The Anonymous Widower

The Future Of The Class 68 Locomotives

This post has been brought on by the comments to two posts I have written today.

Both Direct Rail Services and TransPennine Express are major users of Class 68 locomotives, with each having a fleet of fourteen locomotives.

In addition, Chiltern Railways has a smaller fleet of six locomotives.

  • Direct Rail Services use their locomotives for various passenger and freight duties, including the important one of moving nuclear material around the country.
  • TransPennine Express use their locomotives on their passenger services across the North of England.
  • Chiltern Railways use their locomotives on their passenger services between London and Birmingham and sometimes Oxford.

The design was a bespoke one by Stadler for Direct Rail Services and the first one entered service in 2014.

The picture shows one of TransPennine’s Class 68 locomotives at Scarborough. As the picture shows, they are a smart and purposeful-looking locomotive, that wouldn’t look out of place in the right livery on the front of the Royal Train.

It has some good features.

  • It is a 100 mph locomotive.
  • It seems to be well-liked by operators.
  • It can haul both passenger and freight trains.
  • It can act as a Thunderbird or rescue locomotive.

But they have three problems; emissions, noise and diesel.

This is from Wikipedia.

The locomotive’s propulsion system is compliant with Stage III A of the European emission standards, but not the more stringent Stage III B requirements.

But noise is a another problem and this has caused council action in Scarborough.

More important than emissions or noise, is the fact, that the locomotive is diesel-powered, so the fleet will probably have to be retired from the railway, at a time, when there is still useful life left in the locomotives.

The Class 68 locomotive is a member of the Stadler Eurolight  family, of which there are three versions.

All follow similar design principles, differing mainly in dimensions, with Spain, Taiwan and the UK ordering upwards of twenty-thirty locomotives.

The UKLight branch of the family has two other members.

The Class 88 locomotive is an electro-diesel version of the Class 68 locomotive and the development of the design is described in this extract from the Class 88 locomotive’s Wikipedia entry.

Amid the fulfillment of DRS’ order for the Class 68, Stadler’s team proposed the development of a dual-mode locomotive that could be alternatively powered by an onboard diesel engine or via electricity supplied from overhead lines (OHLE). Having been impressed by the concept, DRS opted to place an order for ten Class 88s during September 2013. Having been developed alongside the Class 68, considerable similarities are shared between the two locomotives, amounting to roughly 70 percent of all components being shared.

According to Wikipedia, the type had a smooth entry into service.

The Class 93 locomotive will be the next development of the UKLight branch of the family, when it is delivered in 2023.

It will be a tri-mode locomotive, that will be capable of being powered by 25 KVAC overhead electrification, an onboard diesel engine and batteries.

It will be a 110 mph locomotive.

It can haul both passenger and freight trains.

Rail Operations Group have ordered 30 locomotives.

This is the first paragraph of the section in Wikipedia called Specification.

The Class 93 locomotive has been developed to satisfy a requirement for a fast freight locomotive that uses electric power while under the wires, but is also capable of self-powered operations. Accordingly, it is capable of running on diesel engines, from overhead wires, or from its onboard batteries. These batteries, which occupy the space used for the braking resistors in the Class 88, are charged via the onboard transformer or regenerative braking; when the batteries are fully charged, the locomotive only has its friction brakes available. The diesel engine is a six-cylinder Caterpillar C32 turbocharged power unit, rated at 900 kW, conforming with the EU97/68 stage V emission standard. The batteries units are made of Lithium Titanate Oxide and use a liquid cooling solution, enabling rapid charge and discharge.

It is a truly agnostic locomotive, that can take its power from anywhere.

The last paragraph of the specification compares the locomotive to the Class 66 locomotive.

In comparison with the Class 66, the Class 93 can outperform it in various metrics. In addition to a higher top speed, the locomotive possesses greater acceleration and far lower operating costs, consuming only a third of the fuel of a Class 66 along with lower track access charges due to its lower weight. ROG has postulated that it presents a superior business case, particularly for intermodal rail freight operations, while also being better suited for mixed-traffic operations as well. Each locomotive has a reported rough cost of £4 million.

It is no ordinary locomotive and it will change rail freight operations in the UK.

I have a feeling that the Class 93 locomotive could be a lower-carbon replacement for the Class 68 locomotive.

But I also believe that what Stadler have learned in the development of the Class 93 locomotive can be applied to the Class 68 locomotive to convert them into zero-carbon locomotives.

It may be just a matter of throwing out the diesel engine and the related gubbins and replacing them with a large battery. This process seems to have worked with Wabtec’s conversion of diesel locomotives to FLXdrive battery-electric locomotives.

 

January 22, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , | 8 Comments

Direct Rail Services Disposes Of Heritage Locomotives

The title of this post, is the same as that of this article on Rail Magazine.

This is the first paragraph.

Direct Rail Services, the rail arm of Nuclear Transport Solutions (NTS), has announced details of its much-anticipated plan to sell off some of its heritage fleet of locomotives and coaching stock.

The main job of Direct Rail Services is to move nuclear fuel and other cargoes around the country in support of the UK’s nuclear industry. For this purpose, they have a substantial fleet of over fifty modern Class 66, Class 68 and Class 88 locomotives, which seem to have taken over from the heritage fleet, which are now starting to be passed on to other operators.

Direct Rail Services also tend to be the odd-job men and innovators of the traction business.

  • They have provided modern motive power for both regular, charter and replacement passenger services.
  • They haul freight trains for supermarkets and others.
  • They sub-lease Class 68 locomotives to other operators.
  • Both the Class 68 and Class 88 locomotives are 100 mph-capable, which must widen their markets.
  • They have supplied locomotives for Thunderbird duties.
  • They are happy to specify a new locomotive and bring it into service, as they did with the Class 68 and Class 88.

According to Wikipedia, they have issued a tender for a further ten new-build diesel-electric locomotives.

Will these be an existing design or another new design?

This is a section of the Wikipedia entry for the Class 88 locomotive.

Akin to the Class 68, the Class 88 can achieve a maximum speed of 100 mph (160 km/h), sufficient for regular passenger operations, while operating under OHLE, it has a power output of 4,000 kW (5,400 hp). Under diesel power, provided by its 12-cylinder Caterpillar C27, it has a maximum power output of 708 kW (949 hp); however, the maximum tractive effort is available in either mode. The locomotive’s engine, which is compliant with the current EU Stage IIIB emission restrictions, has limited available power as a result of the customer’s choice to give the Class 88 comparable power to a traditional Class 20.

It almost looks like a design for all purposes.

  • It can pull a passenger train at 100 mph.
  • With the right rolling stock, it must be able to pull a freight train at 100 mph.
  • A 100 mph freight capability must be very useful on double-track electrified main lines like the East and West Coast Main Lines, where it would increase capacity.
  • It probably has enough power to drag a freight train out of the depot on to an electrified main line.
  • The locomotive would appear to be able to do anything that one of Direct Rail Services’s Class 20 locomotives can do, which would surely enable it to pick-up a nuclear flask from a remote power station.
  • But it would also be able to transport the flask back to Cumbria using electric power, where it is available.
  • In ’88’ Makes Sizewell Debut, I describe how a Class 88 locomotive moved a flask from Sizewell to Crewe.
  • It is compliant with the latest emission regulations.
  • It can use regenerative braking, where the electrification can handle it.

I wonder, if Direct Rail Services are going to add a locomotive to their fleet, that is capable of bringing the longest and heaviest freight trains out of the Port of Felixstowe.

  • The Felixstowe Branch is a fairly flat track.
  • The only moderately severe gradients ae either side of the Spring Road Viaduct.
  • Some electrification could be added.
  • A 100 mph freight capability would help in increasing the capacity of the Great Eastern Main Line to and from London.

The right locomotive might be able to haul smaller freight trains between Felixstowe and Peterborough.

Conclusion

There has been no news about the extra ten locomotives that Direct Rail Services will order.

The company has form in designing the right locomotive for the job they will do.

I think, that when the order is placed, it could add another type of locomotive to Direct Rail Services’s fleet.

January 21, 2022 Posted by | Transport/Travel | , , , , , | 10 Comments

Iron Ore Miner Orders Heavy-Haul Battery Locomotive

The title of this post, is the same as that of this article on Railway Gazette.

This is the first two paragraphs.

Mining company Roy Hill has ordered a Wabtec FLXdrive battery-electric heavy-haul freight locomotive. This will replace one the four ES44ACi diesel-electric locos used to haul its 2 700 m long iron ore trains, and is expected to reduce fuel costs and emissions by ‘double digit’ percentages while also cutting maintenance costs.

The locomotive is scheduled to be delivered in 2023. It will have a capacity of 7 MWh, an upgrade from the 2·4 MWh prototype which Wabtec and BNSF tested in revenue service in California earlier this year.

Note.

  1. It will have a 7 MWh battery.
  2. 2700 metres is 1.6 miles.

It looks to me, that the three diesel locomotives and one battery locomotive are arranged as a massive hybrid locomotive and I suspect that with sophisticated control systems, those double digit cuts in fuel costs and emissions would be possible.

A couple of years ago, I took this picture near Shenfield.

This double-headed train has a Class 90 electric locomotive and a Class 66 diesel locomotive at the front of a long freight train.

  • The Class 90 locomotive has an TDM system for multiple working.
  • The Class 66 locomotive has an AAR system for multiple working.

So does this mean that the two locomotives can’t work together, which if it does begs the question of what is happening.

  • Had the Class 66 locomotive failed and Class 90 was acting as a Thunderbird?
  • Was the Class 66 locomotive being moved from one depot to another for maintenance or repair?
  • Was it an experiment to see if the two locomotives could work together?

I sometimes think that I didn’t see this unusual formation, but then the camera doesn’t lie.

But could we learn from what Wabtec are doing for Roy Hill in Australia?

The Class 93 Locomotive

Rail Operations Group have already ordered thirty Class 93 tri-mode locomotives from Stadler, which have following power ratings.

  • Electric – 4000 kW
  • Diesel – 900 kW
  • Hybrid – 1300 kW

If this locomotive is capable of hauling the heaviest intermodal freight trains out of Felixstowe, Southampton and other ports and freight terminals, it could contribute to substantial  reductions in the diesel fuel used and emissions.

As an example, I will use a freight train between Felixstowe North Terminal and Trafford Park Euro Terminal.

  • It is a route of 280 miles.
  • I will ignore that it goes along the North London Line through North London and along the Castlefield Corridor through Manchester Piccadilly station.
  • There is fifteen miles without electrification at the  Felixstowe end.
  • There is under three miles without electrification at the  Manchester end.

On this service , it could be as much as 94 % of diesel and emissions are saved, if the Class 93 locomotive can haul a heavy freight train out of Felixstowe. A few miles of strategically-placed electrification at the Ipswich end would help, if required.

It must also be born in mind, that the Class 93 locomotive is a 110 mph locomotive on electric power and could probably do the following.

  • Run at 100 mph on the busy Great Eastern Main Line.
  • Run at faster speeds on the West Coast Main Line.
  • Fit in well with the 100 mph passenger trains, that run on both routes.

So not only does it save diesel and carbon emissions, but it will save time and make the freight train easier to timetable on a route with lots of 100 mph passenger trains.

The Class 93 locomotive looks like it could be a game-changer for long-distance intermodal freight, especially, if there were short sections of strategically-placed electrification, added to the electrified network.

Emissions could also be reduced further by using some for of sustainable fuel.

The picture shows a Class 66 locomotive, which is powered by Hydrotreated Vegetable Oil  or HVO.

I can see that all diesel-powered trains and locomotives will be powered by sustainable fuels by the end of this decade.

A Wabtec Battery-Electric Locomotive

Wabtec is building a battery-electric locomotive for Roy Hill in Australia.

This article on Railway Age talks about Wabtec’s FLXdrive battery locomotives and describes some features of the locomotive for Roy Hill in Australia.

It mentions pantographs and overhead wires to charge the batteries.

  • Wabtec’s prototype battery locomotive has a power output of 3.24 MW and a battery size of 2.4 MWh
  • The Roy Hill battery locomotive has a power output of 3.24 MW and a battery size of 7 MWh

I could envisage Wabtec designing a UK-sized battery-electric locomotive with these characteristics.

  • 2.5 MW power output, which is similar to a Class 66 locomotive.
  • A battery size of perhaps 1.8 MWh based on Wabtec’s  FLXdrive technology.
  • A pantograph to charge the batteries and also power the locomotive where electrification exists.
  • 75 mph operating speed.
  • Ability to work in tandem with a Class 66 locomotive.

All technology is under Wabtec’s control.

This locomotive could have a range of at least fifty miles on battery power.

I think this locomotive could handle these routes.

  • Peterborough and Doncaster via the Great Northern and Great Eastern Joint Line via Lincoln, with some form of charging at halfway.
  • Felixstowe and Nuneaton, with some extra electrification at some point between Peterborough and Leicester.
  • Oxford and Birmingham, with possibly some extra electrification in the middle.

One option for charging electrification, would surely be to electrify passing loops.

I think a battery-electric locomtive based on Wabtec’s  FLXdrive technology could be a very useful locomotive.

Could Wabtec’s Battery-Electric Locomotive Pair-Up With A Class 66 Locomotive?

Roy Hill will use their locomotive to form a consist of three diesel locomotives and one battery locomotive to obtain double-digit savings of fuel and emissions, when hauling iron-ore trains that are 1.6 miles long on a route of 214 miles.

We don’t have massive iron-ore trains like this, but we do move huge quantities of segregates and stone around the country in trains generally hauled by Class 66 locomotives.

So could a Class 66 or another suitable locomotive be paired-up with a battery-electric locomotive to make savings of fuel and emissions?

I would suggest that if it works in Australia, the technology will probably work in the UK.

The biggest problem for Wabtec is that the heavy end of the market may well be a good one for hydrogen-powered locomotives. But Wabtec are going down that route too!

Conclusion

I am convinced that the two decarbonisation routes I have outlined here are viable for the UK.

But I also feel that locomotive manufacturers will produce hydrogen-powered locomotives.

Other companies like Alstom, Siemens and Talgo will also offer innovative solutions.

 

 

 

 

 

September 16, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , | 5 Comments

Was The Queen’s Locomotive Acting As A Thunderbird?

I took these pictures of 67006 Royal Sovereign at Kings Cross when I arrived in Platform 0 from Peterborough today at 15:45.

Note.

  1. Normally, 67006 is assigned to the Royal Train.
  2. The locomotive is in Platform 1.
  3. The Class 67 Locomotive was definitely coupled to the InterCity 225.
  4. It does appear that the next movement out of Platform 1 was a diesel-hauled empty coaching stock movement to Neville Hill Depot in Leeds at 19:40.
  5. It looks like the train arrived in Kings Cross at 12:55 from Skipton, nearly three hours late.

It does look as though the train was towed to London by the Queen’s Locomotive and then pushed all the way back to Leeds.

 

September 8, 2021 Posted by | Transport/Travel | , , , , | 2 Comments