The Anonymous Widower

Scotland’s Energy Storage

I have been using the web sites of Drax Group, SSE Renewables and ILI Group, and this page from Strathclyde University to look at various hydro-electric schemes to store energy using the tried-and-tested method of pumped hydro.

I have analysed these schemes.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

Situated about 16 kilometres to the west of Inverness, Beauly is the gateway to the Affric/Beauly hydro electric scheme.

Currently, it generates a maximum power of 100.3 MW.

My analysis in Repurposing The Affric/Beauly Hydro-Electric Scheme, showed the following.

  • Research from Strathclyde University, says that the Affric/Beauly scheme could support 78 GWh of pumped storage in one scheme at Fasnakyle.
  • Adding pumped storage facilities to the Affric/Beauly hydro-electric scheme, with a capacity of upwards of a conservative 50 GWh, should be possible.

Generating capacity and system operation could be improved by replacing some or all of the 1950s and 1960s turbines with modern units and using modern control systems.

The Affric/Beauly hydro-electric scheme could be augmented by upwards of 50 GWh of storage.


This new scheme is being developed by the ILI Group.

From what is published in the press. it appears to be a giant 1.5 GW/45 GWh project.

In Thoughts On The Balliemeanoch Pumped-Hydro Scheme, I analyse the plan.

The Balliemeanoch hydro-electric scheme could add 45 GWh of storage.


This new scheme is being developed by SSE Renewables.

My searches in A Possible Balmacaan Pumped Storage System, showed the following.

It has a 600 MW generating capacity and I suspect would have about 15-20 GWh of storage.

The Balmacaan hydro-electric scheme could conservatively add upwards of 15 GWh of storage.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

The Breadalbane scheme is set in the mountainous region around Loch Lyon, Loch Tay and Loch Earn in Perthshire.

Currently, it generates a maximum power of 168.4 MW.

My analysis in Repurposing The Breadalbane Hydro-Electric Scheme, showed the following.

  • Research from Strathclyde University, says that the Breadalbane scheme could support 12 GWh of pumped storage in one scheme at Ben Lawers.
  • I believe a similar scheme could be built South of Loch Tay to add a similar amount of pumped storage capacity.

As with the Beauly/Affric scheme, generating capacity and system operation could be improved by replacing some or all of the 1950s and 1960s turbines with modern units and using modern control systems.

The Breadalbane hydro-electric scheme could be augmented by upwards of 12 GWh of storage.

Coire Glass

This new scheme is being developed by SSE Renewables and the project has its own web site, which introduces the scheme like this.

Coire Glas is a hydro pumped storage scheme with a potential capacity of up to 1500MW. Coire Glas is an excellent pumped storage site with a large lower reservoir (Loch Lochy) and a significant elevation of more than 500m between the lower and the new upper reservoir site over a relatively short distance.

It is planned to generate a maximum power of up to 1.5 GW for twenty hours, which indicates an energy storage capacity of 30 GWh.

In SSE Renewables Launches 1.5GW Coire Glas Construction Tender, I talk about the current status of the project.

The Coire Glas hydro-electric scheme could add 30 GWh of storage.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

The Conon scheme lies within the northwest Highlands, broadly between Inverness and Ullapool. Electricity generation started here when the Ross-shire Electricity Supply Company built the small Falls of Conon hydro electric power station in the 1920s.

Currently, it generates a maximum power of 107.2 MW.

My analysis in Repurposing The Conon Hydro-Electric Scheme, showed the following.

  • Research from Strathclyde University, says that the Conon scheme could support up to 131 GWh of pumped storage.
  • Adding pumped storage facilities to the Conon hydro-electric scheme, with a capacity of upwards of a conservative 30-40 GWh, should be possible.

As with other schemes, generating capacity and system operation could be improved by replacing some or all of the 1950s turbines with modern units and using modern control systems.

The Conon hydro-electric scheme could be augmented by upwards of 30 GWh of storage.


This new scheme is being developed by the ILI Group.

From the planning application it appears to be a 600 MW/14.5 GWh project.

In Corrievarkie Pumped Storage Hydro Project, I analyse the plan.

The Corrievarkie hydro-electric scheme could add 14.5 GWh of storage.


Cruachan is a pumped-storage power station, that is owned by Drax, which have a comprehensive web site for the power station.

  • It has an output of 440 MW.
  • It has an energy storage capacity of 7.1 GWh
  • It can can reach full generating capacity in less than 30 seconds.

In Drax’s Plans For Cruachan, I analyse Drax’s plans, which they call Cruachan 2.

  • It will be a 600 MW power station.
  • It will be to the East of the current power station.
  • More than a million tonnes of rock would be excavated to build the power station.

The existing upper reservoir, which can hold 2.4 billion gallons of water, has the capacity to serve both power stations.

These was my conclusions.

It looks like very good engineering to me.

  • There is a good chance, that on most nights, the reservoir will be filled using wind energy
  • The maximum output of the Cruachan power station has been more than tripled from 323 to 1010 MW.
  • There has been no increase in the size of the Cruachan reservoir.

Scotland will now have a GW-sized hydro-electric power station.

It will not be very much smaller than Sizewell B nuclear station.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

The current Foyers Power Station operates quite differently to conventional hydro electric power stations. Foyers hydro scheme consists of one pumped hydro power station and one hydro power station and one major dam..

Currently, it generates a maximum power of 305 MW.

My research and analysis in The Development Of The Foyers Pumped Storage Scheme, showed the following.

  • Foyers is a modern pumped-hydro scheme with a capacity of 10 GWh.
  • The updating of the original 1896 hydro-power station to a modern pumped-storage system in 1974 is a superb example of hydro-power engineering.

The development of Foyers power station is an example, that shows what can be done in other hydro-electric schemes around Scotland and the rest of the world.


Galloway is a hydroelectric scheme, that is owned by Drax, which have a comprehensive web site for their two hydroelectric schemes in Scotland; Galloway and Lanark.

  • Galloway has a total output of 109 MW.
  • It has six power stations at Drumjohn, Kendoon, Carsfad, Earlstoun, Glenlee and Tongland.
  • There is no energy storage
  • It is what is known as a run-of-the-river scheme.

The scheme opened in the 1930s.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

In 2009, the first major hydro electric power station to be built in Scotland for almost 30 years, Glendoe on the eastern shore of Loch Ness, began generating electricity.

Currently, it generates a maximum power of 106.5 MW.

My analysis in Glendoe Hydro Power Station, led me to conclude, that engineers will look at this scheme built in the early years of this century to convert it to a pumped storage facility. It might even have been designed for conversion to a pumped storage station, as it was built after the successful conversion of Foyers power station. Comparing the size of the upper lake to Foyers and other schemes, I would estimate it could easily provide in excess of 15 GWh of storage.

The Glendoe hydro-electric scheme could be augmented by upwards of 15 GWh of storage.


This is a small scheme promoted by Buccleuch, that generates 4 MW and stores 1.6 GWh in a disused opencast coal mine.

My analysis in The Glenmuckloch Pumped Storage Scheme, led me to this conclusion.

This project appears to have stalled, but I do like the idea of using a disused mine to store energy and the engineering behind the project.

I will ignore it in my conclusions of this post.

Great Glen

The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

The Great Glen runs for more than 100 kilometres from Inverness in the northeast, to Fort William in the southwest, following a geological fault line that divides north and south Scotland.

Currently, it generates a maximum power of 112.7 MW.

My analysis in Repurposing The Great Glen Hydro-Electric Scheme, showed the following.

  • Research from Strathclyde University, says that the Great Glen scheme could support up to 90 GWh of pumped storage.
  • Adding pumped storage facilities to the Great Glen hydro-electric scheme, with a capacity of upwards of a conservative 30 GWh, should be possible.

As with other schemes, generating capacity and system operation could be improved by replacing some or all of the 1950s and 1960s turbines with modern units and using modern control systems.

The Great Glen hydro-electric scheme could be augmented by upwards of 30 GWh of storage.


Lanark is a hydroelectric scheme, that is owned by Drax, which have a comprehensive web site for their two hydroelectric schemes in Scotland; Galloway and Lanark.

  • Lanark has a total output of 17 MW.
  • It has two power stations at Bonnington and Stonebyres.
  • There is no energy storage
  • It is what is known as a run-of-the-river scheme.

The scheme opened in the 1920s.

Red John

This new scheme is being developed by ILI Group and the project has its own web site, which introduces the scheme like this.

Between 2007 and 2015, the total installed capacity of renewables electricity in Scotland has more than doubled. Due to its intermittent nature, the rise in renewable generation has resulted in increased demand for flexible capacity to help meet energy balancing requirements for the national grid system.

Pumped storage hydro is considered by the Directors to be the most developed and largest capacity form of grid energy storage that currently exists. This can help reduce renewable energy curtailment and therefore promote grid stability.

The web site says this about the project.

  • The scheme has an output of 450 MW.
  • The storage capacity is 2.8 GWh.
  • The scheme has planning consent.
  • The project is budgeted to cost £550 million.
  • The construction program indicates that the scheme will be completed by the end of 2025.

It also has very detailed maps.

I wrote about the project in Red John Pumped Storage Hydro Project, where I came to these conclusions.

  • This scheme has the output of a large gas-fired power station for just over six hours.
  • The finances must add up, as no-one would back a scheme like this if they didn’t get an adequate return on their money.

It may only be a small scheme, that is a quarter of the size of the existing nearby Foyers pumped-storage scheme, but as it is shovel-ready, we should start digging.

The Red John hydro-electric scheme would add 2.8 GWh of storage.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

Shin is Scotland’s most northerly hydro electric scheme. It utilises water from a 650 square kilometre catchment area in Sutherland, including Loch Shin, and water from the River Cassley and River Brora.

Currently, it generates a maximum power of 32.1 MW.

My analysis in Shin Hydro Power Scheme, showed the following.

  • I would be very surprised if any pumped storage were to be added to this scheme.
  • This 1950s scheme has been partially updated.

Perhaps some more updating would be worthwhile.


The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

With the exception of Cruachan Power Station which was commissioned in 1965, major work on the Sloy/Awe scheme was completed by 1963, the year the Beatles had their first No 1 hit with From Me To You – and a world away from the immediate post-war austerity being experienced when Sloy Power Station was commissioned just 14 years earlier.

Currently, it generates a maximum power of 261.9 MW.

My analysis in Repurposing The Sloy/Awe Hydro-Electric Scheme, showed the following.

  • Research from Strathclyde University, says that the Sloy/Awe scheme could support up to 68 GWh of pumped storage.
  • Adding pumped storage facilities to the Sloy/Awe hydro-electric scheme, with a capacity of upwards of a conservative 40 GWh, should be possible.

As with other schemes, generating capacity and system operation could be improved by replacing some or all of the 1930s and 1950s turbines with modern units and using modern control systems.

The Sloy/Awe hydro-electric scheme could be augmented by upwards of 40 GWh of storage.

Tummel Valley

The scheme is now owned by SSE Renewables and has a page on their web site, which introduces the scheme like this.

The Tummel scheme stretches from Dalwhinnie, famous for its whisky distillery, in the north, to the remote Rannoch Station in the west, and the highly-popular tourist town of Pitlochry in the east.

Currently, it generates a maximum power of 309.2 MW.

My analysis in Repurposing The Tummel Hydro-Electric Scheme, showed the following.

  • Research from Strathclyde University, says that the Tummel Valley scheme could support up to 135 GWh of pumped storage.
  • Adding pumped storage facilities to the Tummel Valley hydro-electric scheme, with a capacity of upwards of a conservative 40-60 GWh, should be possible.

As with other schemes, generating capacity and system operation could be improved by replacing some or all of the 1930s and 1950s turbines with modern units and using modern control systems.

The Tummel Valley hydro-electric scheme could be augmented by upwards of 40 GWh of storage.

A Simple Summary

These are deliberately conservative figures from my analysis.

  • Affric/Beauly – 50 GWh
  • Balliemeanoch – 45 GWh
  • Balmacaan – 15 GWh
  • Breadalbane – 12 GWh
  • Coire Glas – 30 GWh
  • Conon – 30 GWh
  • Corrievarkie – 14.5 GWh
  • Glendoe – 15 GWh
  • Great Glen – 30 GWh
  • Red John – 2.8 GWh
  • Sloy/Awe – 40 GWh
  • Tummel Valley – 40 GWh


  1. With new storage like Balliemeanoch, Balmacaan, Coire Glas, Corrievarkie and Red John, I am using published figures where they are available.
  2. With figures from existing schemes,I am being deliberately very conservative.

That is a total of 324.3 GWh with 107.3 GWh down to new storage

Strathclyde University’s Prediction

This page on the Strathclyde University web site, gives these figures for the possible amounts of pumped-storage that can be added to existing schemes.

  • Errochty – 16
  • Glasgarnock – 23
  • Luichart – 38
  • Clunie – 40
  • Fannich – 70
  • Rannoch – 41
  • Fasnakyle – 78
  • Tummel – 38
  • Ben Lawers – 12
  • Nant – 48
  • Invermoriston – 22
  • Invergarry – 41
  • Quoich – 27
  • Sloy – 20

That is a total of 514 GWh or 621.3 GWh if you include new storage.


Scotland and the UK, has been left a superb legacy for the future by the pioneering work of Scottish engineers and the North of Scotland Hydroelectric Board.

Most of these assets are now in the hands of two groups; Scottish and Southern Energy (SSE) and Drax Group.

Having seen several of the schemes detailed in this post, in the last few weeks, on Michael Portillo’s; Great Coastal Railway Journeys, it does seem that both groups are looking after their assets.

SSE and Drax also seem to be doing their best to publicise the success of one of the UK’s high-value, but low-profile engineering assets.

I believe that we should do a survey that would identify the following.

  • What needs to be done to allow each aqueduct, dam, power station and tunnel to continue to function until a given date in the future.
  • Which of the individual schemes can be updated to larger schemes or pumped storage systems.

We would then be able to device a long term plan to create a world-class hydro-electric power scheme for Scotland.

Scotland should be able to provide upwards of 400 GWh of pumped-storage.

This article on Current News is entitled Up To 24GW Of Long Duration Storage Needed For 2035 Net Zero Electricity System – Aurora.

These are the first three paragraphs.

Deploying large quantities of long duration electricity storage (LDES) could reduce system costs and reliance on gas, but greater policy support is needed to enable this, Aurora Energy Research has found.

In a new report, Aurora detailed how up to 24GW of LDES – defined as that with a duration of four hours or above – could be needed to effectively manage the intermittency of renewable generation in line with goals of operating a net zero electricity system by 2035. This is equivalent to eight times the current installed capacity.

Additionally, introducing large quantities of LDES in the UK could reduce system costs by £1.13 billion a year in 2035, cutting household bills by £26 – a hot topic with energy bills on the rise as a result of high wholesale power prices.

The report also says that long duration storage could cut carbon emissions by ten million tonnes of carbon dioxide per year.

It appears to me, Scotland can provide more than enough energy storage for the UK and the Island of Ireland, even if the seas around the British Isles were almost completed covered by wind turbines.

In addition, to the works in Scotland to update the various hydroelectric schemes, there would need to be more interconnectors around the UK and probably to close countries like Belgium, Denmark, France, Germany, the Netherlands and Norway.

There could even be an interconnector between Iceland and Scotland, so Iceland’s abundance of zero-carbon electricity could be exported to Europe.




March 2, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , | 2 Comments

Do BP And The Germans Have A Cunning Plan For European Energy Domination?

The headline of this post may be slightly tongue in cheek, but I believe that a plan is being hatched.


I’ll start with a preamble, where I’ll outline some of the factors behind what may be happening.


It is generally accepted by most people that there is a need to decarbonise everything we do.

And large oil companies like Shell, BP and others are starting to move in the same direction.


Using hydrogen instead of fossil fuels is becoming one of the major routes to decarbonisation.

Hydrogen can be used for the following.

  • Provide power for cars, buses, trucks, trains, locomotives and ships.
  • Hydrogen can be used in steelmaking instead of coking coal.
  • As a chemical feedstock to make ammonia, fertiliser and a large range of petrochemicals.
  • I believe that hydrogen could be a viable fuel to power aircraft over thousands of miles.

Hydrogen will become the most common zero-carbon fuel.

Hydrogen  And Natural Gas

In many applications hydrogen can replace natural gas, so for large users of natural gas, hydrogen offers a route to decarbonisation.

But hydrogen can also be mixed up to a level of around twenty percent in natural gas for partial decarbonisation of applications like space heating. Most industrial uses, boilers and appliances can be made to work very successfully with this mixture.

I grew up in the 1950s with coal gas, which according to Wikipedia had this composition.

  • hydrogen 50%
  • methane 35%
  • carbon monoxide 10%
  • ethylene 5%
  • When we changed over in the 1970s, all my appliances were converted.

This is the UK government description of natural gas.

It contains primarily methane, along with small amounts of ethane, butane, pentane, and propane. Natural gas does not contain carbon monoxide. The by-products of burning natural gas are primarily carbon dioxide and water vapour. Natural gas is colourless, tasteless and odourless.

As with the conversion from coal-gas to natural gas, conversion from Natural gas to a hydrogen/natural  gas mixture and eventually to hydrogen, will be a relatively painless process.

Note that carbon monoxide is a nasty poison and is not contained in either natural gas or hydrogen.

Green Hydrogen And Electrolysis Of Water

Green hydrogen is hydrogen produced exclusively from renewable energy sources.

Typically green hydrogen is produced by electrolysis of water using electricity produced by hydro, solar, tidal or wind.

The largest factory building electrolysers is owned by ITM Power.

  • It is located in Rotherham.
  • The factory has the capacity to build 1 GW of electrolysers in a year.
  • Typical electrolysers have a capacity of several MW.

Ryze Hydrogen are building an electrolyser at Herne Bay, that  will consume 23 MW of solar and wind power and produce ten tonnes of hydrogen per day.

Blue Hydrogen

‘Blue hydrogen is produced through a production process where carbon dioxide is also produced then subsequently captured via carbon capture and storage. In many cases the carbon dioxide is stored in depleted gas fields, of which we have plenty in the North Sea. Over the last few years, research has been ongoing into using the carbon dioxide. Applications in horticulture and agriculture, carbon structures and sustainable aviation fuel are being developed.

Shell have also developed the Shell Blue Hydrogen Process, where the carbon is extracted from methane as carbon dioxide and then stored or used.

CO2 In Greenhouse Horticulture

This paper from The Netherlands is called CO2 In Greenhouse Horticulture.

Read it and you might believe me, when I say, we’ll eat a lot of carbon in the form of tomatoes, salads and soft fruit. We’ll also buy flowers grown in a carbon-dioxide rich atmosphere.

Hydrogen As An Energy Transfer Medium

Every kilogram of natural gas when it burns releases energy, as it does in your boiler or gas hob. So it transfers energy in the form of gas from the gas well or storage tank to your house.

Electricity can also be transferred from the power station to your house using wires instead of pipes.

Hydrogen is being put forward as a means of transferring energy over hundreds of miles.

  • Electricity is converted to hydrogen, probably using an electrolyser, which would be powered by zero-carbon electricity.
  • The hydrogen is transferred using a steel pipe.
  • At the destination, the hydrogen is either distributed to end-users, stored or used in a gas-fired power station, that has been modified to run on hydrogen, to generate electricity.

It sounds inefficient, but it has advantages.

  • Long underwater cables have energy losses.
  • Electrical connections use a lot of expensive copper.
  • Re-use of existing gas pipes is possible.
  • Oil and gas companies like BP and their contractors have been laying gas pipes on land and under water for decades.

If hydrogen has a problem as an energy transfer medium, it is that it us difficult to liquify, as this statement from Air Liquide illustrates.

Hydrogen turns into a liquid when it is cooled to a temperature below -252,87 °C. At -252.87°C and 1.013 bar, liquid hydrogen has a density of close to 71 kg/m3. At this pressure, 5 kg of hydrogen can be stored in a 75-liter tank.

To transport, larger quantities of hydrogen by ship, it is probably better to convert the hydrogen into ammonia, which is much easier to handle.

The Germans and others are experimenting with using liquid ammonia to power large ships.

Hydrogen As An Energy Storage Medium

The UK has a comprehensive National Transmission System for natural gas with large amounts of different types of storage.

This section of the Wikipedia entry is entitled Natural Gas Storage and lists ten large storage facilities in salt caverns and depleted onshore gas fields. In addition, several depleted offshore gas fields have been proposed for the storage of natural gas. Rough was used successfully for some years.

I can certainly see a network of hydrogen storage sites being developed both onshore and offshore around the UK.


With its large amount of hydro-electric and geothermal energy, Iceland can generate much more electricity, than it needs and has been looking to export it.

The UK is probably the only country close enough to be connected to Iceland to buy some of the country’s surplus electricity.

There has been a proposal called Icelink, that would build an electrical interconnector with a capacity of around a GW between Iceland at the UK.

But the project seems to have stalled since I first heard about it on my trip to Iceland in 2014.

Could the engineering problems just be too difficult?

The Waters Around The Northern Parts Of Great Britain

Look at a map of the UK and particularly Great Britain and there is a massive area of water, which is not short of wind.

Between Norway, Denmark, Germany, The Netherlands, the East Coast of England, the Northern Coasts of Scotland and Iceland, there are only a few islands.

  • Faroes
  • Orkney
  • Shetlands

To be complete we probably must include hundreds of oil and gas rigs and platforms and the Dogger Bank.

  • Oil and gas companies probably know most there is to know about these waters.
  • Gas pipelines connect the production platforms to terminals at Sullom Voe and along the East Coast from St. Fergus near Aberdeen to Bacton in Norfolk.
  • Many of the oil and gas fields are coming to the end of their working lives.

I believe that all this infrastructure could be repurposed to support the offshore wind industry.

The Dutch Are Invading The Dogger Bank

The Dogger Bank sits in the middle of the North Sea.

  • It is roughly equidistant from Norway, Denmark, the Netherlands and the UK.
  • The Western part is in UK territorial waters.
  • The Eastern part is mainly in Dutch territorial waters.

On the UK part, the Dogger Bank Wind Farm is being developed.

  • The turbines will be between 78 and 180 miles from the shore.
  • It could have a capacity of up to 5 GW.
  • It would be connected to East Yorkshire or Teesside.

On their side of the Dogger Bank, the Dutch are proposing the North Sea Wind Power Hub.

  • It is a collaboration between the Dutch, Germans, and Danes.
  • There have been reports, that up to 110 GW of turbines could be installed.
  • It will be connected to the Dogger Bank Wind Farm, as well as The Netherlands.

It is also planned that the connections to the Dogger Bank will create another interconnector between the UK and the Continent.

The Shetland Islands

The Shetland Islands are the only natural islands with a large oil and gas infrastructure in the waters to the North of Great Britain.

They have a large gas and oil terminal at Sullom Voe.

  • Oil is transported to the terminal by pipelines and tanker.
  • Oil is exported by tanker.
  • Gas is imported from oil and gas fields to the West of the islands through the West of Shetland Pipeline.
  • The gas-fired Sullom Voe power station provide about 80 MW of power to the islands.

This document on the APSE web site is entitled Future Hydrogen Production In Shetland.

It describes how the Shetland Islands can decarbonise and reposition themselves in the energy industry to be a major producer of hydrogen.

It gives these two facts about carbon emissions in the Shetlands Islands and Scotland.

  • Annual per capita CO2 emissions in the Shetland Islands are 17 tonnes.
  • In Scotland they are just 5.3 tonnes.

By comparison, the UK average is 5.55 and Qatar is 37.29.

Currently, the annual local market for road, marine and domestic fuel calculated
at around £50 million.

These are the objectives of the Shetland’s plan for future hydrogen production.

  • Supply 32TWh of low carbon hydrogen annually, 12% of the expected UK total requirement, by 2050
  • Provide more than 3GW of wind generated electrical power to Shetland, the UK grid, generating green hydrogen and electrification of the offshore oil and gas sector
  • Enable all West of Shetland hydrocarbon assets to be net zero by 2030 and abate 8Mt/year CO2 by 2050
  • Generate £5bn in annual revenue by 2050 and contribute significantly to the UK Exchequer.

They also envisage removing the topsides of platforms, during decommissioning of mature East of Shetland
oil fields and repurposing them for hydrogen production using offshore wind.

That is certainly a powerful set of ambitions.

This diagram from the report shows the flow of electricity and hydrogen around the islands, terminals and platforms.

Note these points about what the Shetlanders call the Orion Project.

  1. Offshore installations are electrified.
  2. There are wind turbines on the islands
  3. Hydrogen is provided for local energy uses like transport and shipping.
  4. Oxygen is provided for the fish farms and a future space centre.
  5. There is tidal power between the islands.
  6. There are armadas of floating wind turbines to the East of the islands.
  7. Repurposed oil platforms are used to generate hydrogen.
  8. Hydrogen can be exported by pipeline to St. Fergus near Aberdeen, which is a distance of about 200 miles.
  9. Hydrogen can be exported by pipeline to Rotterdam, which is a distance of about 600 miles.
  10. Hydrogen can be exported by tanker to Rotterdam and other parts of Europe.

It looks a very comprehensive plan!

The German Problem

Germany has an energy problem.

  • It is a large energy user.
  • It has the largest production of steel in Europe.
  • It prematurely shut some nuclear power stations.
  • About a quarter of electricity in Germany comes from coal. In the UK it’s just 1.2 %.
  • It is very reliant on Russian natural gas.
  • The country also has a strong Green Party.
  • Germany needs a lot more energy to replace coal and the remaining nuclear.
  • It also needs a lot of hydrogen to decarbonise the steel and other industries.

Over the last few months, I’ve written these articles.

Germany seems to have these main objectives.

  • Increase their supply of energy.
  • Ensure a plentiful supply of hydrogen.

They appear to be going about them with a degree of enthusiasm.

BP’s Ambition To Be Net Zero By 2050

This press release from BP is entitled BP Sets Ambition For Net Zero By 2050, Fundamentally Changing Organisation To Deliver.

This is the introductory paragraph.

BP today set a new ambition to become a net zero company by 2050 or sooner, and to help the world get to net zero. The ambition is supported by ten aims

The ten aims are divided into two groups.

Five Aims To Get BP To Net Zero

These are.

  1. Net zero across BP’s operations on an absolute basis by 2050 or sooner.
  2. Net zero on carbon in BP’s oil and gas production on an absolute basis by 2050 or sooner.
  3. 50% cut in the carbon intensity of products BP sells by 2050 or sooner.
  4. Install methane measurement at all BP’s major oil and gas processing sites by 2023 and reduce methane intensity of operations by 50%.
  5. Increase the proportion of investment into non-oil and gas businesses over time.

I would assume that by gas, they mean natural gas.

Five Aims To Help The World Get To Net Zero

These are.

  1. More active advocacy for policies that support net zero, including carbon pricing.
  2. Further incentivise BP’s workforce to deliver aims and mobilise them to advocate for net zero.
  3. Set new expectations for relationships with trade associations.
  4. Aim to be recognised as a leader for transparency of reporting, including supporting the recommendations of the TCFD.
  5. Launch a new team to help countries, cities and large companies decarbonise.

This all does sound like a very sensible policy.

BP’s Partnership With EnBW

BP seemed to have formed a partnership with EnBW to develop offshore wind farms in the UK

Their first investment is described in this press release from BP, which is entitled BP Advances Offshore Wind Growth Strategy; Enters World-Class UK Sector With 3GW Of Advantaged Leases In Irish Sea.

This is the first five paragraphs.

bp and partner EnBW selected as preferred bidder for two highly-advantaged 60-year leases in UK’s first offshore wind leasing round in a decade.

Advantaged leases due to distance from shore, lower grid cost, synergies from scale, and faster cycle time.

Projects expected to meet bp’s 8-10% returns aim, delivering attractive and stable returns and integrating with trading, mobility, and other opportunities.

Annual payments expected for four years before final investment decisions and assets planned to be operational in seven years.

In the past six months bp has entered offshore wind in the UK – the world’s largest market – and the US – the world’s fastest-growing market.


  1. EnBW are Energie Baden-Wuerttemberg AG, who, according to Wikipedia, are the third largest utilities company in Germany.
  2. It also appears, that EnBW have developed wind farms.

BP have issued this infographic with the press release.


  1. The lease areas don’t appear to be far from the Morecambe Bay gas field.
  2. The Morecambe Bay gas field is coming to the end of its life.
  3. The Morecambe Bay gas field is connected to the Rampside gas terminal at Barrow-in-Furness.
  4. At peak production 15 % of the UK’s natural gas came from Morecambe Bay.

I just wonder, if there is a cunning plan.

Could the platforms be repurposed to act as electrical hubs for the wind turbines?

  • 3GW of electricity would produce 55 tonnes of hydrogen per day.
  • The hydrogen would be exported to the Rampside gas terminal using the existing pipelines.
  • There may be savings to be made, as HVDC links are expensive.
  • BP either has the engineering to convert the platforms or they know someone who does.
  • Would the industrial complex at Barrow-in-Furnace and the nearby Sellafield complex have a use for all that hydrogen?
  • Or would the hydrogen be used to fuel Lancashire’s buses and trucks on the M6.

It certainly looks to me, that it could be a possibility, to bring the energy ashore as hydrogen.

BP Seeking Second Wind Off Scotland

The title of this section, is the same as that of this article in The Times.

These are the first two paragraphs.

BP is preparing to bid for the rights to build wind farms off Scotland as it signals no let-up in expansion after a £900 million splurge on leases in the Irish Sea.

The London-based oil giant caused waves in February by offering record prices to enter the UK offshore wind market through a Crown Estate auction of seabed leases off England and Wales.

As I said earlier.

  • The Shetland Islands are developing themselves as a giant hydrogen factory.
  • There are pipelines connecting platforms to the Sullom Voe Terminal.
  • There are plans to convert some of the redundant platforms into hydrogen production platforms.
  • The islands will be developing ways to export the hydrogen to the South and Europe.

BP also operates the Schiehallion oil and gas field to the West of the Shetlands, which is connected to the Sullom Voe Terminal by the West of Shetland pipeline.

Could BP and EnBW be coming to the party?

They certainly won’t be arriving empty-handed.

Does BP Have Access To Storage Technology?

I ask this question because both the Morecambe Bay and Shetland leases could be built with co-located depleted gas fields and offshore electrolysers.

So could hydrogen gas be stored in the gas fields?

I think it could be a possibility and would mean that hydrogen would always be available.

Could Iceland Be Connected To Schiehallion Via A Gas Pipeline?

I estimate that Iceland and Schiehallion would be about six hundred miles.

This wouldn’t be the longest undersea gas pipeline in the world as these two are longer.

The Langeled pipeline cost £1.7 billion.


I think there’s more to the link-up between BP and EnBW.

I am fairly certain, that BP are thinking about converting some redundant gas platforms into hubs for wind turbines, which use the electricity to create hydrogen, which is then exported to the shore using existing gas pipelines and onshore terminals.

Could it be said, that BP will be recycling oil and gas platforms?

I feel that the answer is yes! Or at least maybe!

The answer my friend is blowing in the wind!

May 6, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Why Canada’s Geothermal Industry Is Finally Gaining Ground

The title of this post, is the same as that of this article on the Narwhal.

When I think of Canada, I don’t think hot rocks and volcanoes.

But read the article and this Wikipedia article, which is entitled Geothermal Power In Canada, that adds more flesh.

This is an interesting paragraph.

At present, Canada remains the only major country in the Pacific Rim that is not producing electricity from its geothermal resources. This is despite the fact that the colder it is outside, the more electricity a geothermal power plant can produce. This is because the larger the temperature differentials between the geothermal resource and the ambient air temperature, the more efficiently geothermal plants operate. This makes geothermal power ideal for cold northern countries.

Iceland is certainly blessed, with mountains, volcanoes, hot rocks and cooler weather.

In 2016, sixty-five per cent of Iceland’s electricity and space heating was from geothermal sources.

I took the pictures on a summer holiday In July.

It looks like if the articles on the Narwhal and Wikipedia are to be believed, Canada could exploit a lot of geothermal energy resources.

Canada though will have the advantages of not being first.

The technology has already developed in countries like Iceland, the United States and the Philippines.

A lot of the skills needed is available in Canada’s oil industry.

We’re even seeing oilfield services companies like Schlumberger moving into geothermal energy. I wrote about that in Schlumberger New Energy And Thermal Energy Partners Form Geothermal Development Company STEP Energy.

We shouldn’t forget the potential for geothermal energy in the UK. We’re looking seriously in Cornwall and already extracting heat from the Underground in Islington, using similar techniques.

See Drilling Starts For ‘Hot Rocks’ Power In Cornwall and Bunhill 2 Energy Centre.


Geothermal energy would appear to have a high capital cost, but should return a fixed income year-on-year.

For this reason, I believe that funding for viable geothermal schemes, will be easier to obtain, as we improve the engineering and the returns increase.

So expect more geothermal schemes in the future.


September 16, 2020 Posted by | Energy | , , , , | Leave a comment

Iceland Using Geothermal To Remove CO2

The title of this post, is the same as that of this article on Renewable Energy Magazine.

This is the introductory paragraph.

Renewable energy is one of the key factors in fighting the climate crisis. Burning fossil fuels releases carbon dioxide (CO2) that speeds up global warming and damages the planet. With geothermal energy, though, Iceland is realizing the full potential and power of renewables. Using geothermal for carbon removal then creates a circular production system that helps the environment.

The article describes how Iceland is moving to become carbon negative, by injecting carbon dioxide deep into the ground.

September 11, 2020 Posted by | Energy | , | Leave a comment

Engie Partners Innovate UK For £4 Million Energy Transition Competition

The title of this post is the same as this article on Current News.

  • This is an interesting link-up between the UK Government Agency; Innovate UK and the French energy giant; Engie.
  • Wikipedia defines energy transition as a long-term structural change in energy systems.
  • It is the first time Innovate UK has secured overseas private funding.
  • It aims to fund the very best of \british innovation in clean growth innovation.
  • Grants of between £100,000 and £1.2 million will be awarded.
  • There appears to be no mention of Brexit!

It looks to me, like a very strong endorsement of British innovation and the British energy industry by the French.

I also think, that if there is one industry where the British and the French should be linked, it is energy.

The UK has the following energy sources and resources.

  • Offshore and onshore oil and gas.
  • Redundant gas fields for carbon capture and storage.
  • Offshore and onshore wind.
  • Large areas of sea for offshore wind.
  • We have 8,183 MW of installed offshore wind capacity, which is the largest in the world.
  • The possibilities of tidal and wave power from a long Western coast.
  • Vast experience in building off-shore structures in some of the worst weather on the planet.
  • Interconnectors to Norway and Iceland to import their surplus geothermal and hydroelectric energy.

Could we become a renewable-energy powerhouse?

The French have the following.

  • Nuclear power, some of which will need replacing.
  • Only 500 MW of offshore wind.
  • More solar power than we have.
  • Easy connection to North Africa for solar power.

But in some ways, most important is the several interconnectors between the UK and France, with more planned.


Between the UK and France, with help from Ireland, Spain and Portugal, can develop a massive Western European renewable energy powerhouse, backed  by the following, non-renewable or external sources.

  • French nuclear power.
  • North African solar.
  • Icelandic geothermal power
  • Icelandic hydro-electric power
  • Norwegian hydro-electric power

It should be noted that in a few years, the UK will have joined Iceland, Norway and North Africa outside of the European Union.

I believe that Sovereign Wealth Funds, Hedge Funds, Pension Funds, Insurance Companies and other individuals, groups and organisations will increasingly see renewable energy as good places for long-term investment of their funds.

The two big problems are as follows.

  • What happens when all these renewable energy sources are producing more energy than we can use?
  • What happens when there is an energy deficit?

Energy storage is the solution, but the amount needed is massive.

In Airport Plans World’s Biggest Car Parks For 50,000 Cars, I looked at the mathematics in using car parks for electric cars for energy storage.

These are a few figures.

  • Electric Mountain is the UK’s largest electricity storage scheme with a capacity of 9.1 GWh.
  • The largest battery in the world is the Bath County Pumped Storage Station with a capacity of 24 GWh, which works on similar principles to Electric Mountain.
  • Building another Electric Mountain would cost £1350 million, if we could find somewhere to put it.

But supposing half the 35.5 million cars and light goods vehicles in the UK were replaced by new electric vehicles containing a battery of around 20 kWh, that would be a total storage of 355 GWh or nearly forty Electric Mountains.


Harnessing all of these batteries will be an enormous challenge, but it will be ideas like this, that will enable the world to go carbon neutral by 2050.

But I don’t think we’ll ever see Trump or Xi Jinping in an electric limousine..


June 21, 2019 Posted by | World | , , , , , , , , , , , , | Leave a comment

Iceland Crash: Three British People Including Child Killed

The title of this post is the same as this article on the BBC.

I’ve been to Iceland and thoroughly enjoyed it.

But I did all the exploring in organised tour parties, as I was advised by the tour company, that this was safer. Although, they didn’t know I couldn’t drive!

We went everywhere in large 4×4 vehicles.

So was the party involved in the tragedy in a suitable vehicle?

December 28, 2018 Posted by | Transport/Travel, World | , | Leave a comment

UK ‘Need Not Fear Electricity Blackouts’ Says Ex-National Grid Boss

This is the title of another article on the BBC.

This is said.

The UK has enough energy capacity to meet demand – even on the coldest days when demand is highest, says Steve Holliday, the man who ran National Grid for a decade.

He said news stories raising fears about blackouts should stop.

The article goes on to say how gas and coal-fired plants that would have been scrapped will fill any gaps.

They may do, but I have this feeling that energy users and especially big ones are much more savvy than they used to be and I wouldn’t be surprised to see the UK manage next winter without using coal, which produces a lot more CO2 and pollution, than natural gas.

I also think that after 2018, we’ll start to see new technologies and projects generating electricity or bringing it to the UK.

We might even have seen a start on the ICElik or Atlantic Superconnector, which will bring green electricity from Iceland to the UK.

January 30, 2017 Posted by | World | , , | Leave a comment

Atlantic Superconnection Features In The Sunday Times

I am an electrical engineer by training and although possibly the only work I’ve done in the power field directly is to wire a plug, I know the technology of power generation fairly well.

Ever since I went to Iceland last year and first heard about IceLink, I’ve followed the project with interest.

Today there is an article in The Sunday Times entitled Cameron wants sea cable to bring lava power from Iceland.

It talks about the involvement of a company called Atlantic Superconnection

Read the article and follow the company!

November 1, 2015 Posted by | World | , | Leave a comment

Is Iceland Part Of The Solution To The Problem Of Russia?

Putin’s Russia is increasingly becoming a problem to the rest of the world, as the events in Ukraine show. I’ve also been to Poland recently and talking to Poles, some are getting quite worried about Russian intentions.

We may impose sanctions on the Russians, but the real problem with our relationship, is that many countries in Europe are highly dependent on Russian gas. Germany is especially dependent and has the direct Nord Stream link through the Baltic.

But how do we replace all of that gas?

We already have a Langeled pipeline from the UK to Norway, the Interconector to Belgium and the RBL pipeline to the Netherlands. We are also importing compressed natural gas from the Middle East. We may also see the benefits of fracking in the next few years. So as far as the UK and our near Continental neighbours are concerned, it’s probably a case of “I’m Alright, Jack”

Gas may be a cleaner fuel, than the coal the Germans are rushing to use, but it still is a fossil fuel, although it only generates about forty percent of the CO2, that coal does when you burn it.

On my trip to Iceland, I saw how you could use geothermal and hydro-electric power to create heat and electricity to power a country and energy consumptive industries like aluminium production and data centres.

But they could generate a lot more and that zero-carbon electricity could be plugged into the European electricity grid. A project called Icelink has been proposed that would link Iceland to the UK and onward to Europe.

There is even plans on the drawing board in other parts of the world, where electricity is used to convert aluminium oxide or bauxite to aluminium in a smelter. The aluminium is then transported to where you need more electricity and then burned in a conventional power station to generate that power. After burning the aluminium is turned into oxide, which is then shipped back to be re-smelted into metal. It sounds crazy, but get the designs right and it might well be financially feasible and considerably cheaper than laying an undersea cable.

Connecting all of Western Europe’s gas and electricity systems together will allow everybody to share resources to mutual advantage.

If we do bring Iceland into this network, it will all help to make Russia’s abundant energy unnecessary and give Putin the cold shoulder, he deserves.

July 19, 2014 Posted by | World | , , , , | 1 Comment

British And French Engineers Can Work Together

In the Sunday Times today, they are talking about a £4billion project to import electricity into the UK from Iceland,  It is called Icelink and it would appear to have the backing of both the UK and Iceland governments. There’s more about it in this article in Utility Week.

So it got me thinking about undersea electricity connections around the world. There is a list of them here. And there is forty-four of them

Perhaps the best known is the connection between Kent and France, which is called the HVDC Cross Channel.  It is actually the second one and it has been running for nearly thirty years. A section in Wikipedia describes its significance.

Since the commissioning of the 2,000 MW DC link in the 1980s, the bulk of power flow through the link has been from France to Britain. However, France imports energy as needed during the summer to meet demand, or when there is low availability of nuclear or hydroelectric power.

As of 2005 imports of electricity from France have historically accounted for about 5% of electricity available in the UK. Imports through the interconnector have generally been around the highest possible level, given the capacity of the link. In 2006, 97.5% of the energy transfers have been made from France to UK, supplying the equivalent of 3 million English homes. The link availability is around 98%, which is among the best rates in the world. The continued size and duration of this flow is open to some doubt, given the growth in demand in continental Europe for clean electricity, and increasing electricity demand within France.

So it would appear it’s been successful and proves that we can work with the French on an engineering project.

It strikes me that we need to connect all of our power systems together in Western Europe. The UK is being connected to Ireland, Iceland and Norway and the Netherlands, Belgium and Germany are getting in on the act.

What you won’t find from reading about the cables, but you will in some newspaper articles, is that Norway will have the ability to store electricity in a pumped storage system in the future.

So when the wind is blowing and we have too much electricity, the Norwegians will pump water from a low to a high lake and when we want it back, the water will be released through a turbine. It’s like putting your KWh in a bank!

February 16, 2014 Posted by | World | , , , | Leave a comment