The Anonymous Widower

Repurposing The Great Glen Hydro-Electric Scheme

The Great Glen hydro-electric scheme was built in the 1950s and early 1960s, by the North of Scotland Hydroelectric Board.

  • The scheme is now owned by SSE Renewables and has a page on their web site.
  • There are six individual power stations; Ceannacroc, Livishie, Glenmoriston, Quoich, Invergarry and Mucomir.
  • There are five dams; Cluanie, Loyne, Dundreggan, Quoich and Invergarry.

This map from the SSE Renewables web site shows the layout of the dams and power stations.

The sizes of the power stations in the scheme are as follows.

  • Ceannacroc – 20 MW
  • Livishie – 15 MW
  • Glenmoriston- 37 MW
  • Quoich – 18 MW
  • Invergarry – 20 MW
  • Mucomir – 1.7 MW

This gives a total power of 112.7 MW.

This Google Map shows the same area as the SSE Renewables Map.

Note.

  1. Loch Quoich is in the South-West corner.
  2. To the East of Loch Quoich is Loch Garry and to the North-East is Loch Loyne.
  3. Loch Cluanie is to the North.
  4. Invermoriston is in the North-East corner.

The scheme also includes three underground power stations and several miles of tunnels.

Strathclyde University And Pumped Storage Power For Scotland

This page on the Strathclyde University gives a list of the pumped storage potential for Scottish hydrogen-electric dams and power stations.

These figures are given for the dams and lochs in the Great Glen scheme.

  • Invergarry – 22 GWh
  • Glenmoriston- 41 GWh
  • Quoich – 27 GWh

It would appear that based on research from Strathclyde University, that the Great Glen scheme could support up to 90 GWh of pumped storage.

Water Flows In The Great Glen Scheme

Looking at the SSE Renewables map of the Great Glen scheme, water flows appear to be as follows.

 

  • Loch Quoich to Loch Garry via Quoich power station.
  • Loch Garry to Loch Oich via Invergarry power station.
  • Loch Loyne to Loch Dundreggan via River Moriston.
  • Loch Cluanie to Loch Dundreggan via Ceannacroc power station and River Moriston.
  • Loch Dundreggan to Loch Ness via Glenmoriston power station.

All the water eventually flows into the sea at Inverness.

Refurbishing And Repurposing The Great Glen Scheme

Perhaps as the power stations are now over fifty years old, one simple way to increase the generating capacity of the Great Glen scheme, might be to selectively replace the turbines, with modern turbines, that can generate electricity more efficiently.

I suspect that SSE Renewables have an ongoing program of improvements and replacements for all of their hydro-electric stations in Scotland. Some turbines at Sloy power station have already been replaced with larger ones.

Adding Pumped Storage To The Great Glen Scheme

I would assume that the water to pump uphill at night or when there is a surplus of electricity will come from Loch Oich or Loch Ness.

Some power stations like Glenmoriston and Invergarry might be updated to both generate electricity or pump water up hill, as is required.

Conclusion

There would appear to be up to three schemes, that could  each add around 30 GWh of pumped storage.

One advantage is that the waters of Loch Ness can be used for the lower reservoir.

February 20, 2022 Posted by | Energy, Energy Storage | , , , , , , , , | 3 Comments

Repurposing The Affric/Beauly Hydro-Electric Scheme

The Affric/Beauly hydro-electric scheme was built in the 1950s and early 1960s, by the North of Scotland Hydroelectric Board.

  • The scheme is now owned by SSE Renewables and has a page on their web site.
  • There are six individual power stations; Mullardoch, Fasnakyle, Deanie, Culligran, Aigas and Kilmorack.
  • There are seven dams; Mullardoch, Benevean, Monar, Loichel, Beannacharan, Aigas and Kilmorack.

This map from the SSE Renewables web site shows the layout of the dams and power stations.

This description of the scheme is from Wikipedia.

The Affric / Beauly hydro-electric power scheme for the generation of hydro-electric power is located in the western Highlands of Scotland. It is based around Glen Strathfarrar, Glen Cannich and Glen Affric, and Strathglass further downstream.

The scheme was developed by the North of Scotland Hydro-Electric Board, with plans being approved in 1947.

The largest dam of the scheme is at Loch Mullardoch, at the head of Glen Cannich. From there, a tunnel takes water to Loch Beinn a’ Mheadhoinn (Loch Benevean) in Glen Affric, via a small underground power station near Mullardoch dam. Loch Benevean is also dammed, with a tunnel taking water to the main power station of Fasnakyle, near Cannich.

To the north in Glen Strathfarrar, Loch Monar is dammed, and a 9 km tunnel carries water to an underground power station at Deanie. Further down the glen, the River Farrar is dammed just below Loch Beannacharan, with a tunnel to take water to Culligran power station (also underground).

The River Farrar joins with the River Glass near Struy to form the River Beauly. Downstream on the River Beauly, dams and power stations have been built in gorges at Aigas and Kilmorack.

As the rivers in this scheme are important for Atlantic salmon, flow in the rivers is kept above agreed levels. The dams at Kilmorack, Aigas and Beannacharn contain Borland fish lifts to allow salmon to pass.

Note

  1. Culligran, Deanie and Mullardoch power stations are underground.
  2. Loch Beannacharan is the English name for Loch Beinn a’ Mheadhoin.
  3. The salmon impose a constraint on water levels.

The sizes of the power stations in the scheme are as follows.

  • Mullardoch – 2.4 MW
  • Fasnakyle – 69 MW
  • Deanie – 38 MW
  • Culligran – 19 MW
  • Aigas – 20 MW
  • Kilmorack – 20 MW

This gives a total power of 168.4 MW.

This Google Map shows the Western area of the SSE Renewables Map.

Note.

  1. The three lochs; Monar, Mullardoch and Beinn a’ Mheadhoin can be picked out on both maps.
  2. Fasnakyle, where the largest of the hydro-electric power stations in the Affric/Beauly scheme, is at the Eastern edge of the map about half-way up.
  3. The area doesn’t seem to have a large population.

This Google Map shows the location of Fasnakyle power station in more detail.

Note.

  1. Fasnakyle power station is in the South-West corner of the map. marked by a grey flag.
  2. It appears that all of the water that goes through the power station flows into the River Glass, Strathglass, which meanders its way towards Inverness on the bottom of what appears to be a broad valley.

This Google Map shows the next section of the river.

The River Glass, Strathglass joins the River Farrar near the top of the map an becomes the River Beauly.

This Google Map the River Beauly to Kilmorack.

Wikipedia says this about this section of the River Beauly.

The river is part of the Affric-Beauly hydro-electric power scheme, with dams and power stations at Aigas and Kilmorack. Both have 20MW generators and include fish ladders to allow salmon to pass, the Aigas fish ladder is open to visitors in the summer.

This last Google Map shows the Beauly Firth.

Note.

  1. Kilmorack is in the South-West corner of the map.
  2. The River Beauly flows into the Beauly Firth and ultimately out to see in the Moray Firth.
  3. The water flows past Inverness to the North.

It does strike me, that a lot of the water collected in the dams to the West of Fasnakyle, flows out to sea.

Strathclyde University And Pumped Storage Power For Scotland

This page on the Strathclyde University gives a list of the pumped storage potential for Scottish hydrogen-electric dams and power stations.

A figure is given for only one dam or power station in the Affric/Beauly scheme.

  • Fasnakyle – 78 GWh

That would be a lot of pumped storage.

Water Flows In The Affric/Beauly Scheme

Looking at the SSE Renewables map of the Conon scheme, water flows appear to be as follows.

  • Loch Monar to Loch Beannacharan via Deanie power station
  • Loch Beannacharan to River Beauly via Culligran power station
  • Lochs Mullardoch and Beinn a’ Mheadhoin both supply water to the Fasnakyle power station
  • Fasnakyle power station to River Beauly via the River Glass, Strathglass.
  • River Beauly to Beauly Firth via Aigas and Kilmorack power stations.

Note.

  1. Water from Loch Moray goes via Deanie , Culligran, Aigas and Kilmorack power stations on its journey to the sea.
  2. Water from Loch Mullardoch goes via Mullardoch , Fasnakyle, Aigas and Kilmorack power stations on its journey to the sea.
  3. Water from Loch Beinn a’ Mheadhoin goes via Fasnakyle, Aigas and Kilmorack power stations on its journey to the sea.

Fasnakyle, Aigas and Kilmorack power stations must work very hard.

Refurbishing And Repurposing The Affric/Beauly Scheme

Perhaps as the power stations are now over fifty years old, one simple way to increase the generating capacity of the Affric/Beauly scheme  might be to selectively replace the turbines, with modern turbines, that can generate electricity more efficiently.

I suspect that SSE Renewables have an ongoing program of improvements and replacements for all of their hydro-electric stations in Scotland. Some turbines at Sloy power station have already been replaced with larger ones.

I also suspect that the whole scheme has a very sophisticated control system.

Consider.

  • There is a need to control water levels to agreed minimum levels for the Atlantic salmon.
  • Hydro-electric power stations have the ability to get to full power quickly, to cover sudden demands for more electricity.
  • Electricity only needs to be generated if it can be used.
  • Water might be held in Lochs Mullardoch and Beinn a’ Mheadhoin, as a reserve, as it goes through three or four power stations when it is released.

Over the years, SSE Renewables will have developed very sophisticated control philosophies.

Adding Pumped Storage To The Affric/Beauly Scheme

To do this a source of fresh-water must be pumped into Loch Mullardoch or Beinn a’ Mheadhoin, when there is a surplus of electricity.

It looks from Google Maps, that the river system between Fasnakyle and Aigas power stations has been effectively turned into a canal.

  • I wonder, if it is deep enough to contain enough water to act as the lower level reservoir of a pumped-storage system.
  • The higher level reservoir would be Loch Mullardoch.
  • There would be a height difference of 200 metres.
  • Calculations show around 1850 cubic metres of water would need to be pumped into Loch Mullardoch to store one MWh.

So long as enough water is left for the salmon, I suspect that if a way of pumping water from the River Glass to Loch Mullardoch, that an amount of pumped-storage can be added.

Conclusion

There would appear to be only one scheme, but if it was built it could add over 50 GWh of pumped storage.

 

February 20, 2022 Posted by | Energy, Energy Storage | , , , , , , | 2 Comments

Repurposing The Conon Hydro-Electric Scheme

The Conon hydro-electric scheme was built in the 1950s, by the North of Scotland Hydroelectric Board.

  • The scheme is now owned by SSE Renewables and has a page on their web site.
  • There are six individual power stations; Achanalt, Grudie Bridge, Mossford, Luichart, Orrin and Torr Achilty.
  • There are six dams; Glascarnoch, Vaich, Luichart, Meig, Torr Achilty and Orrin.

This map from the SSE Renewables web site shows the layout of the dams and power stations.

The sizes of the power stations in the scheme are as follows.

  • Achanalt – 3 MW
  • Grudie Bridge – 18.6 MW
  • Mossford – 18.6 MW
  • Luichart – 34 MW
  • Orrin – 18 MW
  • Torr Achilty – 15 MW

This gives a total power of 107.2 MW.

This Google Map shows the same area as the SSE Renewables Map.

Note.

  1. Inverness is in the South-East corner of the map.
  2. The red arrow indicates the Western end of Loch Luichart.
  3. Loch Fannich is the large loch to the West of Loch Luichart.
  4. Loch Glascarnoch is the East-West loch to the North of Loch Luichart
  5. Loch Vaich is the North-South loch to the North of Loch Glascarnoch.

Is Inverness a City substantially powered by renewables?

Strathclyde University And Pumped Storage Power For Scotland

This page on the Strathclyde University gives a list of the pumped storage potential for Scottish hydrogen-electric dams and power stations.

These figures are given for the dams and lochs in the Conon scheme.

  • Glascarnoch – 23 GWh
  • Luichart – 38 GWh
  • Fannich – 70 GWh

It would appear that based on research from Strathclyde University, that the Conon scheme could support up to 131 GWh of pumped storage.

This Google Map shows the three lochs and Loch Vaich.

Note.

  1. Lochs Fannich and Luichart are named.
  2. Loch Glascarnoch is the East-West loch to the North of Loch Luichart
  3. Loch Vaich is the North-South loch to the North of Loch Glascarnoch.
  4. The locations of several power stations are shown.
  5. Cuileig is a 3.2 MW power station built in 2002.

This Google Map shows Loch Fannich.

Wikipedia says this about the loch.

Loch Fannich was dammed and its water level raised as part of the Conon Hydro-Electric Power Scheme, built by the North of Scotland Hydro-Electric Board between 1946 and 1961. An underground water tunnel leading from Loch Fannich to the Grudie Bridge Power Station required blasting out a final mass of rock beneath the loch, a procedure which was referred to popularly as “Operation Bathplug”.

The dam appears to be at the Eastern end of the loch, as this Google Map shows.

I wouldn’t be surprised to find that to obtain the potential 70 GWh of storage, that the dam will need to be raised.

This Google Map shows Loch Glascarnoch.

Loch Glascarnoch may be more difficult to expand, as a road runs along the Southern side of the loch.

This Google Map shows Loch Luichart

Lock Luichart may have possibilities as it is wide and could be deep.

But it will all be about the shape of the loch and the mathematics of the water.

Water Flows In The Conon Scheme

Looking at the SSE Renewables map of the Conon scheme, water flows appear to be as follows.

  • Loch Vaich to Loch Glascornoch
  • Loch Droma to Loch Glascornoch
  • Loch Glascornoch to Loch Luichart via Mossford power station
  • Loch Fannich to Loch Luichart via Grudie Bridge power station
  • Loch Achanalt to Loch Luichart via Anchanalt power station
  • Loch Meig to Loch Luichart
  • Loch Luichart to Loch Achonachie via Luichart power station
  • Orrin Reservoir to Loch Achonachie  via Orrin power station
  • Loch Achonachie  to River Conon and eventually the Cromarty Firth via Torr Achilty power station

Note that all the power stations date from the 1950s.

Repurposing The Conon Scheme

Perhaps as the power stations are now over sixty years old, one simpler way to both increase the generating capacity of the Conon scheme and add a degree of pumped storage might be to selectively replace the turbines, with modern pump/turbines, that can both generate electricity and pump the water back up into the mountains.

It should also be noted that Loch Vaich, Loch Glascornoch, Loch Fannich and the Orrin Reservoir are all about 250 metres above sea level, with the others as follows.

  • Loch Achanalt – 111 metres
  • Loch Luichart – 56 metres
  • Loch Meig – 87 metres
  • Loch Achonachie  – 30 metres

Loch Droma is the highest loch at 270 metres.

These height differences could create opportunities to put in extra tunnels and power or pumping stations between the various levels.

As water pumped to a greater height has a higher potential energy, perhaps it would be an idea to give Loch Droma, which is the highest loch, a bigger role.

Conclusion

I believe these improvements are possible.

  • Adding a pumped storage facility to the Conon hydro-electric scheme, with a capacity of upwards of 30-40 GWh.
  • Increasing the generating capacity by replacing the elderly turbines.
  • Improving control of the scheme, by replacing 1950s control systems.

It may even be possible to substantially improve the performance of the scheme without any expensive rock tunnelling.

 

 

 

 

 

February 19, 2022 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

A Possible Balmacaan Pumped Storage System

This article on Power Technology is entitled SSE Proposes Loch Ness Hydro Power Plant.

These are the first three paragraphs.

Scottish and Southern Energy (SSE) has begun consultations to develop a 600MW hydro electric power plant on the shores of Loch Ness in Scotland.

SSE proposes to build a pumped storage scheme on the Balmacaan Estate between Invermoriston and Drumnadrochit.

The plan also includes construction of a dam and a new reservoir at Loch nam Breac Dearga, north-east of Invermoriston, according to Inverness-courier.co.uk.

This Google Map shows the location of Loch nam Breac Darga.

Note.

  1. Loch Ness runs diagonally across the map.
  2. Invermoriston is in the South-West corner of the map.
  3. Loch nam Breac Darga is marked by the red arrow and is 452 metres above sea level.
  4. Drumnadrochit is at the North of the map, just to the West of Urquhart Castle.
  5. The Foyers Pumped Hydro scheme, which I wrote about in The Development Of The Foyers Pumped Storage Scheme is on the opposite bank of Loch Ness from Loch nam Breac Darga.

This could be Scotland’s largest hydro-electric plant.

I can’t find a value for the amount of energy that can be stored, but I suspect it could be in the order of 15-20 GWh.

The stories about this project seem to be thin on the ground, so could it be that this project has been placed on the back burner by SSE.

February 19, 2022 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

Up To 24GW Of Long Duration Storage Needed For 2035 Net Zero Electricity System – Aurora

The title of this post, is the same as that of this article on Current News.

This the first three paragraphs.

Deploying large quantities of long duration electricity storage (LDES) could reduce system costs and reliance on gas, but greater policy support is needed to enable this, Aurora Energy Research has found.

In a new report, Aurora detailed how up to 24GW of LDES – defined as that with a duration of four hours or above – could be needed to effectively manage the intermittency of renewable generation in line with goals of operating a net zero electricity system by 2035. This is equivalent to eight times the current installed capacity.

Additionally, introducing large quantities of LDES in the UK could reduce system costs by £1.13 billion a year in 2035, cutting household bills by £26 – a hot topic with energy bills on the rise as a result of high wholesale power prices.

The report also says that long duration storage could cut carbon emissions by ten million tonnes of carbon dioxide per year.

I feel strongly, that this is a target we will achieve, given that there are at least four schemes under development or proposed in Scotland.

It certainly looks like the Scots will be OK, especially as there are other sites that could be developed according to SSE and Strathclyde University.

We probably need more interconnectors as I wrote about in New Electricity ‘Superhighways’ Needed To Cope With Surge In Wind Power.

There are also smaller long duration storage systems under development, that will help the situation in the generally flatter lands of England.

One of them; ReEnergise, even managed to sneak their advert into the article.

Their high density hydro could be a good way to store 100 MWh or so in the hills of England. As they could be designed to fit into and under the landscape, I doubt their schemes would cause the controversy of other schemes.

Conclusion

I think we’ll meet the energy storage target by a wide margin.

February 18, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , | 1 Comment

New Electricity ‘Superhighways’ Needed To Cope With Surge In Wind Power

The title of this post, is the same as that of this article on the Telegraph.

This is the first two paragraphs.

Energy companies are pushing for the rapid approval of new electricity “superhighways” between Scotland and England amid fears that a lack of capacity will set back the country’s wind power revolution.

Businesses including SSE and Scottish Power are calling on the industry regulator Ofgem to approve a series of major new north-south power cables in a bid to ease congestion on the existing electricity network.

These points are mentioned in the article.

  • Current capacity is 6 GW, which even now is not enough.
  • Another 17 GW of capacity will be needed by 2033.
  • Wind farms in Scotland have been switched off and replaced by gas-fired power stations because of a lack of grid capacity.
  • Another 25 GW of wind farms could be built after leases were awarded last month.

Two North-South interconnectors are being planned.

Peterhead And Drax

This is being proposed by SSE and National Grid.

  • It will be an undersea cable.
  • It will be two cables, each with a capacity of 2 GW.
  • Peterhead and Drax power station are four hundred miles apart by road and 279 miles as the seagull flies, as a lot of the route would be over the sea. So an undersea connection would appear to be sensible.
  • Peterhead is on the coast, so connecting an undersea interconnector shouldn’t be too challenging or disruptive to the locals.
  • Drax power station is a 4 GW power station and the largest in the UK, so it must have good grid connections.

This Google Map shows the location of Drax power station in relation to Hull, Scunthorpe and the rivers in the area.

Note.

  1. Drax is marked by the red arrow in the West of the map.
  2. The large body of water in the East is the Humber Estuary.
  3. Hull is on the North Bank of the Humber.
  4. Scunthorpe, which is famous for its steel industry is South of the Humber in the middle of the map.
  5. To the West of Scunthorpe the Humber splits into the Trent and the Ouse.
  6. The Ouse leads all the way to Drax power station.

I suspect an undersea cable could go up the Humber and Ouse to Drax power station.

Is it a coincidence that both Drax power station and the proposed link to Peterhead are both around 4 GW?

Consider.

  • Drax is a biomass power station, so it is not a zero carbon power station.
  • Drax produces around six percent of the UK’s electricity.
  • Most of the biomass comes by ship from North America.
  • Protest groups regularly have protests at Drax because of its carbon emissions.
  • Drax Group are experimenting with carbon capture.
  • Drax is a big site and a large energy storage system could be built there.
  • Wind is often criticised by opponents, saying wind is useless when the wind doesn’t blow.
  • The Scots would be unlikely to send power to England, if they were short.

This is also said about Drax in Wikipedia.

Despite this intent for baseload operation, it was designed with a reasonable ability for load-following, being able to ramp up or down by 5% of full power per minute within the range of 50–100% of full power.

I take this it means it can be used to top up electricity generation to meet demand. Add in energy storage and it could be a superb load-follower.

So could the similar size of the interconnector and Drax power station be deliberate to guarantee England a 4 GW feed at all states of the wind?

I don’t think it is a coincidence.

Torness And Hawthorn Pit And Torness and South Humberside

These two cables are being proposed by Scottish Power.

  • Each will be two GW.
  • Torness is the site of the 1.36 GW Torness nuclear power station, which is likely to be decommissioned before 2030.
  • Torness will have good grid connections and it is close to the sea.
  • Hawthorn Pit is a large closed coal mine to the North of Newcastle, with a large substation close to the site. I suspect it will be an ideal place to feed power into the grid for Newcastle and it is close to the sea.
  • Just South of Hawthorn Pit are the 1.32 GW Hartlepool nuclear power station, which will be decommissioned in 2024 and the landfall of the cables to the massive Dogger Bank wind farm.
  • As I showed earlier with Drax, the Humber would be an ideal estuary to bring underwater power cables into the surrounding area. So perhaps the cable will go to Scunthorpe for the steelworks.
  • As at Drax, there is backup in South Humberside, but here it is from the two Keadby gas-fired power stations.

The article in the Telegraph only gives the briefest of details of Scottish Power’s plans, but I suspect, that given the locations of the ends of the interconnectors, I suspect the cables will be underwater.

Conclusion

It strikes me that all three interconnectors have been well thought thought and they serve a variety of objectives.

  • Bring Scottish wind power, South to England.
  • Connect wind farms to the two nuclear power station sites at Hartlepool and Torness, that will close at the end of the decade.
  • Allow the big 4 GW biomass-fired station at Drax to back up wind farms and step in when needed.
  • Cut carbon emissions at Drax.
  • Use underwater cables as much as possible to transfer the power, to avoid the disruption of digging in underground cables.

It looks to be a good plan.

February 13, 2022 Posted by | Energy | , , , , , , , , , , , , , , | 9 Comments

SSE Renewables Launches 1.5GW Coire Glas Construction Tender

The title of this post, is the same as that of this article on renews.biz.

These are the first two paragraphs.

Hydro construction companies have been invited to submit tenders for construction of SSE Renewables’ proposed 1500MW pumped hydro storage scheme at Coire Glas, in Scotland.

Coire Glas, on the shores of Loch Lochy near Invergarry, would be the first large-scale pumped hydro storage scheme to be built in the United Kingdom for more than 30 years.

There appears to be global interest and six shortlisted bidders.

  • The ANDRITZ HYDRO and Voith Hydro partnership
  • The Bechtel, Acciona Construcción and Webuild S.p.A consortium
  • The BAM Nuttall, Eiffage Génie Civil and Marti Tunnel consortium
  • The Dragados and BeMo Tunnelling UK consortium
  • GE Hydro France
  • STRABAG UK

Bidders like these probably wouldn’t bother to get involved unless they knew that funding of the project was in place and it was pretty certain that the project will be constructed.

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I talk about how Aviva are funding the Hornsea wind farm.

I believe, that insurance and pension companies like abrdn, Aviva and L & G could find a way of financing a scheme like Coire Glas.

Conclusion

It looks to me, that it’s almost certain that Scotland will get a 1.5GW/30 GWh pumped-storage system at Coire Glas.

Coire Glas could supply slightly more power than Sizewell B nuclear power station for twenty hours.

Now that’s what I call backup!

February 5, 2022 Posted by | Energy, Energy Storage, Finance | , , , , , | 3 Comments

Power Storage Is The Next Big Net Zero Challenge

The title of this post, is the same as that of this Opinion from Bloomberg.

This is the sub-heading.

Britain’s pioneering plans for renewable energy show the global need could be massive. The means don’t yet exist.

The opinion is very much a well-written must-read.

One new project the article mentions is a 30 GWh pumped storage project at Coire Glas in the Scottish Highlands, that is planned by SSE.

I discuss this scheme in The Coire Glas Pumped Storage Scheme.

 

Bloomberg didn’t say it, but this pumped storage scheme could give the UK energy security.

February 4, 2022 Posted by | Energy, Energy Storage | , , , , , | 9 Comments

Is Carbon Dioxide Not Totally Bad?

To listen to some environmentalists, there views on carbon dioxide are a bit like a variant of George Orwell’s famous phrase Four legs good, two legs bad from Animal Farm, with carbon dioxide the villain of the piece.

I have just read the Wikipedia entry for carbon dioxide.

For a start, we mustn’t forget how carbon dioxide, water and sunlight is converted by photosynthesis in plants and algae to carbohydrates, with oxygen given off as waste. Animals like us then breathe the oxygen in and breathe carbon dioxide out.

Various web sites give the following information.

  • The average human breathes out 2.3 pounds of carbon dioxide per day.
  • As of 2020, the world population was 7.8 billion.

This means humans breathe out 17.94 billion pounds of CO2 per day

This equates to 6548.1 billion pounds per year or 2.97 billion tonnes per year.

And I haven’t counted all the other animals like buffalo, cattle, elephants and rhinos, to name just a few large ones.

Wikipedia also lists some of the Applications of carbon dioxide.

  • Precursor To Chemicals – Carbon dioxide can be one of the base chemicals used to make other important chemicals like urea and methanol.
  • Foods – Carbon dioxide has applications in the food industry.
  • Beverages – Carbon dioxide is the fizz in fizzy drinks.
  • Winemaking – Carbon dioxide has specialist uses in winemaking.
  • Stunning Animals – Carbon dioxide can be used to ‘stun’ animals before slaughter.
  • Inert Gas – carbon dioxide has several uses, as it is an inert gas.
  • Fire Extinguisher – Carbon dioxide is regularly used in fire extinguishers and fire protection systems.
  • Bio Transformation Into Fuel – It has been proposed to convert carbon dioxide from power stations  into biodiesel using a route based on algae.
  • Refrigerant – Carbon dioxide can be used as a refrigerant. It was used before CFCs were developed and I know of a large Victorian refrigeration system on a farm in Suffolk, used on a store for apples, that still is in regular use that uses carbon dioxide.
  • Dry Ice – The solid form of carbon dioxide has lots of applications, where cooling is needed.

Other important applications are under development.

  • Agriculture – Carbon dioxide is piped to greenhouses to promote growth of crops. It is also used at higher concentrations to eliminate pests.
  • Low Carbon Building Products – Companies like Mineral Carbonation International are developing ways of creating building products from carbon dioxide.
  • Synthetic Rubber – Research is ongoing to create replacements for synthetic rubber.

I can only assume, that the demand for gaseous carbon dioxide will increase, as scientists and engineers get more innovative about using the gas.

Solving A Shortage Of Carbon Dioxide

At the present time, there is shortage of carbon dioxide, that I wrote about in Food Shortages Looming After Factory Closures Hit Production.

In the related post, I said this.

Perhaps we should fit carbon capture to a handy gas-fired power station, like SSE are planning to do at Keadby and use this carbon dioxide.

Consider.

  • The Keadby complex of gas-fired power stations is close to a lot of depleted gas fields, some of which are in Lincolnshire and some are off-shore.
  • Some gas fields are already being used to store natural gas imported from Norway.
  • SSE plan to fit the later power stations with carbon capture.

I talk about SSE’s plans in Energy In North-East Lincolnshire.

If SSE were to build four large gas-fired power stations at Keadby, I calculated that they would produce 5.4 million tonnes of carbon dioxide per year.

It could be used or stored in depleted gas fields according to demand.

But the complex at Keadby would not release any carbon emissions.

Could Carbon Capture Be A Nice Little Earner?

If demand for carbon dioxide continues to rise, I could see power companies installing carbon capture on gas-fired power stations to generate an extra income stream.

Incidentally, there are 55 operational gas-fired power stations in the UK, that can generate a total of 30 GW, which are owned by perhaps ten different companies.

Development of carbon capture systems could be helped by Government subsidy.

Conclusion

I have long forgotten all the calculations I did with gases, but I do know that when one molecule of methane combusts it produces two molecules of water and one of carbon dioxide.

So I am fairly convinced that if you took X cubic kilometres of natural gas out of a gas field, after combustion there wouldn’t be anything like as much volume of carbon dioxide to put back, specially if a proportion could be used profitably in other processes.

If we are going to use gas to generate zero-carbon power, we probably need to do it with gas fields under our control either onshore or in the seas around our coasts. This is because the depleted gas fields can be used to store the carbon.

Gas-fired power stations with carbon capture supporting industries that need supplies of carbon dioxide will become a large part of our energy economy.

 

September 18, 2021 Posted by | Energy, World | , , , , , , , , | 1 Comment

Uniper To Make Wilhelmshaven German Hub For Green Hydrogen; Green Ammonia Import Terminal

The title of this post, is the same as that of this article on Green Car Congress.

This is the first two paragraphs.

Under the name “Green Wilhelmshaven,” Germany-based international energy company Uniper plans to establish a German national hub for hydrogen in Wilhelmshaven and is working on a corresponding feasibility study.

Plans include an import terminal for green ammonia. The terminal will be equipped with an ammonia cracker for producing green hydrogen and will also be connected to the planned hydrogen network. A 410-megawatt electrolysis plant is also planned, which—in combination with the import terminal—would be capable of supplying around 295,000 metric tons or 10% of the demand expected for the whole of Germany in 2030.

I can’t help feeling that there is some bad thinking here.

The Wikipedia entry for ammonia, says this about green ammonia.

Even though ammonia production currently creates 1.8% of global CO2 emissions, a 2020 Royal Society report claims that “green” ammonia can be produced by using low-carbon hydrogen (blue hydrogen and green hydrogen). Total decarbonization of ammonia production and the accomplishment of net-zero targets are possible by 2050.

So why is green ammonia imported rather than green hydrogen, which may have been used to manufacture the ammonia?

Green ammonia would appear to have two main uses in its own right.

  • As a feedstock to make fertiliser and other chemicals.
  • As a possible fuel for large ships, which could also be powered by hydrogen.

The only thing, I can think of, is that as liquid hydrogen boils at -253 ° C and liquid ammonia at -33 ° C, ammonia may be easier to transport by ship.

It may make a better fuel for large ships for the same reason.

This policy briefing from The Royal Society is entitled Ammonia: Zero-Carbon Fertiliser, Fuel And Energy Store.

This is the introductory paragraph.

This policy briefing considers the opportunities and challenges associated with the manufacture and future use of zero-carbon or green ammonia.

It is an excellent explanation of green ammonia and a must read.

Hydrogen for Wilhelmshaven

On the other hand, Wilhelmshaven, which is situated on Germany’s North West Coast would be in a good position to be a terminal for a hydrogen pipeline or electrical interconnector from the Dogger Bank, where both the Netherlands and the UK have plans for some of the largest windfarms in the world.

The UK’s Dogger Bank Wind Farm, which is being developed by SSE, looks to have an initial capacity of 4.8 MW, whereas the North Sea Wind Power Hub, being developed by the Danes, Dutch and Germans on their side of the Dogger Bank could be rated at up to 110 GW.

Wikipedia says this about how the two huge projects could be connected.

The power hub would interconnect the three national power grids with each other and with the Dogger Bank Wind Farm.

We could be seeing a 200 GW power station in an area of the sea, generally only known to those who listen to the shipping forecasts and fans like Marti Caine.

Under a section in the Wikipedia entry for the North Sea Wind Power Hub, which is entitled the North Sea Wind Power Hub Consortium, these points are made.

  • It is hoped that Norway, the United Kingdom, and Belgium will join the consortium.
  • Dutch gas-grid operator Gasunie has joined the consortium, suggesting converting wind power to gas and using near offshore gas infrastructure for storage and transport.
  • The Port of Rotterdam became the fifth member of the consortium.

This looks like a party, where some of our North Sea gas fields and infrastructure, lying in the triangle of the Humber, Teesside and the Dogger Bank could add a lot of value.

We could even see hydrogen generated in the European Eastern part of the Dogger Bank, stored in a worked-out gas field in the UK sector of the North Sea and then when needed, it could be pumped to Germany.

A 410 Megawatt Electrolyser

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would produce just 5.6 percent of the hydrogen of the Wilhelmshaven electrolyser

In H2 Green Steel Plans 800 MW Hydrogen Plant In Sweden, I wrote about a 800 MW electrolyser, that would produce 380 tonnes of hydrogen per day.

It looks like the Wilhelmshaven  electrolyser is very much a middle-sized one and would produce around 65,000 tonnes per year.

Conclusion

It looks like the Germans will be importing lots of green ammonia and green hydrogen from the North Sea.

April 18, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , , | 8 Comments