which could increase the speed of the expresses through the double-track section.

Could the introduction of the Class 387 trains on the Cambridge and King’s Cross service have been made, as it easier to fit in all the services if this one is run by a 110 mph train?

However, the full in-cab digital signalling with a degree of automatic train control could be the solution to this bottleneck on the East Coast Main Line.

  • Trains could be controlled automatically and with great precision between perhaps Hatfield and Stevenage.
  • Some expresses might be slowed to create gaps for the Cambridge and Peterborough services.
  • The Hertford Loop Line is also getting full in-cab digital signalling, so will some services be sent that way?

In Call For ETCS On King’s Lynn Route, I talked about a proposal to improve services on the Fen Line. This was my first three paragraphs.

The title of this post, is the same as that on an article in Edition 849 of Rail Magazine.

The article is based on this document on the Fen Line Users Aoociation web site, which is entitled Joint Response To Draft East Coast Main Line Route Study.

In addition to ETCS, which could improve capacity on the East Coast Main Line, they would also like to see journey time reductions using trains capable of running at 125 mph or faster on the King’s Lynn to Kings Cross route.

My scheduling experience tells me that a better solution will be found, if all resources are similar.

Hence the proposal to run 125 mph trains between King’s Cross and King’s Lynn and probably Ely as well, could be a very good and logical idea.

If the Class 700 trains were increased in speed to 110 mph, the trains through the double-track section of the East Coast Main Line would be.

  • One tph – 110 mph – Class 387 trains
  • Four tph – 110 mph – Class 700 trains
  • Two tph – 125 mph – New trains

Note.

  1. This would probably be an easier mix of trains to digest with the high speed services, through the double-track section.
  2. I like the idea of extending the Ely service to Norwich to give Thetford, Attleborough and Wymondham an improved service to London, Cambridge and Norwich.

The new trains would probably be a version of Hitachi’s Regional Battery Train.

  • It would need to be capable of 125 mph on the East Coast Main Line.
  • If the Ely service were to be extended to Norwich, this section would be on battery power.

There are certainly a lot of possibilities.

But as with on the Midland Main Line, it looks like for efficient operation, the operating speed of the Class 700 trains on the route needs to be increased to at least 110 mph.

Could Faster Class 700 trains Improve Services To Brighton?

These are the Thameslink services that serve Bedford, Cambridge and Peterborough, that I believe could be run more efficiently with trains capable of at running at speeds of at least 110 mph.

  • Bedford and Brighton – Two tph
  • Bedford and Gatwick Airport – Two tph
  • Cambridge and Brighton – Two tph
  • Cambridge and Maidstone East – Two tph
  • Peterborough and Horsham – Two tph

Note.

  1. I have assumed that the Cambridge and King’s Cross service has been extended to Maidstone East as planned.
  2. Eight tph serve Gatwick Airport.
  3. Four tph serve Brighton.

The Gatwick Express services have a frequency of two tph between London Victoria and Brighton calling at Gatwick Airport is already run by 110 mph Class 387 trains.

It would appear that if the Bedford, Cambridge and Peterborough were run by uprated 110 mph Class 700 trains, then this would mean that more 110 mph trains would be running to Gatwick and Brighton and this must surely improve the service to the South Coast.

But it’s not quite as simple as that, as the Cambridge and Maidstone East services will be run by eight-car trains and all the other services by twelve-car trains.

Conclusion

There would appear to be advantages in uprating some or possibly all of the Class 700 trains, so that they can run at 110 mph, as it will increase capacity on the Brighton Main Line, East Coast Main Line and Midland Main Line.

 

 

April 6, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , | Leave a comment

A Class 93 Locomotive Hauling A 1500 Tonne Train Between The Port Of Felixstowe And Nuneaton

I am writing this post to show how I believe the new Class 93 locomotive would haul a freight train between the Port of Felixstowe and Nuneaton, where it would join the West Coast Main Line for Liverpool, Manchester mor Scotland.

Why 1500 Tonnes?

This article on Rail Engineer, which is entitled, Re-Engineering Rail Freight, gives a few more details about the operation of the Class 93 locomotives.

This is said about performance.

As a result, the 86-tonne Class 93 is capable of hauling 1,500 tonnes on non-electrified routes and 2,500 tonnes on electrified routes. With a route availability (RA) of seven, it can be used on most of the rail network.

So as I’m talking about non-electrified routes, I’ll use 1500 tonnes.

Sections Of The Route

The route can be divided into these sections.

  • Port of Felixstowe and Trimley – 2.3 miles – 7 minutes – 19.7 mph –  Not Electrified
  • Trimley and Ipswich Europa Junction – 13.5 miles – 43 minutes -18.8 mph – Not Electrified
  • Ipswich Europa Junction and Haughley Junction – 12.1 miles – 24 minutes -30.2 mph – Electrified
  • Haughley Junction and Ely – 38.3 miles – 77 minutes -29.8 mph – Not Electrified
  • Ely and Peterborough – 30.5 miles – 58 minutes -31.6 mph – Not Electrified
  • Peterborough and Werrington Junction – 3.1 miles – 5 minutes -37.2 mph – Electrified
  • Werrington Junction and Leicester – 49.1 miles – 97 minutes -30.4 mph – Not Electrified
  • Leicester and Nuneaton – 18.8 miles – 27 minutes -41.8 mph – Not Electrified

Note.

  1. The train only averages around 40 mph on two sections.
  2. There is electrification at between Europa Junction and Haughley Junction, at Ely and Peterborough, that could be used to fully charge the batteries.
  3. In Trimode Class 93 Locomotives Ordered By Rail Operations (UK), I calculated that the 80 kWh batteries in a Class 93 locomotive hauling a 1500 tonne load can accelerate the train to 40 mph.

I can see some innovative junctions being created, where electrification starts and finishes, so that batteries are fully charged as the trains pass through.

  • There must be tremendous possibilities at Ely, Haughley and Werrington to take trains smartly through the junctions and send, them on their way with full batteries.
  • All have modern electrification, hopefully with a strong power supply, so how far could the electrification be continued on the lines without electrification?
  • Given that the pantographs on the Class 93 locomotives, will have all the alacrity and speed to go up and down like a whore’s drawers, I’m sure there will be many places on the UK rail network to top up the batteries.

Consider going between Ely and Peterborough.

  • Leaving Ely, the train will have a battery containing enough energy to get them to forty mph.
  • Once rolling along at forty, the Cat would take them to the East Coast Main Line, where they would arrive with an almost flat battery.
  • It would then be a case of pan up and on to Peterborough.

These are my ideas for how the various sections would be handled.

Port of Felixstowe And Trimley

As I stated in Rail Access To The Port Of Felixstowe, I would electrify the short section between the Port of Felixstowe And Trimley. This would do the following.

  • Charge the batteries on trains entering the Port, so they could operate in the Port without using diesel.
  • Charge batteries on trains leaving the Port, so that they could have a power boost to Ipswich.
  • The trains could be accelerated to operating speed using the electrification.

There would also be no use of diesel to the East of Trimley, which I’m sure the residents of Felixstowe would like.

Trimley and Ipswich Europa Junction

This section would be on diesel, with any energy left in the battery used to cut diesel running through Ipswich.

Ipswich Europa Junction and Haughley Junction

Consider.

  • This is a 100 mph line.
  • It is fully-electrified.
  • All the passenger trains will be running at this speed.

If the freight ran at that speed, up to 17 minutes could be saved.

Haughley Junction And Ely

This section would be diesel hauled, with help from the batteries, which could be fully charged when entering the section.

There are also plans to improve Haughley Junction, which I wrote about in Haughley Junction Improvements.

One possibility would be to extend the electrification from Haughley Junction a few miles to the West, to cut down diesel use in both Greater Anglia’s Class 755 trains and any freight trains hauled by Class 93 locomotives.

As there are plans for an A14 Parkway station at Chippenham Junction, which is 25 miles to the West of Haughley Junction, it might be sensible to electrify around Chippenham Junction.

Ely and Peterborough

This section would be diesel hauled, with help from the batteries, which could be fully charged when entering the section.

It should also be noted that the tracks at Ely are to be remodelled.

  • Would it not be sensible to have sufficient electrification at the station, so that a Class 93 locomotive leaves the area with full batteries?
  • Acceleration to operating speed would be on battery power, thus further reducing diesel use.

It probably wouldn’t be the most difficult of projects at Peterborough to electrify between Peterborough East Junction and Werrington Junction on the Stamford Lines used by the freight trains.

On the other hand, I strongly believe that the route between Ely and Peterborough should be an early electrification project.

  • It would give a second electrified route between London and Peterborough, which could be a valuable diversion route.
  • It would allow bi-mode trains to work easier to and from Peterborough.
  • It would be a great help to Class 93 locomotives hauling freight out of Felixstowe.

As the Ely-Peterborough Line has a 75 mph operating speed, it would Class 73 locomotive-hauled freights would save around thirty ,inutes.

Peterborough and Werrington Junction

This section looks to be being electrified during the building of the Werrington Dive Under.

Werrington Junction and Leicester

This section would be diesel hauled, with help from the batteries, which could be fully charged when entering the section.

Leicester and Nuneaton

This section would be diesel hauled, with help from the batteries,

As there is full electrification at Nuneaton, this electrification could be extended for a few miles towards Leicester.

Conclusion

This has only been a rough analysis, but it does show that Class 93 locomotives can offer advantages in running freight trains between Felixstowe and Nuneaton.

But selective lengths of electrification would bring time and diesel savings.

January 17, 2021 Posted by | Transport | , , , , , , , | Leave a comment

Network Rail’s Big Push

The title of this press release on the Network Rail web site is 11,000 Tonne Tunnel To Be Installed On The Railway In First For UK Engineering.

They have also released this aerial photograph of the tunnel, before it is pushed into place.

Note.

  1. The tunnel, which is just a curved concrete box is in the middle of the picture.
  2. To its left is the double-track Peterborough-Lincoln Line.
  3. Running across the far end of the tunnel are the multiple tracks of the East Coast Main Line.
  4. Peterborough is a few miles to the left, with the North to the right.

This Google Map shows the same area from directly above.

Note.

  1. The double-tracks of the Stamford Lines closest to the South-West corner of the map.  These link the Peterborough-Birmingham Line to Peterborough.
  2. Next to them are the triple tracks of the East Coast Main Line.
  3. The third rail line is the double-track of the Peterborough and Lincoln Line.
  4. The new tunnel can be seen at the top of the map.

This map from Network Rail, shows the new track layout.

The map shows that the Stamford Line will divide with two tracks (1 and 4) going North to Stamford as now. Two new tracks (2 and 3) will dive-under the East Coast Main Line to join the  existing Peterborough and Lincoln Line.

The tracks will run through the tunnel in the pictures, after it has been pushed under the East Coast Main Line.

  • This will mean that the many freight trains between Peterborough and Lincoln will not have to cross the East Coast Main Line on the flat.
  • This in turn could allow faster running of trains on the East Coast Main Line, that are not stopping at Peterborough.

This second Google Map shows the area to the North of the first map.

Note.

  1. The East Coast Main Line in the South-West corner of the map.
  2. The Peterborough and Lincoln Line curving from North-South across the map.
  3. A bridge would appear to be being constructed to take the A15 road over the new tracks, that will go through the tunnel.
  4. Another bridge will be constructed to take Lincoln Road over the new tracks.

It is certainly not a small project.

That is emphasised by this third Google Map, which is to the North of the previous map.

This map would appear to show space for more than a pair of tracks.

It looks to me, that space is being left for future rail-related development.

  • Could it be for a small freight yard, where trains could wait before proceeding?
  • If it were electrified, it could be where freight trains to and from London, switched between electric and diesel power.
  • Could it be passing loops, so that freight trains can keep out of the way of faster passenger trains?
  • Would it be a place for a possible new station?

If it is to be a full rail freight interchange, I can’t find any mention of it on the Internet.

The Big Push

Summarising, what is said in the press release, I can say.

  • Major works to occur over nine days between 16 and 24 January
  • It will be pushed at 150cm per hour.
  • A reduced level of service will operate.
  • It will take several weekends.

I hope it’s being filmed for later broadcasting.

Thoughts On Services

I have a few thoughts on passenger services.

London And Lincoln Via Spalding And Sleaford

Consider.

  • Peterborough and Lincoln is 57 miles.
  • The route has lots of level crossings.
  • Much of the route between Peterborough and Lincoln has an operating speed of 75 mph
  • There is a 50 mph limit through Spalding. Is this to cut down noise?
  • Trains between Peterborough and Lincoln take a shortest time of one hour and twenty-three minutes, with four stops.
  • Peterborough and Lincoln is 57 miles.
  • This is an average speed of 41 mph.

I wonder what time a five-car Class 800 train would take to do the journey.

  • At an average speed of 50 mph, the train would take 68 minutes and save 15 minutes.
  • At an average speed of 60 mph, the train would take 57 minutes and save 26 minutes.
  • At an average speed of 70 mph, the train would take 49 minutes and save 18 minutes.

As the fastest London Kings Cross and Peterborough time is 46 minutes, this would mean that with an average speed of 60 mph, a time between London Kings Cross of one hour and forty-three minutes could be possible.

  • There could be additional time savings by only stopping at Peterborough, Spalding and Sleaford.
  • The Werrington Dive Under looks to be built for speed and could save time.
  • If the 50 mph limit through Spalding is down to noise, battery electric trains like a Hitachi Intercity Tri-Mode Battery Train might be able to go through Spalding faster.
  • Could some track improvements save time between Peterborough and Lincoln?

As the fastest journeys via Newark to Lincoln take one hour and fifty-six minutes, it looks to me, that LNER might be able to save time by going via Spalding and Sleaford after the Werrington Dive Under opens.

London And Skegness

If there were a fast London train from Sleaford, it will take under an hour and thirty minutes between London Kings Cross and Sleaford.

  • Currently, the connecting train between Skegness and Sleaford takes an hour for the forty miles.
  • The service is currently run by Class 158 trains.
  • With some 100 mph trains on the Skegness and Sleaford service, it might be possible to travel between London and Skegness in two hours and fifteen minutes with a change at Sleaford.

There would appear to be possibilities to improve the service between London and Skegness.

Lincoln And Cambridge

I used to play real tennis at Cambridge with a guy, who was a Cambridge expansionist.

He believed that Cambridge needed more space and that it should strongly rcpand high-tech research, development and manufacturing all the way across the fens to Peterborough and beyond.

I listened to his vision with interest and one thing it needed is a four trains per hour express metro between Cambridge and Peterborough.

  • Ely and Peterborough should be electrified for both passenger and freight trains.
  • March and Spalding should be reopened.
  • Cambridge has the space for new services from the North.

Extending the Lincoln and Peterborough service to Cambridge could be a good start.

Conclusion

The Werrington Dive Under will certainly improve services on the East Coast Main Line.

I also feel, that it could considerably improve rail services between London and South Lincolnshire.

It certainly looks, like Network Rail have designed the Werrington Dive Under to handle more traffic than currently uses the route.

Towns like Boston, Skegness, Sleaford and Spalding aren’t going to complain.

 

 

 

 

 

January 11, 2021 Posted by | Transport | , , , , , , , , | Leave a comment