The Anonymous Widower

Running Battery Electric Trains Between London Marylebone And Aylesbury

This post was suggested by Fenline Scouser in a comment to Vivarail Targets Overseas Markets, where they said.

I have long thought that one UK application that would make sense is the Marylebone – Aylesbury via Harrow on the Hill service, the intermediate electrified section lending itself to full recharge on each trip. ? stabling facility at Aylesbury with overnight charging.

It does look to be an idea worth pursuing.

Current And Future Services

Currently, the services between London Marylebone and Aylesbury are as follows.

  • London Marylebone and Aylesbury via High Wycombe
  • London Marylebone and Aylesbury via Amersham
  • London Marylebone and Aylesbury Vale Parkway via Amersham

All services are one train per hour (tph)

In the future, it is planned to extend the Aylesbury Vale Parkway service to Milton Keynes, according to information I found on the East West Rail web site.

  • It looks like the service will go via High Wycombe, Saunderton, Princes Risborough, Monks Risborough, Little Kimble, Aylesbury, Aylesbury Vale Parkway, Winslow and Bletchley.
  • The service will have a frequency of 1 tph.
  • Time between Milton Keynes and Aylesbury is quoted as 33 minutes.
  • Time between High Wycombe and Milton Keynes is quoted as 63 minutes.

Will this leave the Marylebone and Aylesbury are as follows?

  • 1 tph – London Marylebone and Aylesbury via High Wycombe.
  • 2 tph – London Marylebone and Aylesbury via Amersham

Passengers between London Marylebone and Aylesbury would have the same service.

Distances

These are a few distances, of which some have been estimated.

  • London Marylebone and Harrow-on-the-Hill – 9.18 miles.chains
  • Amersham and Harrow-on-the-Hill – 14.27 miles.chains – Electrified
  • Aylesbury and Amersham – 15.23 miles.chains
  • London Marylebone and High Wycombe – 28.11 miles.chains
  • Aylesbury and High Wycombe – 15.28 miles.chains
  • Aylesbury and Aylesbury Vale Parkway – 2.25 miles.chains
  • Aylesbury Vale Parkway and Calvert – 8.19 miles.chains
  • Aylesbury and Milton Keynes – 16.40 miles.chains – Estimated

Note that there are eighty chains to the mile.

Hitachi’s Regional Battery Train

Hitachi’s Regional Battery Train, is the only battery electric train intended for the UK network for which a detailed specification has been released.

This infographic from Hitachi gives the specification.

Note that ninety kilometres is fifty-six miles.

I would suspect that battery trains from other manufacturers, like Bombardier, CAF and Stadler, will have a similar specification.

Battery Electric Trains Between London Marylebone And Aylesbury

I’ll take each possible route in turn.

London Marylebone And Aylesbury Via Amersham

The three sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified

Note.

  1. The total distance is 38.85 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Vale Parkway Via Amersham

The four sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified
  • Aylesbury and Aylesbury Vale Parkway – 2.31 miles – Not Electrified

Note.

  1. The total distance is 41.16 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury Vale Parkway and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Via High Wycombe

The two sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified

Note.

  1. The total distance is 43.50 miles
  2. There is no electrification to charge the trains.

A battery electric train, with the range of a Hitachi Regional Battery Train will need charging to work this route.

However, with charging at both ends, this would be a route for a battery electric train.

At the London Marylebone end, there are two possible solutions.

  • Electrify the station traditionally, together with perhaps the tracks as far as Neasden, where the routes split. Either 750 VDC third-rail or 25 KVAC overhead electrification could be used.
  • Fit fast charging systems into all the platforms at the station.

Note.

  1. Turnround times in Marylebone station are typically nine minutes or more, so using a charging system should be possible.
  2. Power for the electrification should not be a problem, as the station is close to one of London’s central electricity hubs at Lisson Grove by the Regent’s Canal.

The final decision at Marylebone, would be one for the engineers and accountants.

At the Aylesbury end, it should be noted that much of the under twenty miles of track between Princes Risborough and Aylesbury and on to Aylesbury Vale Parkway and Calvert us single-track.

So why not electrify from Princes Risborough and Calvert, where the route joins the East West Railway?

The electrification in Aylesbury station could also be used to top-up trains going to London via Amersham.

I would use 25 KVAC overhead electrification, using lightweight gantries like these, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

London Marylebone And Milton Keynes Via High Wycombe, Aylesbury and Aylesbury Vale Parkway

The three sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified
  • Aylesbury and Milton Keynes – 16.50 miles – Partially Electrified

Note.

  1. The total distance is sixty miles
  2. There is some electrification to charge the trains between Bletchley and Milton Keynes.

A battery electric train, with the range of a Hitachi Regional Battery Train should be able to work this route, if they can work London Marylebone and Aylesbury, with charging at Aylesbury.

Milton Keynes Central is a fully-electrified station.

The picture shows Platform 2A, which is South-facing electrified, five-car platform, which could be used by the Chiltern service.

Train Specification

Consider.

  • Chiltern Railway’s workhorse is a Class 168 train, which is a diesel multiple unit of up to four cars, with a 100 mph operating speed.
  • The longest leg without electrification could be London Marylebone and Aylesbury via High Wycombe, which is 43.5 miles.
  • Hitachi’s Regional Battery Train has a range of fifty-six miles.
  • As there is a need to work with London Underground electrification, a dual-voltage train will be needed.

So a battery electric train with this specification would probably be ideal.

  • Four cars
  • Ability to work with both 750 VDC third-rail and 25 KVAC overhead electrification.
  • 100 mph operating speed.
  • Battery range of perhaps 55 miles.

Could the specification fit a battery-equipped Class 385 train, which will probably be built for Scotland?

Conclusion

I am convinced that battery electric trains can run between London Marylebone and Aylesbury, Aylesbury Vale Parkway and Milton Keynes stations.

The following would be needed.

  • A battery electric range of perhaps fifty-five miles.
  • Some form of charging at Marylebone and Aylesbury stations.

I would electrify, the single-track route between Princes Risborough and Aylesbury Vale Parkway.

September 4, 2020 Posted by | Transport | , , , , , , , , , , , | Leave a comment

CrossCountry’s Bournemouth And Manchester Piccadilly Service

Whilst I was at Basingstoke station yesterday one of CrossCountry‘s services between Bournemouth and Manchester Piccadilly came through, so I took these pictures.

It was a long formation of Class 220 trains.

Could This Service Be Replaced By Hitachi Regional Battery Trains?

This Hitachi infographic gives the specification of the Hitachi Regional Battery Train.

I feel that in most condition, the range on battery power can be up to 56 miles.

I can break the Bournemouth and Manchester Piccadilly route into a series of legs.

  • Bournemouth and Basingstoke – 60 miles – 750 VDC third-rail electrification
  • Basingstoke and Reading – 15.5 miles – No electrification
  • Reading and Didcot North Junction – 18 miles – 25 KVAC overhead electrification
  • Didcot North Junction and Oxford – 10 miles – No electrification
  • Oxford and Banbury – 22 miles – No electrification
  • Banbury and Leamington Spa – 20 miles – No electrification
  • Leamington Spa and Coventry – 10 miles – No electrification
  • Coventry and Manchester Piccadilly – 101 miles – 25 KVAC overhead electrification

Note.

  1. 63 % of the route is electrified.
  2. The short 15.5 mile gap in the electrification between Basingstoke and Reading should be an easy route for running on battery power.
  3. But the 62 mile gap between Didcot North Junction and Coventry might well be too far.

The train would also need to be able to work with both types of UK electrification.

If some way could be found to bridge the 62 mile gap reliably, Hitachi’s Regional Battery Trains could work CrossCountry’s service between Bournemouth and Manchester Piccadilly.

Bridging The Gap

These methods could possibly  be used to bridge the gap.

A Larger Battery On The Train

If you look at images of MTU’s Hybrid PowerPack, they appear to show a basic engine module with extra battery modules connected to it.

Will Hitachi and their battery-partner; Hyperdrive Innovation use a similar approach, where extra batteries  can be plugged in as required?

This modular approach must offer advantages.

  • Battery size can be tailored to routes.
  • Batteries can be changed quickly.

The train’s software would know what batteries were fitted and could manage them efficiently.

I wouldn’t be surprised to see Hitachi’s Regional Battery Train able to handle a gap only six miles longer than the specification.

Battery And Train Development

As Hitachi’s Regional Battery Train develops, the following should happen.

  • Useable battery capacity will increase.
  • The train will use less electricity.
  • Actions like regenerative braking will improve and recover more electricity.
  • Driving and train operating strategies will improve.

These and other factors will improve the range of the train on batteries.

A Charging Station At Banbury Station

If some form of Fast Charge system were to be installed at Banbury station, this would enable a train stopping at Banbury to take on enough power to reliably reach Oxford or Coventry depending, on their final destination.

This method may add a few minutes to the trip, but it should work well.

Electrification Of A Section Of The Chiltern Main Line

This could be an elegant solution.

I have just flown my helicopter between Bicester North and Warwick Parkway stations and these are my observations.

  • The Chiltern Main Line appears to be fairly straight and has received a top class Network Rail makeover in the last couple of decades.
  • There are a couple of tunnels, but most of the bridges are new.
  • Network Rail have done a lot of work on this route to create a hundred mph main line.
  • It might be possible to increase the operating speed, by a few mph.
  • The signalling also appears modern.

My untrained eye, says that it won’t be too challenging to electrify between say Bicester North station or Aynho Junction in the South and Leamington Spa or Warwick Parkway stations in the North. I would think, that the degree of difficulty would be about the same, as the recently electrified section of the Midland Main Line between Bedford and Corby stations.

The thirty-eight miles of electrification between Bicester North and Warwick Parkway stations would mean.

  • The electrification is only eight-and-a-half miles longer than Bedford and Corby.
  • There could be journey time savings.
  • As all trains stop at two stations out of Banbury, Leamington Spa, Warwick and Warwick Parkway, all pantograph actions could be performed in stations, if that was thought to be preferable.
  • Trains would be able to leave the electrification with full batteries.
  • The electrification may enable some freight trains to be hauled between Didcot and Coventry or Birmingham using battery electric locomotives.

Distances of relevance from the ends of the electrification include.

  • London Marylebone and Bicester North stations – 55 miles
  • London Marylebone and Aynho junction – 64 miles
  • Didcot North and Aynho junctions – 28 miles
  • Leamington Spa and Coventry stations – 10 miles
  • Leamington Spa and Birmingham Snow Hill stations – 23 miles
  • Leamington Spa and Stratford-upon-Avon stations – 15 miles
  • Warwick Parkway and Birmingham New Street stations – 20 miles
  • Warwick Parkway and Birmingham Snow Hill stations – 20 miles
  • Warwick Parkway and Kidderminster – 40 miles
  • Warwick Parkway and Stratford-upon-Avon stations – 12 miles

These figures mean that the following services would be possible using Hitachi’s Regional Battery Train.

  • Chiltern Railways – London Marylebone and Birmingham Moor Street
  • Chiltern Railways – London Marylebone and Birmingham Snow Hill
  • Chiltern Railways – London Marylebone and Kidderminster
  • Chiltern Railways – London Marylebone and Stratford-upon-Avon
  • CrossCountry – Bournemouth and Manchester Piccadilly
  • CrossCountry – Southampton Central and Newcastle
  • Midlands Connect – Oxford and Birmingham More Street – See Birmingham Airport Connectivity.

Other services like Leicester and Oxford via Coventry may also be possible.

As I see it, the great advantage of this electrification on the Chiltern Main Line is that is decarbonises two routes with the same thirty-eight miles of electrification.

Conclusion

CrossCountry’s Bournemouth And Manchester Piccadilly service could be run very efficiently with Hitachi’s proposed Regional Battery Train.

My preferred method to cross the electrification gap between Didcot North junction and Coventry station would be to electrify a section of the Chiltern Main Line.

  • The electrification would be less than forty miles.
  • I doubt it would be a challenging project.
  • It would also allow Hitachi’s proposed trains to work Chiltern Main Line routes between London Marylebone and Birmingham.

I am fairly certain, that all passenger services through Banbury would be fully electric.

 

August 15, 2020 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

Beeching Reversal – The Aston Rowant Extension Of The Chinnor Railway

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This Googlr Map shows the location of the proposed Aston Rowant station.

Note.

  1. The motorway junction is Junction 6 of the M40, where it joins the B4009.
  2. The hotel at the top of the map, which is marked by a pink arrow,  is the Mercure Thame Lambert.
  3. A road passes the hotel and goes South East parallel to the motorway.

The original Aston Rowant station, appears to have been in the triangular piece of land to the East side of the road.

Wikipedia gives a plan for the future of the Aston Rowant station under a section called Future, where this is said.

There were reports in 1997 that the Chinnor and Princes Risborough Railway (CPRR) wished to extend its operations to Aston Rowant. A joint venture between the CPRR and Chiltern Railways was also proposed whereby the national rail operator would construct a new station at Aston Rowant to allow frequent weekday commuter services along the Icknield Line to connect with main line traffic through to London Marylebone, leaving the CPPR to run heritage services at other times. The scheme, which would cost around £3m, would seek to take advantage of Aston Rowant’s location near junction 6 of the busy M40 motorway.

There doesn’t seem to be any more details on the Internet, but I could see the full scheme having the following.

  • A car-park by Junction 6 of the M40.
  • Minimal station facilities.
  • A shuttle train to Princes Risborough station using a diesel or battery Class 230 train or perhaps a heritage diesel.
  • At weekends, it would act as parking for the Chinnor and Princes Risborough Railway.
  • Given Adrian Shooter;s historic connections, this could be an ideal place for using Vivarail’s Pop-up Metro concept.

It could be a deal, where everyone’s a winner. Local commuters, Park-and-Ride users, the CPRR and Chiltern Railways could all benefit.

Conclusion

This is a simple scheme and I suspect the biggest problem could be getting the planning permission.

 

July 2, 2020 Posted by | Transport | , , , , , , , | 4 Comments

GWR and DfT’s Commitment To The Night Riviera

The May 2020 Edition of Modern Railways has an article, which is entitled West Of England Improvements In GWR Deal.

Under a heading of Sleeper Planning, this is said about plans for the Night Riviera.

Whilst GWR is already developing plans for the short term future of the ‘Night Riviera’ sleeper service, including the provision of additional capacity at times of high demand using Mk. 3 vehicles withdrawn from the Caledonian Sleeper fleet, it is understood the company has been asked to develop a long-term plan for the replacement of the current Mk. 3 fleet of coaches, constructed between 1981 and 1984, as well as the Class 57/6 locomotives, which were rebuilt in 2002-03 from Class 47 locomotives constructed in the early 1960s.

This must show commitment from both GWR and the Department for Transport, that the Night Riviera has a future.

These are a few of my thoughts on the future of the service.

The Coaches

I would suspect that GWR will opt for the same Mark 5 coaches, built by CAF, as are used on the Caledonian Sleeper.

I took these pictures on a trip from Euston to Glasgow.

The coaches don’t seem to have any problems and appear to be performing well.

The facilities are comprehensive and include full en-suite plumbing, a selection of beds including doubles and a lounge car. There are also berths for disabled passengers.

The Locomotives

The Class 57 locomotives have a power output around 2 MW and I would suspect a similar-sized locomotive would be used.

Possible locomotives could include.

  • Class 67 – Used by Chiltern on passenger services – 2.4 kW
  • Class 68 – Used by Chiltern, TransPennine Express and others on passenger services – 2.8 MW
  • Class 88 – A dual-mode locomotive might be powerful enough on diesel – 700 kW

I wouldn’t be surprised to see Stadler come up with a customised version of their Euro Dual dual-mode locomotives.

 

April 23, 2020 Posted by | Transport | , , , , , , , , | Leave a comment

Could Battery-Electric Hitachi Trains Work Chiltern Railways’s Services?

Before I answer this question, I will lay out a few specifications and the current status.

Hitachi’s Proposed Battery Electric Train

Based on information in an article in Issue 898 of Rail Magazine, which is entitled Sparking A Revolution, the specification of Hitachi’s proposed battery-electric train is given as follows.

  • Based on Class 800-802/804 trains or Class 385 trains.
  • Range of 55-65 miles.
  • Operating speed of 90-100 mph
  • Recharge in ten minutes when static.
  • A battery life of 8-10 years.
  • Battery-only power for stations and urban areas.

For this post, I will assume that the train is four or five cars long.

Chiltern Railways’ Main Line Services

These are Chiltern Railways services that run on the Chiltern Main Line.

London Marylebone And Gerrards Cross

  • The service runs at a frequency of one train per hour (tph)
  • Intermediate stations are Wembley Stadium, Sudbury & Harrow Road, Sudbury Hill Harrow, Northolt Park, West Ruislip, Denham and Denham Golf Club

The service is nineteen miles long and takes thirty minutes.

It should be possible to run this service with trains charged at one end of the route.

London Marylebone And High Wycombe

  • The service runs at a frequency of one tph
  • Intermediate stations are Wembley Stadium,  South Ruislip, Gerrards Cross and Beaconsfield
  • Some services terminate in a bay platform 1 at High Wycombe station.

The service is twenty-eight miles long and takes forty-two minutes.

It should be possible to run this service with trains charged at one end of the route.

London Marylebone And Aylesbury Via High Wycombe

  • The service runs at a frequency of one tph
  • Intermediate stations are Gerrards Cross, Seer Green and Jordans, Beaconsfield, High Wycombe, Saunderton, Princes Risborough, Monks Risborough and Little Kimble
  • This service usually terminates in Platform 1 at Aylesbury station.

The service is 43.5 miles long and takes sixty-six minutes.

It should be possible to run this service with trains charged at both ends of the route.

London Marylebone And Banbury (And Stratford-upon-Avon)

  • The service runs at a frequency of one tph
  • Intermediate stations for the Banbury service are Denham Golf Club, Gerrards Cross, Beaconsfield, High Wycombe, Princes Risborough, Haddenham & Thame Parkway, Bicester North and Kings Sutton.
  • Intermediate stations for the Stratford-upon-Avon service are Denham Golf Club, Gerrards Cross, Beaconsfield, High Wycombe, Princes Risborough, Haddenham & Thame Parkway, Bicester North and Kings Sutton, Banbury, Leamington Spa, Warwick, Hatton, Claverdon, Bearley, Wilmcote and Stratford-upon-Avon Parkway.

The Banbury service is 69 miles long and takes one hour and forty-five minutes.

The Stratford-upon-Avon service is 104 miles long and takes two hours and twenty-two minutes.

Running these two services will need a bit of ingenuity.

Leamington Spa And Birmingham Moor Street

  • The service runs at a frequency of one train per two hours (tp2h)
  • Intermediate stations for the service are Warwick, Hatton, Lapworth, Dorridge and Solihull.

The service is 23 miles long and takes forty-one minutes.

It should be possible to run this service with trains charged at one end of the route.

London Marylebone And Birmingham Moor Street

  • The service runs at a frequency of one tph
  • Intermediate stations for the service are High Wycombe, Banbury, Leamington Spa, Warwick Parkway and Solihull.

The service is 112 miles long and takes one hour and forty-four minutes.

It should be possible to run this service with trains charged at both ends of the route and also fully charged somewhere in the middle.

Distances from London Marylebone of the various stations are.

  • High Wycombe – 28 miles
  • Bicester North – 55 miles
  • Banbury – 69 miles
  • Leamington Spa – 89 miles
  • Warwick – 91 miles
  • Warwick Parkway – 92 miles
  • Solihull – 105 miles

Consider.

  • It looks like a fully-charged train from London Marylebone could reach Bicester North, but not Banbury, with a 55-65 mile battery range.
  • Travelling South, Bicester North could be reached with a fully-charged train from Birmingham Moor Street.

But it would appear to be too marginal to run a reliable service.

London Marylebone And Birmingham Snow Hill

  • The service runs at a frequency of one tph
  • Intermediate stations for the service are Bicester North, Banbury, Leamington Spa, Warwick, Warwick Parkway, Dorridge, Solihull and Birmingham Moor Street

The service is 112 miles long and takes two hours and a minute.

It should be possible to run this service with trains charged at both ends of the route and also fully charged somewhere in the middle.

London Marylebone And Kidderminster

Some services between London Marylebone and Birmingham Snow Hill are extended to Kidderminster.

The distance between Kidderminster and Birmingham Snow Hill is twenty miles and the service takes forty-two minutes.

London Marylebone And Oxford

  • The service runs at a frequency of two tph
  • Intermediate stations for the service are High Wycombe, Haddenham & Thame Parkway, Bicester Village, Islip and, Oxford Parkway.
  • The service runs into dedicated platforms at Oxford station.

The service is 67 miles long and takes one hour and nine minutes.

It should be possible to run this service with trains charged at both ends of the route and some supplementary charging somewhere in the middle.

Chiltern’s Aylesbury Line Services

These are Chiltern Railway‘s services that run on the London And Aylesbury Line (Amersham Line).

London Marylebone And Aylesbury (And Aylesbury Vale Parkway) via Amersham

  • The service runs at a frequency of two tph
  • Intermediate stations are Harrow-on-the-Hill, Rickmansworth, Chorleywood, Chalfont & Latimer, Amersham, Great Missenden, Wendover and Stoke Mandeville.
  • It appears that there is sufficient time at Aylesbury Vale Parkway in the turnround to charge the train using a Fast Charge system.

The Aylesbury service is 39 miles long and takes one hour.

The Aylesbury Vale Parkway service is 41 miles long and takes one hour and twelve minutes.

It should be possible to run both services with trains charged at both ends of the route.

 

Chiltern Railways’ Future Train Needs

Chiltern Railways will need to add to or replace some or all of their fleet in the near future for various reasons.

Decarbonisation

Chiltern are probably the passenger train operating company, with the lowest proportion of zero-carbon trains. It scores zero for zero-carbon!

Government policy of an extinction date of 2040 was first mentioned by Jo Johnson, when he was Rail Minister in February 2018.

As new trains generally last between thirty and forty years and take about five years to design and deliver, trains ordered tomorrow, will probably still be running in 2055, which is fifteen years after Jo Johnson’s diesel extinction date.

I feel that, all trains we order now, should be one of the following.

  • All-electric
  • Battery-electric
  • Hydrogen-electric
  • Diesel electric trains, that can be converted to zero-carbon, by the replacement of the diesel power, with an appropriate zero-carbon source.

Hitachi seem to be designing an AT-300 diesel-electric train for Avanti West Coast, where the diesel engines can be replaced with batteries, according to an article in the January 2020 Edition of Modern Railways.

Pollution And Noise In And Around Marylebone Station

This Google Map shows the area around Marylebone station.

Cinsider.

  • Marylebone station is in the South-East corner of the map.
  • The station is surrounded by some of the most expensive real estate in London.
  • A lot of Chiltern’s trains do not meet the latest regulations for diesel trains.
  • Blackfriars, Cannon Street, Charing Cross, Euston, Fenchurch Street, Kings Cross, Liverpool Street, London Bridge, Paddington, St. Pancras, Victoria and Waterloo stations are diesel-free or have plans to do so.

Will the residents, the Greater London Council and the Government do something about improving Chiltern’s pollution and noise?

New trains would be a necessary part of the solution.

New And Extended Services

Consider.

  • Chiltern plan to extend the Aylesbury Parkway service to Milton Keynes in connection with East West Rail. This service would appear to be planned to run via High Wycombe and Princes Risborough.
  • There has also been proposals for a new Chiltern terminus at Old Oak Common in West London to connect to Crossrail, High Speed Two and the London Overground.
  • Chiltern could run a service between Oxford and Birmingham Moor Street.
  • With the demise of the Croxley Rail Link around Watford, Chiltern could be part of a revived solution.
  • In Issue 899 of Rail Magazine in an article entitled Calls For Major Enhancement To Oxford And Didcot Route, it states that there will be three tph between Oxford and Marylebone, two of which will start from a new station at Cowley.

Chiltern certainly have been an expansionist railway in the past.

I wouldn’t be surprised to see Chiltern ordering new trains.

As I said earlier, I suspect they wouldn’t want to order some new short-life diesel trains.

125 mph Running

Consider.

  • The West Coast Main Line has an operating speed of 125 mph.
  • East West Rail is being built for an operating speed of 125 mph.
  • Some parts of the Chiltern Main Line could be electrified and upgraded to 125 mph operation.

For these reasons, some of Chiltern’s new fleet must be capable of modification, so it can run at 125 mph, where it is possible.

100 mph Trains

Around half of Chiltern’s fleet are 100 mph trains, but the other half, made up of Class 165 trains only have a 75 mph operating speed.

Running a fleet, where all trains have a similar performance, must give operational and capacity improvements.

Increasing Capacity

Chiltern’s Main Line service to Birmingham is run using six Mark 3 carriages between a Class 68 locomotive and a driving van trailer.

These trains are 177.3 metres long and hold 444 passengers.

These trains are equivalent in length to a seven-car Hitachi Class AT-300 train, which I estimate would hold just over 500 passengers.

Changing some trains for a more modern design, could increase the passenger capacity, but without increasing the train length.

Aventi West Coast And High Speed Two

Chiltern’s services to Birmingham will come under increasing pressure from Avanti West Coast‘s revamped all-electric fleet, which within ten years should be augmented by High Speed Two.

It will be difficult selling the joys of comfortable diesel trains against the environmental benefits of all-electric zero-carbon faster trains.

Great Western Railway And Possible Electrification To Oxford

Chiltern’s services to Oxford will also come under increasing pressure from Great Western Railway’s services to Oxford.

  • When Crossrail opens, Paddington will be a much better terminal than Marylebone.
  • Crossrail will offer lots of new connections from Reading.
  • Great Western Railway could run their own battery-electric trains to Oxford.
  • Great Western Railway will be faster between London and Oxford at 38 minutes to Chiltern’s 65 minutes.

Will new trains be needed on the route to retain passengers?

Will Chiltern Have Two Separate Fleets?

Currently, Chiltern Railways have what is effectively  two separate fleets.

  • A Chiltern Main Line fleet comprised of five sets of six Mark 3 coaches, a Class 68 locomotive and a driving van trailer.
  • A secondary fleet of thirty-four assorted diesel multiple units of various ages and lengths, which do everything else.

But would this be their fleet, if they went for a full renewal to fully-decarbonise?

Would they acquire more Main Line sets to work the services to Birmingham, Kidderminster and perhaps some other Midlands destinations?

Do the Oxford services require more capacity for both Oxford and Bicester Village and would more Main Line sets be a solution?

What destinations will be served and what trains will be needed to work services from new destinations like Milton Keynes and Old Oak Common?

I can see Chiltern acquiring two fleets of battery-electric trains.

  • Chiltern Main Line trains based on Hitachi AT-300 trains with between five and seven cars.
  • Suburban trains for shorter journeys, based on Hitachi Class 385 trains with perhaps four cars.

Both would be fairly similar under the skin.

Conclusion On Chiltern Railways’ Future Trains

I am very much drawn to the conclusion, that Chiltern will have to introduce a new fleet of zero-carbon trains.

Electrification would be a possibility, but have we got enough resources to carry out the work, at the same time as High Speed Two is being built?

Hydrogen might be a possibility, but it would probably lead to a loss of capacity on the trains.

Battery-electric trains might not be a solution, but I suspect they could be the best way to increase Chiltern’s fleet and decarbonise at the same time.

  • Hitachi’s basic train design is used by several train operating companies and appears to be well received, by Train operating companies, staff and passengers.
  • Hitachi appear to be well-advanced with a battery-electric version.
  • Hitachi seem to have sold the concept of battery-electric AT-300 trains to Avanti West Coast to replace their diesel-electric Class 221 trains.

The sale of trains to Avanti West Coast appears to be very significant, in that Hitachi will be delivering a diesel-electric fleet, that will then be converted to battery-electric.

I like this approach.

  • Routes can be converted gradually and the trains fully tested as diesel-electric.
  • Electrification and/or charging stations can be added, to the rail network.
  • As routes are ready, the trains can be converted to battery-electric.

It would appear to be a low-risk approach, that could ensure conversion of the fleet does not involve too much disruption to passengers.

Possible Electrification That Might Help Chiltern Railways

These lines are or could be electrified in the near future.

Amersham Line Between Harrow-on-the-Hill and Amersham Stations

The only electrified line on the Chiltern Railways network is the section of the Amersham Line between Harrow-on-the-Hill and Amersham stations.

  • It is electrified using London Underground’s system.
  • It is fourteen miles long and trains take twenty-two minutes.
  • London Marylebone and Harrow-on-the-Hill is a distance of only nine miles
  • Aylesbury and Amersham is a distance of only fifteen miles.

Could this be of use in powering Children Railways’ trains?

The maths certainly look promising, as if nothing else it means the maximum range of one of Hitachi’s proposed battery-electric trains is fourteen miles further, which may enable Chiltern’s proposed service between London Marylebone and Milton Keynes to reach the 25 KVAC electrification at Bletchley.

But if the new trains were to use the London Underground electrification, they would have to be dual-voltage units.

As Hitachi have already built dual-voltage Class 395 trains for the UK, I don’t think, that this will be a problem.

Dorridge/Whitlock’s End And Worcestershire via Birmingham Snow Hill

In the February 2020 Edition of Modern Railways, there is a feature, which is entitled West Midlands Builds For The Future.

This is said about electrification on the Snow Hill Lines.

Remodelling Leamington is just one of the aspirations WMRE has for upgrading the Great Western’s Southern approach to Birmingham, which serves a number of affluent suburbs, with growing passenger numbers. “Electrification of the Snow Hill Lines commuter network is something which we are keen to explore.’ says Mr. Rackliff.

As well as reducing global carbon emissions, yhis would also help reduce air pollution in central Birmingham and local population centres. ‘From a local perspective, we’d initially want to see electrification of the core network between Dorridge/Whitlock’s End and Worcestershire via Birmingham Snow Hill as a minimum, but from a national perspective it would make sense to electrify the Chiltern Main Line all the way to Marylebone.’

Note the following distances from Dorridge.

  • Leamington Spa – 13 miles
  • Banbury – 33 miles
  • Bicester North – 47 miles
  • High Wycombe – 74 miles

It looks as if, electrification of the Snow Hill Lines would allow trains to travel from Bicester or Banbury to Birmingham Moor Street, Birmingham Snow Hill or Kidderminster.

Reading And Nuneaton via Didcot, Oxford, Banbury, Leamington Spa And Coventry

This route, which is used by CrossCountry services and freight trains, has been mentioned in the past, as a route that may be electrified.

Note the following distances from Didcot.

  • Oxford – 10 miles
  • Ayhno Junction – 27 miles
  • Banbury 32 miles
  • Leamington Spa – 52 miles
  • Coventry – 62 miles
  • Nuneaton – 72 miles

Electrifying this route would link together the following lines.

Note that Aynho Junction is only 36 miles from High Wycombe and 64 miles from London Marylebone.

Fast Charging At Terminal Stations

Chiltern Railways use the following terminal stations.

  • Aylesbury station, where a bay platform is used.
  • Aylesbury Parkway station
  • Banbury station, where a bay platform is used.
  • Birmingham Moor Street station, where all bay platforms are used.
  • Birmingham Show Hill station
  • High Wycombe station, where a bay platform is used.
  • Kidderminster station
  • London Marylebone station, where all platforms are used.
  • Oxford station, where two North-facing bay platforms are used.
  • Stratford-upon-Avon station

I suspect that something like Viviarail’s Fast-Charge system, based on well-proven third-rail technology could be used.

  • This system uses a bank of batteries to transfer power to the train’s batteries.
  • The transfer is performed using modified high-quality third-rail electrification technology.
  • Battery-to-battery transfer is fast, due to the low-impedance of batteries.
  • The system will be able to connect automatically, without driver action.
  • The third-rail is only switched on, when a train is present.
  • The battery bank will be trickle-charged from any convenient power source.

Could the battery bank be installed under the track in the platform to save space?

If Network Rail and Chiltern Railways would prefer a solution based on 25 KVAC technology, I’m sure that Furrer and Frey or another electrification company have a solution.

Installing charging in a platform at a station, would obviously close the platform for a couple of months, but even converting all six platforms at Marylebone station wouldn’t be an impossible task.

Possible Electrification Between London Marylebone And Harrow-on-the-Hill

Consider.

  • All trains to Aylesbury have to travel between London Marylebone and Harrow-on-the-Hill stations, which is nine miles of track without electrification. It takes about twelve minutes.
  • Trains via High Wycombe use this section of track as far as Neasden South Junction, which is give miles and typically takes seven minutes.
  • Leaving Marylebone, these trains are accelerating, so will need more power.

This map from carto.metro.free.fr shows the lines around Neasden.

Note.

  1. The Chiltern Railways tracks are shown in black.
  2. Two tracks continue to the North-West to Harrow-on-the-Hill and Aylesbury.
  3. Two tracks continue to the West to Wembley Stdium station and High Wycombe.
  4. Two tracks continue South-East into Marylebone station, running non-stop.
  5. The Jubilee Line tracks in the middle are shown in silver,
  6. The Metropolitan Line tracks are shown in mauve.

These pictures were taken of the two Chiltern tracks from a Jubilee Line train running between West Hampstead and Wembley Park stations.

Note, that the tracks have no electrification and there is plenty of space.

I feel that to accelerate the trains out of Marylebone and make sure that the batteries are fully charged, that these tracks should be electrified.

There is space on this section for 25 KVAC overhead, but would it be better to use an electrified rail system?

  • As you approach Marylebone there are several tunnels, which might make installation of overhead wires difficult and disruptive.
  • There are London Underground tracks and their third and fourth rail electrification everywhere.
  • Between Harrow-on-the Hill and Amersham stations, Chiltern and Metropolitan Line trains share the same track, which is electrified to London Underground standards and used for traction power by the Metropolitan Line trains.
  • Trains connect and disconnect to third-rail electrification, without any complication and have been doing it for over a hundred years.

On the other hand, there are arguments against third-rail systems like safety and electrical inefficiency.

Running Chiltern’s Routes Using A Battery-Electric Train

I will now take each route in order and look at how battery-electric trains could run the route.

London Marylebone And Oxford

Consider.

  • This route is 67 miles.
  • An out and back trip is 134 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains currently wait in the bay platforms at Oxford for up to thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.

When I outlined this route, I said this.

It should be possible to run this service with trains charged at both ends of the route and some supplementary charging somewhere in the middle.

I’m discussing this route first, as it has the complication of needing some form of intermediate charging.

The obvious place for some intermediate charging would be High Wycombe station.

  • It is 28 miles from Marylebone
  • It is 38 miles from Oxford
  • Trains seem to stop for a couple of minutes at High Wycombe.

As trains would only need to pick up a half-charge at the station, would it be possible for a train passing through High Wycombe to be able to use a Fast-Charge system, to give the battery a boost?

As a Control and Electrical Engineer by training, I think that this is more than possible.

It leads me to believe that with Fast Charging systems at Marylebone, Oxford and High Wycombe, Hitachi’s proposed battery-electric trains can run a reliable service between Marylebone and Oxford.

London Marylebone And Gerrards Cross

Consider.

  • This route is just nineteen miles.
  • An out and back trip is thirty-eight miles.
  • Trains appear to use a reversing siding to change tracks to return to London. They wait in the siding for up to thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.

I am fairly sure, that this route could be run by trains charged at Marylebone station only.

However, if charging is needed at Gerrards Cross, there is plenty of time, for this to be performed in the reversing siding.

It might even be reversed with all charging taking place at Gerrards Cross, so that fast turnrounds can be performed in Marylebone station.

London Marylebone And High Wycombe

Consider.

  • This route is just twenty-eight miles.
  • An out and back trip is fifty-six miles.
  • Trains wait in the bay platform for up to thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.

Everything said for the Gerrards Cross service would apply to the High Wycombe service.

London Marylebone And Banbury

Consider.

  • This route is 69 miles.
  • An out and back trip is 138 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in platform 4 at Banbury for around thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at High Wycombe station.

As with the Marylebone and Oxford route, this route will need some intermediate charging and as with the Oxford service, High Wycombe is the obvious choice,

High Wycombe is only 41 miles from Banbury, which is well within range of Hitachi’s proposed battery-electric train.

London Marylebone And Stratford-upon-Avon

Consider.

  • This route is 104 miles.
  • An out and back trip is 208 miles.
  • The distance between Stratford-upon-Avon and Banbury is 35 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in Platform 1 at Stratford-upon-Avon for over thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at Banbury station, where they wait for several minutes.
  • Trains call at High Wycombe station.

As with the Marylebone and Oxford and Marylebone and Banbury routes, this route will need some intermediate charging and as with the Oxford and Banbury services, High Wycombe is the obvious choice,

But this route could also use the Fast Charging system at Banbury.

London Marylebone And Birmingham Moor Street

Consider.

  • This route is 112 miles.
  • An out and back trip is 224 miles.
  • The distance between Birmingham Moor Street and Banbury is 43 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in the bay platform at Birmingham Moor Street for thirteen minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at Banbury and High Wycombe stations.

As with the Marylebone and Stratford-upon-Avon route, this route will need some intermediate charging and as with the Stratford-upon-Avon service, High Wycombe and Banbury are the obvious choice,

London Marylebone And Birmingham Snow Hill

Consider.

  • This route is 112 miles.
  • An out and back trip is 224 miles.
  • The distance between Birmingham Snow Hill and Banbury is 43 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in the bay platform at Birmingham Snow Hill for ten minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at Banbury and High Wycombe stations.

As with the Marylebone and Stratford-upon-Avon route, this route will need some intermediate charging and as with the Stratford-upon-Avon service, High Wycombe and Banbury are the obvious choice,

London Marylebone And Kidderminster

Consider.

  • This route is 132 miles.
  • An out and back trip is 264 miles.
  • The distance between Kidderminster and Banbury is 63 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains call at Banbury and High Wycombe stations.

As with the Marylebone and Stratford-upon-Avon and Birmingham routes, this route will need some intermediate charging and as with the Stratford-upon-Avon and Birmingham services, High Wycombe and Banbury are the obvious choice,

London Marylebone And Aylesbury Via High Wycombe

Consider.

  • The route is 43.5 miles
  • An out and back trip is 87 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • This service usually terminates in Platform 1 at Aylesbury station, where trains wait for up to thirteen minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • The train will also be fully-charged at Marylebone.

It looks that this route could be easily handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at High Wycombe to give the battery a top-up.

London Marylebone And Aylesbury Via Amersham

Consider.

  • The route is 39 miles
  • An out and back trip is 78 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • This service usually terminates in Platform 3 at Aylesbury station, where trains wait for up to twenty minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • The train will also be fully-charged at Marylebone.

It looks that this route could be easily handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at High Wycombe to give the battery a top-up.

London Marylebone And Aylesbury Vale Parkway Via Amersham

Consider.

  • The route is 41 miles
  • An out and back trip is 82 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • This service usually terminates in Platform 1 at Aylesbury Vale Parkway station, where trains wait for up to nine minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • The train will also be fully-charged at Marylebone.

It looks that this route could be easily handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at Aylesbury to give the battery a top-up.

Leamington Spa And Birmingham Moor Street

Consider.

  • The route is 23 miles
  • An out and back trip is 46 miles.
  • This service usually terminates in a bay platform at Birmingham Moor Street station, where trains wait for up to twenty minutes, which is more than enough time to fully-charge the train for return to Leamington Spa.

I am fairly sure, that this route could be run by trains charged at Bitmingham Moor Street station only.

New And Extended Services

These services are planned or have been mentioned as possibilities.

London Marylebone And Milton Keynes Via High Wycombe, Princes Risborough, Aylesbury And Aylesbury Vale Parkway

This is the new service that Chiltern will start running in the next few years.

Consider.

  • I estimate the distance between Aylesbury Vale Parkway and Bletchley, where 25 KVAC overhead electrification starts is 18 miles, with Milton Keynes a further three miles.
  • The distance between Marylebone and Bletchley via High Wycombe would be 63.5 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • Charging would normally be in Milton Keynes and Marylebone, with a certain amount of charging from the 25 KVAC between Bletchley and Milton Keynes.

It looks that this route could be handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at High Wycombe or Aylesbury to give the battery a top-up.

Birmingham Moor Street And Oxford

Consider.

  • Birmingham Moor Street station could have more South-facing bay platforms.
  • Birmingham Moor Street station is only a short walk from the new High Speed Two station at Birmingham Curzon Street.
  • Oxford station has two North-facing bay platforms.
  • Oxford station and Aynho Junction is only twenty miles and well within battery range, if High Wycombe and Banbury is electrified.
  • Banbury and Oxford currently takes 23 minutes.
  • Banbury and Birmingham Moor Street currently takes 44 minutes

It looks like a Birmingham Moor Street and Oxford service would take one hour and seven minutes.

London Marylebone And The Cowley Branch

This proposed service is probably about four to five miles further on from Oxford station.

There may be problems with how the track is laid out, but with a charging station at the end of the branch, I doubt that distance would be a problem.

Croxley Rail Link Proposal

I said this earlier.

With the demise of the Croxley Rail Link around Watford, Chiltern could be part of a revived solution.

The original plan died a long time ago, but could there be a simpler Chiltern-based solution?

  • Rebuild the railway between Croxley and Watford High Street stations.
  • Build new stations at Watford Vicarage Road and Cassiobridge.
  • A single track link would be more affordable could certainly handle two tph and possibly four.
  • Chiltern would run a two tph service between Watford Junction and Aylesbury stations.
  • The service would call at Watford High Street, Watford Vicarage Road, Cassiobridge, Croxley, Rickmansworth, Chorleywood, Chalfont & Latimer, Amersham, Great Missenden, Wendover and Stoke Mandeville.

I’m sure a more comprehensive scheme than the original one can be devised.

Important Stations

These are some of the more important stations and a few notes.

Aylesbury

As Chiltern develops the network in the next few years, these services could run to and/or through Aylesbury station.

  • One tph – London Marylebone and Aylesbury via High Wycombe
  • One tph – London Marylebone and Aylesbury via Amersham
  • One tph – London Marylebone and Aylesbury Vale Parkway via Amersham
  • One tph – London Marylebone and Milton Keynes via High Wycombe and Aylesbury Vale Parkway (new service)

I could also see a two tph service between Watford Junction and Aylesbury via Amersham.

Summing all this up means that two tph go via High Wycombe and four tph go via Amersham.

This Google Map shows Aylesbury station.

Note.

  1. Platforms are numbered 1 to 3 from South to North.
  2. Trains going South via High Wycombe call in Platforms 1 or 2.
  3. Trains going South via Amersham call in Platforms 2 and 3
  4. Trains going North call in Platforms 2 and 3.

These pictures show the station.

It is a spacious station, with step-free access and I feel that it could handle more services.

Banbury

I am sure that Banbury station, will be an important charging point for Chiltern’s battery-electric trains going North of Banbury.

This Google Map shows the layout of the recently-refurbished Banbury station.

Note.

  1. Platforms are numbered 1 to 4 from West to East.
  2. Trains going North call in Platforms 1 or 2.
  3. Trains going South call in Platforms 3 or 4.
  4. The Marylebone and London service usually turns back in Platform 4 after waiting there for over half-an-hour.
  5. Northbound Stratford-upon-Avon services generally use Platform 1, but most others generally use Playform 2.
  6. Southbound Stratford-upon-Avon services generally use Platform 4, but most others generally use Playform 3.

It looks to me, that Banbury station could handle the charging of trains as they pass through, as all of Chiltern’s services that serve destinations to the North of Banbury, stop at the station.

Hitachi are saying, that one of their proposed battery-electric trains needs ten minutes to be fully-charged.

So there may need to be some adjustment to the time-table to lengthen the stops at Banbury, to give ten minutes of charging time.

Alternatively, a few miles of electrification could be centred on Banbury, perhaps between Aynho Junction and Leamington Spa, which is a distance of twenty-six miles, which takes one of Chiltern’s trains around twenty-three minutes.

This would surely give enough time to fully-charge the batteries, but would also benefit CrossCountry, if they should go the battery-electric route.

I have followed the route between Aynho Junction and Leamington Spa in my helicopter and it would appear to be a fairly straight and uncomplicated route. I would say, it is about as difficult to electrify, as the Midland Main Line between Bedford and Kettering/Corby, which appears to have been one of Hetwork Rail’s better electrification projects, which should be delivered on time and has been installed without too much disruption to trains and passengers.

High Wycombe

It looks to me, that High Wycombe station will be an important charging point for Chiltern’s battery-electric trains going North to Oxford and Banbury.

Unlike Banbury, High Wycombe has not seen many changes over the years.

This Google Map shows High Wycombe station.

Note.

  1. Platforms are numbered 1 to 3 from South to North.
  2. Platform 1 is a bay platform that faces London.
  3. Platform 2 is the Westbound platform.
  4. Platform 3 is the Eastbound platform.
  5. High Wycombe has five tph in both directions, with an upgrade to six tph possible, after two tph run to the Cowley Branch.

The frequency of the trains through High Wycombe station could probably be handled by a Fast Charging system, but it would be tight to fit all current five services into an hour. It would appear to preclude any extra services going through High Wycombe, as there just isn’t enough time in an hour.

For this reason, I think that High Wycombe station needs full electrification, so that all passing trains can top up their batteries.

This gives the interesting possibility, that a train leaving High Wycombe for London with a full battery, would probably have enough charge in the battery to travel the 28 miles to London Marylebone and return. The train could always have a top-up at Marylebone.

So how far would the electrfication, through High Wycombe run?

Given that for operational reasons, it is probably best that pantographs are raised and lowered in stations, it is probably best if the various routes were electrified to the next station.

  • The Chiltern Main Line route would be electrified as far as Banbury station, where all trains stop. The distance would be 41 miles.
  • The Oxford route would be electrified as far as Bicester Village station, where all trains stop. The distance would be less than two miles from the Chiltern Main Line
  • The Aylesbury route would be electrified as far as Princes Risborough station, where all trains stop. This would be included in the Chiltern Main Line electrification.

It looks to me, that just 43 miles of double-track electrification would enable Hitachi’s proposed battery-electric trains to reach all parts of the Chiltern network.

Distances of the various destinations from the electrification are as follows.

  • Birmingham Moor Street – 43 miles
  • Birmingham Snow Hill – 43 miles
  • Kidderminster – 63 miles
  • Marylebone – 28 miles
  • Milton Keynes – 27 miles
  • Oxford – 38 miles
  • Oxford – Cowley – 43 miles
  • Stratford-upon-Avon  35 miles

Only Kidderminster could be tricky, but not if the Snow Hill Lines are electrified through Birmingham.

Electrification of the Chiltern Main Line between High Wycombe and Banbury with a number of Fast Charging systems in selected stations, would be my preferred option of enabling Hitachi’s proposed battery-electric trains to work the Chiltern network.

These pictures show High Wycombe station.

It does appear that the bridge at the Western end of the station my need to be modified, so that overhead wires can be threaded underneath.

Conclusion

Quite unexpectedly, I am pleasantly surprised.

Chiltern Railways’ current network can be run by Hitachi’s proposed battery-electric AT-300 trains.

  • Fast charging systems will be needed at Aylesbury, Aylesbury Vale Parkway, Banbury, Birmingham Moor Street, Birmingham Snow Hill, Gerrards Cross, High Wycombe, Kidderminster, Marylebone, Milton Keynes and Oxford.
  • Banbury and High Wycombe will need to be able to top-up trains as they pass through.
  • No large scale electrification will be needed. Although any new electrification will be greatly accepted!

As I indicated earlier, I would electrify the core part of the Chiltern Main Line route between High Wycombe and Banbury.

It would probably be a good idea to electrify a few miles at the Southern end of the line, where it runs into Marylebone station.

  • Marylebone and Harrow-on-the-Hill.
  • Marylebone and West Ruislip
  • Old Oak Common and West Ruislip.

I would use third-rail electrification to be compatible with London Underground and because of the automatic connection and disconnection.

But most surprisingly, there are already generous turnround times at most terminal stations, which give enough time to charge the trains.

It’s almost, as if Chiltern are preparing for battery-electric trains.

 

 

 

 

 

 

February 21, 2020 Posted by | Transport | , , , , , , , , , , , , , | 2 Comments

Hertfordshire County Council’s Aspiration For A Watford Junction And Aylesbury Service

This article on Ian Visits is entitled Watford Junction Station Could Become A “Super-Hub”.

This is the introductory paragraph.

A new Watford Junction to Aylesbury rail service, along with a new link between Stevenage and Luton are two of the proposals being put forward by Hertfordshire Council.

The proposals are contained in this document on the Hertfordshire County Council web site, which is entitled Rail Strategy.

In TfL Seeks New Procurement Plan For Metropolitan Line Extension, I proposed a service run by Chiltern Railways between Watford Junction and Amersham stations.

The rest of this article is a rewrite of part of that linked post, which explores the possibilities of a service between Watford Junction and Aylesbury stations.

This Was My Original Simple  Proposal

I think it would be possible to design a simpler link with the following characteristics.

  • Watford station would remain open.
  • A four trains per hour (tph) link would run all day between Watford Junction and Amersham stations.
  • Stops would be at Watford High Street, Vicarage RoadCassiobridge, Croxley, Rickmansworth, Chorleywood and Chalfont & Latimer.

No-one would get a worse service than currently and the new stations of Cassiobridge and Vicarage Road, would make rail an alternative for many travellers.

The cross-Watford service would give access to these London services.

  • Chiltern at all stations between Croxley and Amersham.
  • London Midland at Watford Junction.
  • Metropolitan Line at Croxley, Rickmansworth and Amersham.
  • Virgin Trains at Watford Junction,
  • Watford DC Line at Watford High Street and Watford Junction

The Bakerloo Line at Watford Junction and Watford High Street, could possibly be added, if the line is extended. Which I doubt, it will be!

Hertfordshire is proposing the terminal is Aylesbury, which seems to be a good idea. But I’ll examine that later.

The next few sections, will cover various issues with the route.

New Track

There would need to be new track between Croxley and Watford High Street stations.

Will The New Stations Have Two Platforms?

All proposals have shown new stations on the new track at Cassiobridge and Vicarage Road.

I believe that money can be saved by creating two much simpler stations.

  • Only one platform, but probably an island platform with two faces like Watford High Street station.
  • No expensive footbridge if possible.
  • Only one lift.

Cassiobridge would be more complicated because of the viaduct connecting the line towards Croxley station.

This visualisation shows the viaduct and the location of Cassiobridge station.

croxley-rail-link-proposed-viaduct-connecting-the-existing-metropolitan-line-with-disused-croxley-green-branch-line

Cassiobridge station will be behind the trees towards the top-right of the image.

Would The New Track Be Single Or Double-Track?

There is space for double-track and the two ends of the route are already electrified double-track.

But surely the viaduct shown above would be much more affordable, if it were to be built for only one track!

Trains would need to pass at places East of Croxley station, but then if the line was double-track through and to the East of Cassiobridge station, trains could pass with impunity.

Consider.

  • The Borders Railway looks to have too much single-track
  • The Barking Riverside Extension is being built with a double track.

Too much single-track is often regretted.

Why Four Trains Per Hour?

Four trains per hour (tph) is becoming a standard, as it encourages Turn-Up-And-Go behaviour from travellers.

It also fits well with keeping the four tph Metropolitan Line service to Watford station, as this could give a same platform interchange at Croxley station.

Would The New Track Be Electrified?

The only part of the route that is not electrified is the about three miles of new track between  the Watford Branch and the Watford DC Line.

All current electrification is either third-rail or to the London Underground standard. and any future electrification would probably be to the London Underground standard, so that S Stock can work the route.

I believe that the Class 710 trains will have a limited onboard energy storage capability, which could enable the trains to bridge the cap in the  electrification between Watford High Street and Croxley stations.

How much would not electrifying the new track save?

How Long Will A Journey Take From Amersham Or Aylesbury To Watford Junction?

Consider.

  • Amersham to Croxley takes about 30 minutes, but it does involve a change to a bus.
  • The Overground takes three minutes between Watford Junction and Watford High Street stations.
  • Chiltern Railways achieve a twelve minute time between Amersham and Rickmansworth.

I suspect that a modern train like one of London Overground’s Class 378 trains could do the journey in a few minutes under half-an-hour.

As Amersham to Aylesbury takes about sixteen minutes, that looks like a trip between Aylesbury and Watford Junction would take about forty-five minutes.

Amersham Or Aylesbury?

My original plan used Amersham, as it has a turnback facility.

But Aylesbury looks to have space as this Google Map shows.

It should also be noted that the forty-five minute journey time between Aylesbury and Watford Junction stations, would give a two hour round trip, with relaxed fifteen minute turnround times.

This would allow time to top-up the batteries.

What Class Of Train Could Be Used?

Four-car Class 378 trains or the new Class 710 trains would be ideal. As the Class 378 train is out of production, it would have to be Class 710 trains or something similar from Bombardier. But other manufacturers might have a suitable train.

Battery power would be required, but that is becoming a standard option on metro trains like these.

How Many Trains Would Be Needed?

If the trains could do an Out-and-Back journey in an hour, then four trains would be needed to provide a four tph service.

A two-hour time would need eight trains.

Will The Link Have Any Other Services?

I have seen to plans to use the line for any other passenger or freight services.

Will There Be Infrastructure Issues At Existing Stations?

As all of the trains, I’ve mentioned and the London Underground S Stock trains, share platforms all over North West London, the answer is probably no, with the exception of a few minor adjustments to signs and platforms.

Croxley Station

Croxley station would be unchanged.

But in addition to the 4 tph between Baker Street and Watford, there would be 4 tph between Watford Junction and Amersham.

Platform 1 would handle.

  • Baker Street to Watford
  • Amersham to Watford Junction

Platform 2 would handle.

  • Watford to Baker Street
  • Watford Junction to Amersham

This would mean that if the trains alternated, the maximum wait for a connection would be about 7.5 minutes.

What I feel would be the two most common connections, would just involve a wait on the same platform.

I suspect that those, who timetable trains, would come up with a very passenger-friendly solution.

Watford Station

A property developer once told me, that the most profitable developments, are those where a railway station is involved.

The Platforms At Watford Station

So would the development of the extension involve a rebuild of Watford station to provide the following?

  • A modern future-proofed station, with all the capacity that might be needed in the next forty years or so.
  • Appropriate housing or commercial development on top of the new station.
  • Sensible amounts of parking for travellers.

With four tph to and from London in the basement, it would surely be a profitable development.

Watford Junction Station

Watford Junction station has four bay platforms 1-4, that handle the three tph service on the Watford DC Line.

At stations like Clapham Junction, Crystal Palace, Dalston Junction, Highbury and Islington and New Cross, single platforms handle four tph with ease for London Overground services.

This means that handling four tph to Amersham in addition to current services would not be difficult.

The only work, that I think should be done, is make sure that these platforms are long enough to take two of the future Class 710 trains working as an eight-car train.

There could even be two platforms left for Bakerloo Line services, if it were to be decided, that these services would go to Watford Junction.

Elton John Plays Vicarage Road Stadium

This or some football matches at Vicarage Road Stadium, would be the biggest test of the Link.

Note the following.

  • Some stations  like Watford High Street can already handle longer trains than the hundred metre long, five-car Class 378 trains they currently do.
  • Some stations like Croxley can handle the 133 metre long S Stock trains used on the Metropolitan Line.

So to future-proof the Link for massive one-off events would it be sensible to make the platforms long enough for eight-car trains or two Class 710 trains working as a pair?

Benefits

The benefits of this approach are as follows.

  • Watford station keeps its current service to London.
  • Watford gets a four tph link across the South of the town, serving the Shopping Centre, the Hospital and the Stadium.
  • Amersham or Aylesbury to Croxley stations get a link to the West Coast Main Line.
  • It could be built as a single track line without electrification.
  • Trains to run the services could be more easily available.
  • Simple island platform-based stations could be built at Cassiobridge and Vicarage Road.

In addition, Chiltern Railways, London Midland, London Overground and Underground, all gain a feeder railway bringing travellers to their services to and from London.

Cost Savings

Note.

  1. Transport for London needs cost savings on this project.
  2. Redevelopment of Watford station as a station with oversite development could raise a lot of money.
  3. The Croxley Link could be built as a single-track link without electrification and run initially using battery-electric trains.

I also feel, that building the line this way would deliver it earlier, thus improving cash-flow.

The simple link would need at the minimum.

  • A single- or double-track railway without electrification between Croxley and Watford High Street stations.
  • Two stations with island platforms at Cassiobridge and Vicarage Road
  • A viaduct to connect Cassiobridge station to the Watford Branch.
  • Some Class 710 trains or similar.

If skates were worn, the link could probably open in 2025.

December 20, 2019 Posted by | Transport | , , , , , , , | 1 Comment

An Interloper At West Ealing Station

These pictures show a Chiltern Railway‘s Class 165 train in West Ealing station.

Has the train just been borrowed by Great Western Railway or is there another reason?

It looks like as I passed, that I saw a Parliamentary Train, which uses the Greenford Branch to travel to High Wycombe

December 11, 2019 Posted by | Transport | , , , | Leave a comment

HS2 Railway To Be Delayed By Up To Five Years

The title of this post is the same as that of this article on the BBC.

These first few paragraphs indicate the current situation.

The first phase of the HS2 high-speed railway between London and Birmingham will be delayed by up to five years, Transport Minister Grant Shapps says.

That section of the line was due to open at the end of 2026, but it could now be between 2028 and 2031 before the first trains run on the route.

HS2’s total cost has also risen from £62bn to between £81bn and £88bn, but Mr Shapps said he was keeping an “open mind” about the project’s future.

The second phase has also been delayed.

What are the short term consequences of this delay in the building of High Speed Two?

  • No Capacity Increase Between London And Birmingham., until three or five years later.
  • Capacity increases to Glasgow, Hull, Leeds, Liverpool, Manchester, Nottingham and Preston will probably be five years or more later.

Are there any other things we can do to in the meantime to make the shortfall less damaging to the economy?

East Coast Main Line

Much of the East Coast Main Line (ECML) has been designed for 140 mph running. Wikipedia puts it like this..

Most of the length of the ECML is capable of 140 mph subject to certain infrastructure upgrades.

Wikipedia also says that Greengauge 21 believe that Newcastle and London timings using the shorter route could be comparable to those using HS2.

Track And Signalling Improvements

There are a number of improvements that can be applied to the ECML, with those at the Southern end summed up by this paragraph from Wikipedia.

Increasing maximum speeds on the fast lines between Woolmer Green and Dalton-on-Tees up to 140 mph (225 km/h) in conjunction with the introduction of the Intercity Express Programme, level crossing closures, ETRMS fitments, OLE rewiring and the OLE PSU – est. to cost £1.3 billion (2014). This project is referred to as “L2E4” or London to Edinburgh (in) 4 Hours. L2E4 examined the operation of the IEP at 140 mph on the ECML and the sections of track which can be upgraded to permit this, together with the engineering and operational costs.

Currently, services between London and Edinburgh take between twenty and forty minutes over four hours.

Who would complain if some or even all services took four hours?

To help the four hour target to be achieved Network Rail are also doing the following.

  • Building the Werrington Dive-under.
  • Remodelling the station throat at Kings Cross.
  • Adding extra tracks between Huntingdon and Woodwalton.
  • Devising a solution for the flat junction at Newark.

Every little helps and all these improvements will allow faster and extra services along the ECML.

Obviously, running between London and Edinburgh in four hours has implications for other services.

In Changes Signalled For HS2 Route In North, I said this.

Currently, the fastest non-stop trains between London and Doncaster take a few minutes over ninety minutes. With 140 mph trains, I think the following times are easily possible.

  • London and Doncaster – 80 minutes
  • London and Hull  – A few minutes over two hours, running via Selby.
  • London and Leeds – A few minutes less than two hours, running on the Classic route.

For comparison High Speed Two is quoting 81 minutes for London Euston and Leeds, via Birmingham and East Midlands Hub.

I suspect that North of Doncaster, improving timings will be more difficult, due to the slower nature of the route, but as services will go between Edinburgh and London in four hours, there must be some improvements to be made.

  • Newcastle – Current time is 170 minutes, with High Speed Two predicting 137 minutes. My best estimate shows that on an improved ECML, times of under 150 minutes should be possible.
  • York – Current time is 111 minutes, with High Speed Two predicting 84 minutes. Based on the Newcastle time, something around 100 minutes should be possible.

In Wikipedia,  Greengauge 21 are quoted as saying.

Upgrading the East Coast Main Line to 140 mph operation as a high priority alongside HS2 and to be delivered without delay. Newcastle London timings across a shorter route could closely match those achievable by HS2.

My estimate shows a gap of thirteen minutes, but they have better data than I can find on the Internet.

Filling Electrification Gaps East Of Leeds And Between Doncaster And Sheffield

In Changes Signalled For HS2 Route In North, I said this.

These are the lines East of Leeds.

  • A connection to the East Coast Main Line for York, Newcastle and Edinburgh.
  • An extension Eastwards to Hull.

These would not be the most expensive sub-project, but they would give the following benefits, when they are upgraded.

  • Electric trains between Hull and Leeds.
  • Electric trains between Hull and London.
  • Electric access to Neville Hill Depot from York and the North.
  • An electric diversion route for the East Coast Main Line between York and Doncaster.
  • The ability to run electric trains between London and Newcastle/Edinburgh via Leeds.

Hull and Humberside will be big beneficiaries.

In addition, the direct route between Doncaster and Sheffield should be electrified.

This would allow the following.

  • LNER expresses to run on electricity between London and Sheffield, if they were allowed to run the route.
  • Sheffield’s tram-trains could reach Doncaster and Doncaster Sheffield Airport.

A collateral benefit would be that it would bring 25 KVAC power to Sheffield station.

Better Use Of Trains

LNER are working the trains harder and will be splitting and joining trains, so that only full length trains run into Kings Cross, which will improve capacity..

Capacity might also be increased, if Cambridge, Kings Lynn and Peterborough services were run with 125 mph or even 140 mph trains. GWR is already doing this, to improve efficiency between Paddington and Reading.

Faster Freight Trains

Rail Operations Group has ordered Class 93 locomotives, which are hybrid and capable of hauling some freight trains at 110 mph.

Used creatively, these might create more capacity on the ECML.

Could the East Coast Main Line be the line that keeps on giving?

Especially in the area of providing faster services to Lincoln, Hull, Leeds, Huddersfield,Bradford Newcastle and Edinburgh.

Conclusion On East Coast Main Line

There is a lot of scope to create a high capacity, 140 mph line between London and Edinburgh.

An Upgraded Midland Main Line

Plans already exist to run 125 mph bi-mode Hitachi trains on the Midland Main Line between London and Leicester, Derby, Nottingham and Sheffield.

But could more be done in the short term on this line.

Electrification Between Clay Cross North Junction And Sheffield

This 15.5 mile section of the Midland Main Line will be shared with High Speed Two.

It should be upgraded to High Speed Two standard as soon as possible.

This would surely save a few minutes between London and Sheffield.

140 mph Running

The Hitachi bi-modes are capable of 140 mph,  if the signalling is digital and in-cab.

Digital signalling is used by the Class 700 trains running on Thameslink, so would there be time savings to be made by installing digital signalling on the Midland Main Line, especially as it would allow 140 mph running, if the track was fast enough.

Extension From Sheffield To Leeds Via New Stations At Rotherham And Barnsley

Sheffield and Transport for the North are both keen on this project and it would have the following benefits.

  • Rotherham and Barnsley get direct trains to and from London.
  • A fast service with a frequency of four trains per hour (tph) could run between Leeds and Sheffield in a time of twenty-eight minutes.

This extension will probably go ahead in all circumstances.

Use Of The Erewash Valley Line

The Erewash Valley Line is a route, that connects the Midland Main Line to Chesterfield and Sheffield, by bypassing Derby.

It has recently been upgraded and from my helicopter, it looks that it could be faster than the normal route through Derby and the World Heritage Site of the Derwent Valley Mills.

The World Heritage Site would probably make electrification of the Derby route difficult, but could some Sheffield services use the relatively straight Erewash Valley Line to save time?

Faster Services Between London And Sheffield

When East Midlands Railway receive their new Hitachi bi-mode trains, will the company do what their sister company; Greater Anglia is doing on the London and Norwich route and increase the number of hourly services from two to three?

If that is done, would the third service be a faster one going at speed, along the Erewash Valley Line?

I suspect that it could have a timing of several minutes under two hours.

Conclusion On An Upgraded Midland Main Line

There are various improvements and strategies, that can be employed to turn the Midland Main Line into a High Speed Line serving Leicester, Derby, Nottingham and Sheffield.

West Coast Main Line

The West Coast Main Line is not such a fruitful line for improvement, as is the East Coast Main Line.

Digital signalling, 140 mph running and faster freight trains, may allow a few more trains to be squeezed into the busy main line.

Increasing Capacity Between London and Birmingham New Street

I’ve seen increased capacity between London and Birmingham quoted as one of the reasons for the building of High Speed Two.

Currently, both Virgin Trains and West Midlands Trains, have three tph between London and Birmingham New Street.

  • This is probably not enough capacity.
  • The line between Birmingham New Street and Coventry stations is probably at capacity.

These points probably mean more paths between London and Birmingham are needed.

High Speed Two is planned to provide the following services between London and Birmingham after Phase 2 opens.

  • Three tph – London and Birmingham Curzon Street stations via Old Oak Common and Birmingham Interchange (2 tph)
  • Fourteen tph – London and Birmingham Interchange via Old Oak Common.

That is a massive amount of extra capacity between London and Birmingham.

  • It might be possible to squeeze another train into each hour.
  • Trains could be lengthened.
  • Does Birmingham New Street station have the capacity?

But it doesn’t look like the West Coast Main Line can provide much extra capacity between London and Birmingham.

Increasing Capacity Between London and Liverpool Lime Street

Over the last couple of years, Liverpool Lime Street station has been remodelled and the station will now be able to handle two tph from London, when the timetable is updated in a year or so.

Digital signalling of the West Coast Main Line would help.

Increasing Capacity Between London and Manchester Piccadilly

Manchester Piccadilly station uses two platforms for three Virgin Trains services per hour to and from London.

These platforms could both handle two tph, so the station itself is no barrier to four tph between London and Manchester.

Paths South to London could be a problem, but installing digital signalling on the West Coast Main Line would help.

Conclusion On The West Coast Main Line

Other improvements may be needed, but the major update of the West Coast Main Line, that would help, would be to use digital signalling to squeeze more capacity out of the route.

The Chiltern Main Line

Could the Chiltern Main Line be used to increase capacity between London and Birmingham?

Currently, there are hourly trains between Birmingham Moor Street and Snow Hill stations and London.

As each train has about 420 seats, compared to the proposed 1,100 of the High Speed Two trains, the capacity is fairly small.

Increasing capacity on the route is probably fairly difficult.

Digital Signalling

This could be used to create more paths and allow more trains to run between London and Bitmingham.

Electrification

The route is not electrified, but electrifying the 112 mile route would cause massive disruption.

Capacity At Marylebone Station

Marylebone station probably doesn’t have the capacity for more rains.

Conclusion On The Chiltern Main Line

I don’t think that there is much extra capacity available on the Chiltern Main Line between London and Birmingham.

Conclusion

I have looked at the four main routes that could help make up the shortfall caused by the delay to High Speed Two.

  • Planned improvements to the East Coast Main Line could provide valuable extra capacity to Leeds and East Yorkshire.
  • The Midland Main Line will increase capacity to the East Midlands and South Yorkshire, when it gets new trains in a couple of years.
  • Planned improvements to the West Coast Main Line could provide valuable extra capacity to North West England.
  • The Chiltern Main Line probably has little place to play.

As Birmingham has been planning for High Speed Two to open in 2026, some drastic rethinking must be done to ensure that London and Birmingham have enough rail capacity from that date.

 

 

 

September 4, 2019 Posted by | Transport | , , , , , , , , , , , , , | Leave a comment

A Trip Around The West Midlands

Today, I did a trip around the West Midlands, using five different trains.

Tain 1 – 19:10 – Chiltern – London Marylebone To Leamington Spa

This was one of Chiltern’s rakes of Mark 3 coaches hauled by a Class 68 locomotive.

I like these trains.

  • They are comfortable.
  • Everybody gets a table and half sit by a big window.
  • There is more space than Virgin Train’s Class 390 trains.
  • They may be slower, but they are fast enough for most journeys I make.

The train arrived seven minutes late at Leamington Spa at 11:32.

Train 2 – 12:02 – West Midlands Trains – Leamington Spa To Nuneaton

This is a new West Midlands Trains service, via the new station at Kenilworth and Coventry.

The trains are Class 172 trains, that used to run on the Gospel Oak to Barking Line.

Note.

  1. The have been repainted and refreshed.
  2. The seat cover on the driver’s seat is a relic of the London Overground.
  3. The train now has a toilet.

The train was about half-full and I got the impression, that the new service had been well-received.

The train arrived on time at Nuneaton at 12:38.

Train 3 – 12:54 – West Midlands Trains – Nuneaton to Rugeley Trent Valley

The train was a Class 350 train and it arrived eight minutes late at 13:29.

These pictures show Rugeley Trent Valley station.

It is very minimal with just a shelter, a basic footbridge and no information on how or where to buy a ticket.

Passengers deserve better than this!

Train 4 – 13:43 – West Midlands Trains – Rugeley Trent Valley to Birmingham New Street

This is a new West Midlands Trains electric service.

Compared to the Leamington Spa to Nuneaton service, passengers were spread rather thinly in the train.

The train was a Class 350 train and it arrived five minutes late at 14:44.

Train 5 – 15:55 – Chiltern – Birmingham Moor Street to London Marylebone

Another comfortable Chiltern Railways train back to London, which arrived four minutes late at 17:47.

Customer Service

Customer service and especially that from West Midlands Trains was rather patchy.

  • Leamington Spa station was rebuilding the entrance, but staff were around.
  • Nuneaton station was very quiet.
  • Rugeley Trent Valley station needs a lot of improvement.
  • The two Birmingham City Centre stations were much better.

I actually had to travel ticketless from Rugeley Trent Valley to Birmingham New Street, as the Conductor on the train didn’t check the tickets.

But Virgin Trains were very professional at Birmingham New Street.

Service Pattern

I have some observations on the service patterns.

  • For comfort reasons, I would prefer that Chiltern ran Mark 3 coaches and Class 68 locomotives on all Birmingham services.
  • In the future, it looks like Leamington Spa and Nuneaton needs at least a half-hourly service.
  • There definitely needs to be more services on the Chase Line.

There also is a serious need for staff and better facilities at Rugeley Trent Valley station.

No-one even a hardened member of the SAS would want to spend thirty minutes changing trains there on a blustery and cold winter’s day.

Conclusion

I tried two new services today, that started on the May 2019 timetable change.

  • A diesel service between Leamington Spa and Nuneaton via Kenilworth and Coventry.
  • An electrified service between Rugeley Trent Valley and Birmingham New Street.

The first would appear to be what passengers want, but the second needs a bit of promoting.

 

May 24, 2019 Posted by | Transport | , , , , , , , , | Leave a comment

A Neat Cup-Holder On Chiltern Railways

The picture shows a  cup-holder on a Chiltern Railways’ train.

It is neat and well-designed.

It probably didn’t cost a fortune too!

 

 

April 24, 2019 Posted by | Food, Transport | , | Leave a comment