The Anonymous Widower

Rolls-Royce And Flanders Electric Plan To Develop Hybrid Retrofit Solution For Mining Trucks

The title of this post, is the same as that of this Press Release from Rolls-Royce.

This is the first paragraph.

Rolls-Royce and Flanders Electric have agreed to develop a retrofit solution for hybridizing mining trucks with mtu engines, batteries and hybrid control systems, and Flanders drive train solutions. The two companies have signed a Memorandum of Understanding enabling them to offer a scalable retrofit kit for hybridizing mining trucks in a wide range of mining applications.

This looks to be a promising application of a version of MTU Mybrid PowerPack technology, that is being trialled on a Class 168 train on Chiltern Railways.

They are claiming a CO2 reduction of twenty percent.

September 16, 2021 Posted by | Transport | , , , , | Leave a comment

HybridFLEX Battery-Diesel Train Continues Programme Of Testing

The title of this post, is the same as that of this article on Global Railway Review.

This is the first two paragraphs.

The HybridFLEX battery-diesel train is currently undertaking a programme of tests between Duffield and Wirksworth, prior to returning to Chiltern Railways in the summer.

Fitted with a Rolls Royce MTU hybrid drive, the HybridFLEX will cut noise emissions in stations and deliver zero emissions when operating under battery power.

All seems to be going well, according to the article.

I like the concept, as to replace a diesel engine with a diesel-battery hybrid power pack must surely be a sensible way to at least partially decarbonise.

In the UK, the following diesel multiple units are fitted with modern MTU engines and could be candidates from a replacement power pack.

That is a total of 990 diesel engines.

As some of the Class 196 and Class 197 trains have yet to be delivered, I do wonder, if it would be sensible to deliver them as diesel-battery hybrid trains.

 

 

May 29, 2021 Posted by | Transport | , , , , , | 3 Comments

Would A Mutant Many-Parent Child Help To Solve London’s Transport Problems?

London needs to increase the capacity of its public transport system, as the City continues to get larger and larger.

Current Major Projects

There are only three major rail projects ongoing in London at the present time.

The Bank Station Upgrade

The Bank Station Upgrade appears to be progressing well, albeit perhaps it’s a bit late due to the pandemic.

It is a complex project and from what I have heard and observed, it has been well designed and planned.

The Barking Riverside Extension

As with the Bank Station Upgrade the Overground extension to the new Barking Riverside station, appears to be going reasonably well.

But compared to that project, it is a relatively simple project, built mainly in the open air, with no tunneling.

Crossrail

Crossrail is in trouble, after what many believe was a very good tunnelling phase of the project.

But then tunnels under London usually seem to go well. I can remember the Victoria Line tunnelling and many other under London since the 1960s and all of these tunnels seem to have been dug without trouble. As I write, there don’t seem to be any tunneling problems with the Thames Tideway Tunnel.

Crossrail now has been reduced to a series of station builds and rebuilds, some of which are as large as the Bank Station Upgrade, with other ongoing projects like the testing of trains and systems.

So why are some of these stations running late in their delivery?

If you walk along the route of Crossrail in the City of London and through Clerkenwell and the West End, it is one massive building side as developers raise massive clusters of new developments around and above the Crossrail stations.

The picture shows Farrington station’s Eastern entrance, with a new development on top.

This one wasn’t a big one, but it went up in record time.

These buildings are often funded by Sovereign Wealth Funds, who want their buildings finished ASAP and as they have bottomless pockets, they are prepared to pay more to get the builders and tradesmen they need.

And where did they get the workers from? Other projects, including Crossrail.

This problem happened in Aberdeen at the height of the oil boom in the last century.

I also think that Brexit worsened the problem, as workers from mainland EU moved to large projects closer to home, like Stuttgart 21 and the new Berlin Brandenburg airport, that were both very much in trouble and could have been offering premium salaries as well!

The solution would have been to phase developments so that the limited pool of workers was not exhausted.

But that probably wouldn’t have suited the developers and politicians for all sorts of reasons.

  • An uncompleted building doesn’t bring in money and jobs.
  • Early completion must improve chances of letting the building.
  • Delaying the building would probably have meant fewer holidays for politicians in exotic locations.

Hopefully, a comprehensive enquiry into the lateness of Crossrail will provide answers.

High Speed Two

High Speed Two is to my mind a London local project. But only in a secondary way!

  • Rebuilding Euston station will improve Underground connections and interchange at Euston and Euston Square stations.
  • It is claimed by High Speed Two, that the rebuilt Euston station will create 16000 jobs and 2200 homes.
  • High Speed Two will enable massive development at Old Oak Common, with tens of thousands of homes and jobs.
  • Old Oak Common station will be a very important rail hub in North-West London.

With seventeen trains per hour (tph) between Euston and Old Oak Common will High Speed Two attract local traffic?

  • I suspect High Speed Two between Manchester Airport and Manchester Piccadilly and between Birmingham Interchange and Birmingham Curzon Street will also attract local traffic.
  • I’ve used TGVs between Nice and Antibes.
  • Tourists might visit, just like they did and still do at the Olympic Park.
  • Many Londoners will join High Speed Two at Old Oak Common.

Some wag will suggest putting it on the Tube Map. But is it such a stupid idea?

Where Does London Need More Rail Services?

Having lived in London on and off for over seventy years, I feel the worst areas for rail links are probably.

  • North West London
  • South East London
  • South Central London between Wimbledon and Croydon.
  • South West London

Note.

  1. Over the years, there is no doubt that East and North London have improved considerably, with the development of the East London, North London and Gospel Oak to Barking Lines.
  2. Thameslink has been improved in North London and now it is being supported with improvements to the Northern City Line. Both routes now have new Siemens trains, which give a whole new dimension to using ironing-boards as seats.
  3. Crossrail will produce major improvements in West, East and South East London.
  4. Building of a new Penge Interchange station, which I wrote about in Penge Interchange could improve routes to and from South East London.
  5. Hopefully the work in recent years at Waterloo will improve suburban services out of Waterloo. In An Analysis Of Waterloo Suburban Services Proposed To Move To Crossrail 2, I showed that four tph could be run to Chessington South, Epsom, Hampton Court and Shepperton stations.

It looks like North West and South Central London are missing out.

How Can Services Be Improved In North West London?

There are radial routes from the centre of London to the suburbs.

Starting from the North and going to the West, there are the following lines.

When I used to live at Cockfosters as a child,  to visit my many cousins in North West London, there was no alternative but to use a bus and take well over an hour each way.

There are now some circular rail routes in London but nothing in the North West of the capital.

The Dudding Hill Line And The West London Orbital Railway

But there is the little-used freight route called Dudding Hill Line.

  • It runs between Cricklewood on the Midland Main Line and Acton Central on the North London Line.
  • It is four miles of double-track railway.

This YouTube video shows a cab ride from Acton to Cricklewood.

Plans exist to turn it into the West London Orbital Railway, which will run two services.

  • West Hampstead and Hounslow via Cricklewood, Neasden, Harlesden, Old Oak Common Lane, Acton Central, South Acton, Lionel Road, Brentford, Syon Lane and Isleworth
  • Hendon and Kew Bridge via Brent Cross West, Neasden, Harlesden, Old Oak Common Lane, Acton Central, South Acton

Note.

  1. The proposed frequency of both services is four tph.
  2. There would be some stations to be built, but the track exists.
  3. There would be no new tunnels.
  4. The route is technically feasible.
  5. The route would connect West London to High Speed Two.
  6. There would be little disruption whilst it was built.
  7. The services could be run by dual-voltage battery-electric trains charged on the electrification at both ends of the route.
  8. The scheme represents a high value for money, with a benefit-cost ratio (BCR) of 2.2.

On the other hand, the scheme has two serious problems, as far as the current London Mayor is concerned.

  • Transport for London has no money, partly because of London’s Fare Freeze.
  • The project is not in South London.

This important and value-for-money project will not be built, whilst Sadiq Khan is still Mayor of London.

Harlesden Interchange

I believe that if we get the interchanges right on the West London Orbital Railway correct we can do things like.

  • Increase the benefit cost ratio.
  • Link the route to South London to make the Mayor a bit happier about the North London Scheme.

This Google Map shows Harlesden station.

Note.

  1. The Bakerloo Line/Watford DC Line running North-West/South-East through Harlesden station.
  2. The West Coast Main Line in the Southern section of the map.
  3. The Dudding Hill Line running North-South across the map.

Platforms will be built on the Dudding Hill Line to connect that would probably be new or extended platforms in the current Harlesden station to enable interchange between the West London Orbital and the Watford DC Lines.

I also think there is a possibility that platforms could be added to the slow tracks of the West Coast Main Line, so that suburban services into London Euston can also connect to the West London Orbital Line.

It would also enable a connection between Southern’s Clapham Junction and Milton Keynes service and the West London Orbital Railway.

Looking at this from various angles, I think that an architect good at designing three-dimensional structures could develop a quality Harlesden Interchange station.

Neasden Interchange

Like Harlesden, Neasden is another possibility for a comprehensive interchange.

This Google Map shows Neasden station.

Note.

  1. There are a lot of lines going through Neasden station.
  2. The Dudding Hill Line goes across the South-East corner of the map.
  3. There is plenty of space in the area.

This map from cartometro.com shows the lines in the area.

Note.

  1. The Dudding Hill Line is indicated by the former Dudding Hill station.
  2. The red tracks are Metropolitan Line tracks.
  3. The silver tracks are Jubilee Line tracks.
  4. The Southerly pair of lines through Neasden and Dollis Hill stations are Chiltern’s lines into Marylebone.
  5. The Chiltern tracks divide to the West of Neasden station, with the Aylesbury line following the other tracks and the Chiltern Main Line diverging to the West.
  6. London’s largest Underground Depot at Neasden, lies to the North-West in an area of London noted for few merits with the North Circular Road passing through.

I wonder, if the station and the depot offers a unique opportunity to offer large scale additions to London’s housing stock over the top of a rebuilt station and depot.

This Google Map shows the wider area.

Note.

  1. Much of the depot appears to be open-air stabling for trains.
  2. The North Circular Road passes North-South between the depot and Neasden station.
  3. The Dudding Hill Line cuts across the South-East corner of the map.
  4. This corner of the map is labelled as Dudden Hill.
  5. According to Wikipedia, Dudding Hill is considered a more genteel spelling of Dudden Hill and could be as old as 1544.

It looks as if it would be relatively easy to develop over the top of the depot to create housing, industrial or commercial properties.

But why stop there and cover both the North Circular Road and the six tracks through Neasden station?

Neasden station could be rebuilt into a station with platforms on the following lines.

  • Metropolitan Line
  • Jubilee Line
  • Chiltern Lines
  • Dudding Hill Lines

Note.

  1. I estimate that Chiltern has a train about every six minutes, so some could stop.
  2. There might be space for a bay platform for Chiltern.

Neasden could be a major housing and transport hub.

  • There could be large amounts of parking.
  • Road access would be good.
  • It would have good rail connections.
  • It could have a bus interchange.
  • London needs housing.

It might even be an alternative to Chiltern’s plan for a West Hampstead Interchange.

The Mayor of London, Transport for London and the Borough of Brent need to be bold!

Improvements To Chiltern’s Routes

Chiltern Railways have some plans that could improve services in North West London.

Using The Acton-Northolt Line

Wikipedia says this about using the Acton-Northolt Line to access new platforms at Old Oak Common station.

Upgrading the Acton–Northolt line (formerly the “New North Main Line”) to new platforms at Old Oak Common. This upgrade will also extend to London Paddington to increase capacity on the Chiltern Main Line as there is no room to expand the station at Marylebone.

This scheme has merit.

  • The platforms would be connected to the Chiltern Main Line along the route of a partly-disused railway.
  • The route could be double-tracked.
  • There must be space for at least two new platforms.
  • The new platforms could easily handle four tph.
  • There may be a case for some new stations.

The scheme could add valuable extra capacity for Chiltern.

A Chiltern Metro

Wikipedia says this about a  proposed metro service between Marylebone and West Ruislip stations.

  • The Metro would have a frequency of four tph.
  • It would call at Wembley Stadium, Sudbury & Harrow Road, Sudbury Hill Harrow, Northolt Park and South Ruislip.
  • The service would require a reversing facility at West Ruislip.
  • There would need to be passing loops at Sudbury Hill Harrow, and  Wembley Stadium.

Given that the Chiltern Metro was first proposed over a decade ago, perhaps the concept could be increased in scope.

  • Housing and other developments along the route may suggest that a station further out like High Wycombe might be a better terminal.
  • ERTMS in-cab digital signalling is likely to be installed at some time, which would decrease headways between trains and allow more services.
  • Electrification is likely in some form before 2040 and this will improve train performance.
  • If Neasden station were to be rebuilt, as a comprehensive transport and residential development, I believe that this Metro service should also call at Neasden, as it would complement the West London Orbital Railway.

I believe that a review of the Chiltern Metro may mean, that an improved version is worth building.

Improvements To The Milton Keynes And Clapham Junction Service

I feel that this service could be key in improving services between North London and South London via the West London Line and High Speed Two’s station at Old Oak Common.

Currently, this service is as follows.

  • It runs between Milton Keynes and Clapham Junction stations.
  • It has a frequency of one tph.
  • It calls at Bletchley, Leighton Buzzard, Tring, Berkhamsted, Hemel Hempstead, Watford Junction, Harrow & Wealdstone, Wembley Central, Shepherd’s Bush, Kensington (Olympia), West Brompton and Imperial Wharf stations.
  • The service used to extend to South Croydon via Wandsworth Common, Balham, Streatham Common, Norbury, Thornton Heath, Selhurst and East Croydon.
  • It uses Class 377 trains.
  • It shares parts of the route with the London Overground.

I also think it has various issues and questions with respect to the future.

  • The Class 377 trains are only 100 mph units, whereas the outer suburban trains on the West Coast Main Line are 110 mph Class 350 trains, which will soon be replaced by 110 mph Class 730 trains. Do the slower trains cause timetabling problems?
  • Is one tph enough?
  • The route doesn’t serve High Speed Two at Old Oak Common station.
  • Is the service run by the right operator?
  • What is the ideal Southern terminal?

These are my thoughts on the various issues.

The Service As A North-South Link

A friend, who lives in South London has told me, that if you go to an event at Wembley stadium the route is busy.

On the other hand, I’ve used it at midday on a Tuesday and found the trains empty.

But developed properly it could connect the following.

  • Milton Keynes Central
  • Bletchley for the East West Rail Link
  • Watford for the West Coast Main Line to the North
  • Wembley Central for Wembley Stadium and other entertainments
  • Willesden Junction for the North London Line
  • Hythe Road for High Speed Two, Crossrail and the Great Western Railway
  • Shepherd’s Bush for the shopping.
  • Clapham Junction for most of South London and the South of England

It would be a very useful cross-London route to complement Thameslink and the East London Line.

The Frequency

The current Milton Keynes and Clapham Junction has a frequency of one tph.

This may be enough for some parts of the route, as other services also provide services.

But many would argue, that perhaps South of Watford Junction, the service needs to be increased to connect the area to Old Oak Common and Clapham Junction.

I feel that High Speed Two, Crossrail and the Great Western Railway give so much connectivity, that between Clapham Junction and Willesden Junction needs a frequency of at least eight tph.

As the North London Line and the Watford DC Line are working at a frequency of four tph, this could indicate that a four tph direct service Watford Junction and Clapham Junction be ideal. Perhaps, it could continue North to Milton Keynes with a frequency of two tph.

The Trains

I am absolutely certain, that the full service needs to be operated by dual voltage trains, that are capable of running at 110 mph.

The Class 350/1 trains of West Midlands Trains would probably be ideal for the full service.

  • They are dual voltage trains.
  • They are 110 mph trains.
  • They have a long distance interior.

They are being replaced with new Class 730 trains, so would be available.

If some services were running only as far North as Watford Junction, these could be either Class 378 or Class 710 trains of the London Overground.

The Connection To The West London Line And High Speed Two

This map from Wikipedia by Cnbrb shows the latest iteration of the lines at Old Oak Common station.

Note.

  1. The green route is taken by the Milton Keynes and Clapham Junction trains.
  2. The bright blue is High Speed Two.
  3. The purple is Crossrail.
  4. The orange is the Overground
  5. Hythe Road station is proposed for the West London Line to connect to Old Oak Common station for High Speed Two.
  6. Hythe Road station will have a bay platform to turn trains from the South.
  7. Old Oak Common Lane station is proposed for the North London Line to connect to Old Oak Common station for High Speed Two.

But where is the connection between the Milton Keynes and Clapham Junction service and Old Oak Common station for High Speed Two?

  • Access from the South is not a problem as the Overground can be used to Hythe Road station.
  • Extra services from the South can be run to and from the bay platform at Hythe Road station.
  • Access from the East is not a problem as the Overground can be used to Hythe Road station.
  • How do passengers go between say Wembley Central and Heathrow?

In addition for access from the West is the Overground can be used to Old Oak Common Lane station.

But as things stand at the moment the Milton Keynes and Clapham Junction service bypasses Hythe Road station and the only ways to go from Milton Keynes to Old Oak Common station for either High Speed Two, Crossrail or the Great Western is to do one of the following.

  • Change to the Watford DC Line at Watford Junction, Harrow & Wealdstone or Wembley Central and then change to the Overground at Willesden Junction for either Old Oak Common Lane or Hythe Road station.
  • Continue South to Shepherd’s Bush station, cross over to the other platform and then come back to Hythe Road station.
  • Go via Euston station. OK for High Speed Two, but not for Crossrail or the Great Western.

They cannot be serious!

I hope that there is a cunning plan to enable the Milton Keynes and Clapham Junction service to connect.

Whilst on the subject of connections at Old Oak Common, where is the promised connection of Crossrail to the West Coast Main Line?

Were all these connections just kicked into the long grass and quietly forgotten, as they were deemed too difficult and/or expensive?

I think serious questions need to be asked about the design of Crossrail and High Speed Two at Old Oak Common.

Why weren’t Crossrail and High Speed Two designed to connect directly to the London Overground at Willesden Junction station perhaps by the use of a North South people mover serving the following lines?

  • Bakerloo, Watford DC, West Coast Main and West London Orbital Lines at a rebuilt Harlesden station.
  • London Overground at the high-level Willesden Junction station.
  • High Speed Two
  • Crossrail and the Great Western Railway
  • The new Chiltern platforms.
  • Central Line at East Acton station.

Note.

  1. Hythe Road and Old Oak Common stations would not be needed.
  2. The Milton Keynes and Clapham Junction service would call additionally at the rebuilt Harlesden station.

The current design of Old Oak Common stinks like a horse designed by a committee!

The Northern Terminal

I suggested earlier that some trains use Watford Junction and others use Milton Keynes Central.

Both stations have the capacity and the connectivity.

The Southern Terminal

In the last ten years, South Croydon, East Croydon and Clapham Junction have been used as the Southern terminal.

Thameslink seems to have chosen its various terminals to satisfaction of the travelling public, so perhaps the same method or personnel should be used.

The Operator

The Gibb Report said that this service should be transferred to the London Overground and I wrote about this proposal in Gibb Report – East Croydon – Milton Keynes Route Should Be Transferred To London Overground.

This is one suggestion, but I do wonder, if it should be transferred to West Midlands Trains and run in conjunction with their West Coast Main Line services.

  • The service needs 110 mph trains.
  • Timetabling and operation should be easier.
  • London Overground trains don’t have a long-distance interior.

On the other hand, trains running between Watford Junction and Clapham Junction would probably be better if they were London Overground trains.

Conclusion

I believe that by using the current network and some modern trains and signalling, the passenger services to the West of the capital can be substantially improved.

 

 

 

 

May 1, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments

The Mathematics Of A Hydrogen-Powered Freight Locomotive

If we are going to decarbonise the railways in the UK and in many countries of the world, there is a need to replace diesel locomotives with a zero-carbon alternative.

In looking at Airbus’s proposal for hydrogen powered aircraft in ZEROe – Towards The World’s First Zero-Emission Commercial Aircraft, it opened my eyes to the possibilities of powering freight locomotives using gas-turbine engines running on liquid hydrogen.

A Hydrogen-Powered Equivalent Of A Class 68 Locomotive

The Class 68 Locomotive is a modern diesel locomotive used on UK railways.

This is a brief specification

  • It can pull both passenger and freight trains.
  • It has an operating speed of 100 mph.
  • The diesel engine is rated at 2.8 MW
  • It has an electric transmission.
  • It has a 5,000 litre diesel tank.
  • It weighs 85 tonnes.
  • It is 20.5 metres long.

There are thirty-four of these locomotives in service, where some haul passenger trains for Chiltern Railways and TransPennine Express.

Rolls-Royce’s Staggering Development

Staggering is not my word, but that of Paul Stein, who is Rolls-Royce’s Chief Technology Officer.

He used the word in a press release, which I discuss in Our Sustainability Journey.

To electrify aviation, Rolls-Royce has developed a 2.5 MW generator, based on a small gas-turbine engine, which Paul Stein describes like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

This generator is designed for flight and the data sheet for the gas-turbine engine is available on the Internet.

  • It has a weight of under a couple of tonnes compared to the thirteen tonnes of the diesel engine and generator in a Class 68 locomotive.
  • It is almost as powerful as the diesel.
  • It looks to be as frugal, if not more so!
  • Rolls-Royce haven’t said if this gas-turbine can run on aviation biofuel, but as many of Rolls-Royce’s large engines can, I would be very surprised if it couldn’t!

Rolls-Royce’s German subsidiary; MTU is a large producer of rail and maritime diesel engines, so the company has the expertise to customise the generator for rail applications.

Could this generator be modified to run on liquid hydrogen and used to power a Class 68-sized locomotive?

  • The size of the generator must be an advantage.
  • Most gas-turbine engines can be modified to run on natural gas and hydrogen.
  • Its power output is electricity.
  • There’s probably space to fit two engines in a Class 68 locomotive.

In addition, a battery could be added to the transmission to enable regenerative braking to battery, which would increase the efficiency of the locomotive.

Storing Enough Hydrogen

I believe that the hydrogen-powered locomotive should carry as much energy as a Class 68 locomotive.

  • A Class 68 locomotive has a capacity of 5,000 litres of diesel fuel.
  • This will have a mass of 4.19 tonnes.
  • Each kilogram of diesel can produce 47 Mega Joules of energy.
  • This means that full fuel tanks contain 196,695 Mega Joules of energy.
  • Each litre of liquid hydrogen can produce 10.273 Mega Joules of energy

This means that to carry the same amount of energy will need 19,147 litres or 19.15 cubic metres of liquid hydrogen.

  • This could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.
  • It would also weigh 1.38 tonnes.

The E-Fan-X aircraft project must have worked out how to store, similar amounts of liquid hydrogen.

Note that I used this Energy And Fuel Data Sheet from Birmingham University.

Running On Electrification

As the locomotive would have an electric transmission, there is no reason, why it could not run using both 25 KVAC overhead and 750 VDC third-rail electrification.

This would enable the locomotive to haul trains efficiently on partially electrified routes like between Felixstowe and Leeds.

Hydrogen-Powered Reciprocating Engines

When it comes to diesel engines to power railway locomotives and big trucks, there are few companies bigger than Cummins, which in 2018, turned over nearly 24 billion dollars.

  • A large proportion of this revenue could be at risk, if governments around the world, get serious about decarbonisation.
  • Cummins have not let the worst just happen and in 2019, they acquired Hydrogenics, who are a hydrogen power company, that they now own in an 81/19 partnership with Air Liquide.
  • Could all this expertise and Cummins research combine to produce powerful hydrogen-powered reciprocating engines?
  • Other companies, like ABC and ULEMCo are going this route, to modify existing diesel engines to run on hydrogen or a mixture of hydrogen and diesel.

I believe it is very likely, that Cummins or another company comes up with a solution to decarbonise rail locomotives, based on a conversion of an existing diesel engine.

Refuelling Hydrogen-Powered Rail Locomotives

One of problems with hydrogen-powered trucks and cars, is that there is no nationwide refuelling network providing hydrogen. But railway locomotives and trains usually return to depots at the end of the day for servicing and can be fuelled there.

Conclusion

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

September 25, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , | 11 Comments

Running Battery Electric Trains Between London Marylebone And Aylesbury

This post was suggested by Fenline Scouser in a comment to Vivarail Targets Overseas Markets, where they said.

I have long thought that one UK application that would make sense is the Marylebone – Aylesbury via Harrow on the Hill service, the intermediate electrified section lending itself to full recharge on each trip. ? stabling facility at Aylesbury with overnight charging.

It does look to be an idea worth pursuing.

Current And Future Services

Currently, the services between London Marylebone and Aylesbury are as follows.

  • London Marylebone and Aylesbury via High Wycombe
  • London Marylebone and Aylesbury via Amersham
  • London Marylebone and Aylesbury Vale Parkway via Amersham

All services are one train per hour (tph)

In the future, it is planned to extend the Aylesbury Vale Parkway service to Milton Keynes, according to information I found on the East West Rail web site.

  • It looks like the service will go via High Wycombe, Saunderton, Princes Risborough, Monks Risborough, Little Kimble, Aylesbury, Aylesbury Vale Parkway, Winslow and Bletchley.
  • The service will have a frequency of 1 tph.
  • Time between Milton Keynes and Aylesbury is quoted as 33 minutes.
  • Time between High Wycombe and Milton Keynes is quoted as 63 minutes.

Will this leave the Marylebone and Aylesbury are as follows?

  • 1 tph – London Marylebone and Aylesbury via High Wycombe.
  • 2 tph – London Marylebone and Aylesbury via Amersham

Passengers between London Marylebone and Aylesbury would have the same service.

Distances

These are a few distances, of which some have been estimated.

  • London Marylebone and Harrow-on-the-Hill – 9.18 miles.chains
  • Amersham and Harrow-on-the-Hill – 14.27 miles.chains – Electrified
  • Aylesbury and Amersham – 15.23 miles.chains
  • London Marylebone and High Wycombe – 28.11 miles.chains
  • Aylesbury and High Wycombe – 15.28 miles.chains
  • Aylesbury and Aylesbury Vale Parkway – 2.25 miles.chains
  • Aylesbury Vale Parkway and Calvert – 8.19 miles.chains
  • Aylesbury and Milton Keynes – 16.40 miles.chains – Estimated

Note that there are eighty chains to the mile.

Hitachi’s Regional Battery Train

Hitachi’s Regional Battery Train, is the only battery electric train intended for the UK network for which a detailed specification has been released.

This infographic from Hitachi gives the specification.

Note that ninety kilometres is fifty-six miles.

I would suspect that battery trains from other manufacturers, like Bombardier, CAF and Stadler, will have a similar specification.

Battery Electric Trains Between London Marylebone And Aylesbury

I’ll take each possible route in turn.

London Marylebone And Aylesbury Via Amersham

The three sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified

Note.

  1. The total distance is 38.85 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Vale Parkway Via Amersham

The four sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified
  • Aylesbury and Aylesbury Vale Parkway – 2.31 miles – Not Electrified

Note.

  1. The total distance is 41.16 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury Vale Parkway and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Via High Wycombe

The two sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified

Note.

  1. The total distance is 43.50 miles
  2. There is no electrification to charge the trains.

A battery electric train, with the range of a Hitachi Regional Battery Train will need charging to work this route.

However, with charging at both ends, this would be a route for a battery electric train.

At the London Marylebone end, there are two possible solutions.

  • Electrify the station traditionally, together with perhaps the tracks as far as Neasden, where the routes split. Either 750 VDC third-rail or 25 KVAC overhead electrification could be used.
  • Fit fast charging systems into all the platforms at the station.

Note.

  1. Turnround times in Marylebone station are typically nine minutes or more, so using a charging system should be possible.
  2. Power for the electrification should not be a problem, as the station is close to one of London’s central electricity hubs at Lisson Grove by the Regent’s Canal.

The final decision at Marylebone, would be one for the engineers and accountants.

At the Aylesbury end, it should be noted that much of the under twenty miles of track between Princes Risborough and Aylesbury and on to Aylesbury Vale Parkway and Calvert us single-track.

So why not electrify from Princes Risborough and Calvert, where the route joins the East West Railway?

The electrification in Aylesbury station could also be used to top-up trains going to London via Amersham.

I would use 25 KVAC overhead electrification, using lightweight gantries like these, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

London Marylebone And Milton Keynes Via High Wycombe, Aylesbury and Aylesbury Vale Parkway

The three sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified
  • Aylesbury and Milton Keynes – 16.50 miles – Partially Electrified

Note.

  1. The total distance is sixty miles
  2. There is some electrification to charge the trains between Bletchley and Milton Keynes.

A battery electric train, with the range of a Hitachi Regional Battery Train should be able to work this route, if they can work London Marylebone and Aylesbury, with charging at Aylesbury.

Milton Keynes Central is a fully-electrified station.

The picture shows Platform 2A, which is South-facing electrified, five-car platform, which could be used by the Chiltern service.

Train Specification

Consider.

  • Chiltern Railway’s workhorse is a Class 168 train, which is a diesel multiple unit of up to four cars, with a 100 mph operating speed.
  • The longest leg without electrification could be London Marylebone and Aylesbury via High Wycombe, which is 43.5 miles.
  • Hitachi’s Regional Battery Train has a range of fifty-six miles.
  • As there is a need to work with London Underground electrification, a dual-voltage train will be needed.

So a battery electric train with this specification would probably be ideal.

  • Four cars
  • Ability to work with both 750 VDC third-rail and 25 KVAC overhead electrification.
  • 100 mph operating speed.
  • Battery range of perhaps 55 miles.

Could the specification fit a battery-equipped Class 385 train, which will probably be built for Scotland?

Conclusion

I am convinced that battery electric trains can run between London Marylebone and Aylesbury, Aylesbury Vale Parkway and Milton Keynes stations.

The following would be needed.

  • A battery electric range of perhaps fifty-five miles.
  • Some form of charging at Marylebone and Aylesbury stations.

I would electrify, the single-track route between Princes Risborough and Aylesbury Vale Parkway.

September 4, 2020 Posted by | Transport | , , , , , , , , , , , | Leave a comment

CrossCountry’s Bournemouth And Manchester Piccadilly Service

Whilst I was at Basingstoke station yesterday one of CrossCountry‘s services between Bournemouth and Manchester Piccadilly came through, so I took these pictures.

It was a long formation of Class 220 trains.

Could This Service Be Replaced By Hitachi Regional Battery Trains?

This Hitachi infographic gives the specification of the Hitachi Regional Battery Train.

I feel that in most condition, the range on battery power can be up to 56 miles.

I can break the Bournemouth and Manchester Piccadilly route into a series of legs.

  • Bournemouth and Basingstoke – 60 miles – 750 VDC third-rail electrification
  • Basingstoke and Reading – 15.5 miles – No electrification
  • Reading and Didcot North Junction – 18 miles – 25 KVAC overhead electrification
  • Didcot North Junction and Oxford – 10 miles – No electrification
  • Oxford and Banbury – 22 miles – No electrification
  • Banbury and Leamington Spa – 20 miles – No electrification
  • Leamington Spa and Coventry – 10 miles – No electrification
  • Coventry and Manchester Piccadilly – 101 miles – 25 KVAC overhead electrification

Note.

  1. 63 % of the route is electrified.
  2. The short 15.5 mile gap in the electrification between Basingstoke and Reading should be an easy route for running on battery power.
  3. But the 62 mile gap between Didcot North Junction and Coventry might well be too far.

The train would also need to be able to work with both types of UK electrification.

If some way could be found to bridge the 62 mile gap reliably, Hitachi’s Regional Battery Trains could work CrossCountry’s service between Bournemouth and Manchester Piccadilly.

Bridging The Gap

These methods could possibly  be used to bridge the gap.

A Larger Battery On The Train

If you look at images of MTU’s Hybrid PowerPack, they appear to show a basic engine module with extra battery modules connected to it.

Will Hitachi and their battery-partner; Hyperdrive Innovation use a similar approach, where extra batteries  can be plugged in as required?

This modular approach must offer advantages.

  • Battery size can be tailored to routes.
  • Batteries can be changed quickly.

The train’s software would know what batteries were fitted and could manage them efficiently.

I wouldn’t be surprised to see Hitachi’s Regional Battery Train able to handle a gap only six miles longer than the specification.

Battery And Train Development

As Hitachi’s Regional Battery Train develops, the following should happen.

  • Useable battery capacity will increase.
  • The train will use less electricity.
  • Actions like regenerative braking will improve and recover more electricity.
  • Driving and train operating strategies will improve.

These and other factors will improve the range of the train on batteries.

A Charging Station At Banbury Station

If some form of Fast Charge system were to be installed at Banbury station, this would enable a train stopping at Banbury to take on enough power to reliably reach Oxford or Coventry depending, on their final destination.

This method may add a few minutes to the trip, but it should work well.

Electrification Of A Section Of The Chiltern Main Line

This could be an elegant solution.

I have just flown my helicopter between Bicester North and Warwick Parkway stations and these are my observations.

  • The Chiltern Main Line appears to be fairly straight and has received a top class Network Rail makeover in the last couple of decades.
  • There are a couple of tunnels, but most of the bridges are new.
  • Network Rail have done a lot of work on this route to create a hundred mph main line.
  • It might be possible to increase the operating speed, by a few mph.
  • The signalling also appears modern.

My untrained eye, says that it won’t be too challenging to electrify between say Bicester North station or Aynho Junction in the South and Leamington Spa or Warwick Parkway stations in the North. I would think, that the degree of difficulty would be about the same, as the recently electrified section of the Midland Main Line between Bedford and Corby stations.

The thirty-eight miles of electrification between Bicester North and Warwick Parkway stations would mean.

  • The electrification is only eight-and-a-half miles longer than Bedford and Corby.
  • There could be journey time savings.
  • As all trains stop at two stations out of Banbury, Leamington Spa, Warwick and Warwick Parkway, all pantograph actions could be performed in stations, if that was thought to be preferable.
  • Trains would be able to leave the electrification with full batteries.
  • The electrification may enable some freight trains to be hauled between Didcot and Coventry or Birmingham using battery electric locomotives.

Distances of relevance from the ends of the electrification include.

  • London Marylebone and Bicester North stations – 55 miles
  • London Marylebone and Aynho junction – 64 miles
  • Didcot North and Aynho junctions – 28 miles
  • Leamington Spa and Coventry stations – 10 miles
  • Leamington Spa and Birmingham Snow Hill stations – 23 miles
  • Leamington Spa and Stratford-upon-Avon stations – 15 miles
  • Warwick Parkway and Birmingham New Street stations – 20 miles
  • Warwick Parkway and Birmingham Snow Hill stations – 20 miles
  • Warwick Parkway and Kidderminster – 40 miles
  • Warwick Parkway and Stratford-upon-Avon stations – 12 miles

These figures mean that the following services would be possible using Hitachi’s Regional Battery Train.

  • Chiltern Railways – London Marylebone and Birmingham Moor Street
  • Chiltern Railways – London Marylebone and Birmingham Snow Hill
  • Chiltern Railways – London Marylebone and Kidderminster
  • Chiltern Railways – London Marylebone and Stratford-upon-Avon
  • CrossCountry – Bournemouth and Manchester Piccadilly
  • CrossCountry – Southampton Central and Newcastle
  • Midlands Connect – Oxford and Birmingham More Street – See Birmingham Airport Connectivity.

Other services like Leicester and Oxford via Coventry may also be possible.

As I see it, the great advantage of this electrification on the Chiltern Main Line is that is decarbonises two routes with the same thirty-eight miles of electrification.

Conclusion

CrossCountry’s Bournemouth And Manchester Piccadilly service could be run very efficiently with Hitachi’s proposed Regional Battery Train.

My preferred method to cross the electrification gap between Didcot North junction and Coventry station would be to electrify a section of the Chiltern Main Line.

  • The electrification would be less than forty miles.
  • I doubt it would be a challenging project.
  • It would also allow Hitachi’s proposed trains to work Chiltern Main Line routes between London Marylebone and Birmingham.

I am fairly certain, that all passenger services through Banbury would be fully electric.

 

August 15, 2020 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

Beeching Reversal – The Aston Rowant Extension Of The Chinnor Railway

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This Googlr Map shows the location of the proposed Aston Rowant station.

Note.

  1. The motorway junction is Junction 6 of the M40, where it joins the B4009.
  2. The hotel at the top of the map, which is marked by a pink arrow,  is the Mercure Thame Lambert.
  3. A road passes the hotel and goes South East parallel to the motorway.

The original Aston Rowant station, appears to have been in the triangular piece of land to the East side of the road.

Wikipedia gives a plan for the future of the Aston Rowant station under a section called Future, where this is said.

There were reports in 1997 that the Chinnor and Princes Risborough Railway (CPRR) wished to extend its operations to Aston Rowant. A joint venture between the CPRR and Chiltern Railways was also proposed whereby the national rail operator would construct a new station at Aston Rowant to allow frequent weekday commuter services along the Icknield Line to connect with main line traffic through to London Marylebone, leaving the CPPR to run heritage services at other times. The scheme, which would cost around £3m, would seek to take advantage of Aston Rowant’s location near junction 6 of the busy M40 motorway.

There doesn’t seem to be any more details on the Internet, but I could see the full scheme having the following.

  • A car-park by Junction 6 of the M40.
  • Minimal station facilities.
  • A shuttle train to Princes Risborough station using a diesel or battery Class 230 train or perhaps a heritage diesel.
  • At weekends, it would act as parking for the Chinnor and Princes Risborough Railway.
  • Given Adrian Shooter;s historic connections, this could be an ideal place for using Vivarail’s Pop-up Metro concept.

It could be a deal, where everyone’s a winner. Local commuters, Park-and-Ride users, the CPRR and Chiltern Railways could all benefit.

Conclusion

This is a simple scheme and I suspect the biggest problem could be getting the planning permission.

 

July 2, 2020 Posted by | Transport | , , , , , , , , | 4 Comments

GWR and DfT’s Commitment To The Night Riviera

The May 2020 Edition of Modern Railways has an article, which is entitled West Of England Improvements In GWR Deal.

Under a heading of Sleeper Planning, this is said about plans for the Night Riviera.

Whilst GWR is already developing plans for the short term future of the ‘Night Riviera’ sleeper service, including the provision of additional capacity at times of high demand using Mk. 3 vehicles withdrawn from the Caledonian Sleeper fleet, it is understood the company has been asked to develop a long-term plan for the replacement of the current Mk. 3 fleet of coaches, constructed between 1981 and 1984, as well as the Class 57/6 locomotives, which were rebuilt in 2002-03 from Class 47 locomotives constructed in the early 1960s.

This must show commitment from both GWR and the Department for Transport, that the Night Riviera has a future.

These are a few of my thoughts on the future of the service.

The Coaches

I would suspect that GWR will opt for the same Mark 5 coaches, built by CAF, as are used on the Caledonian Sleeper.

I took these pictures on a trip from Euston to Glasgow.

The coaches don’t seem to have any problems and appear to be performing well.

The facilities are comprehensive and include full en-suite plumbing, a selection of beds including doubles and a lounge car. There are also berths for disabled passengers.

The Locomotives

The Class 57 locomotives have a power output around 2 MW and I would suspect a similar-sized locomotive would be used.

Possible locomotives could include.

  • Class 67 – Used by Chiltern on passenger services – 2.4 kW
  • Class 68 – Used by Chiltern, TransPennine Express and others on passenger services – 2.8 MW
  • Class 88 – A dual-mode locomotive might be powerful enough on diesel – 700 kW

I wouldn’t be surprised to see Stadler come up with a customised version of their Euro Dual dual-mode locomotives.

 

April 23, 2020 Posted by | Transport | , , , , , , , , | Leave a comment

Could Battery-Electric Hitachi Trains Work Chiltern Railways’s Services?

Before I answer this question, I will lay out a few specifications and the current status.

Hitachi’s Proposed Battery Electric Train

Based on information in an article in Issue 898 of Rail Magazine, which is entitled Sparking A Revolution, the specification of Hitachi’s proposed battery-electric train is given as follows.

  • Based on Class 800-802/804 trains or Class 385 trains.
  • Range of 55-65 miles.
  • Operating speed of 90-100 mph
  • Recharge in ten minutes when static.
  • A battery life of 8-10 years.
  • Battery-only power for stations and urban areas.

For this post, I will assume that the train is four or five cars long.

Chiltern Railways’ Main Line Services

These are Chiltern Railways services that run on the Chiltern Main Line.

London Marylebone And Gerrards Cross

  • The service runs at a frequency of one train per hour (tph)
  • Intermediate stations are Wembley Stadium, Sudbury & Harrow Road, Sudbury Hill Harrow, Northolt Park, West Ruislip, Denham and Denham Golf Club

The service is nineteen miles long and takes thirty minutes.

It should be possible to run this service with trains charged at one end of the route.

London Marylebone And High Wycombe

  • The service runs at a frequency of one tph
  • Intermediate stations are Wembley Stadium,  South Ruislip, Gerrards Cross and Beaconsfield
  • Some services terminate in a bay platform 1 at High Wycombe station.

The service is twenty-eight miles long and takes forty-two minutes.

It should be possible to run this service with trains charged at one end of the route.

London Marylebone And Aylesbury Via High Wycombe

  • The service runs at a frequency of one tph
  • Intermediate stations are Gerrards Cross, Seer Green and Jordans, Beaconsfield, High Wycombe, Saunderton, Princes Risborough, Monks Risborough and Little Kimble
  • This service usually terminates in Platform 1 at Aylesbury station.

The service is 43.5 miles long and takes sixty-six minutes.

It should be possible to run this service with trains charged at both ends of the route.

London Marylebone And Banbury (And Stratford-upon-Avon)

  • The service runs at a frequency of one tph
  • Intermediate stations for the Banbury service are Denham Golf Club, Gerrards Cross, Beaconsfield, High Wycombe, Princes Risborough, Haddenham & Thame Parkway, Bicester North and Kings Sutton.
  • Intermediate stations for the Stratford-upon-Avon service are Denham Golf Club, Gerrards Cross, Beaconsfield, High Wycombe, Princes Risborough, Haddenham & Thame Parkway, Bicester North and Kings Sutton, Banbury, Leamington Spa, Warwick, Hatton, Claverdon, Bearley, Wilmcote and Stratford-upon-Avon Parkway.

The Banbury service is 69 miles long and takes one hour and forty-five minutes.

The Stratford-upon-Avon service is 104 miles long and takes two hours and twenty-two minutes.

Running these two services will need a bit of ingenuity.

Leamington Spa And Birmingham Moor Street

  • The service runs at a frequency of one train per two hours (tp2h)
  • Intermediate stations for the service are Warwick, Hatton, Lapworth, Dorridge and Solihull.

The service is 23 miles long and takes forty-one minutes.

It should be possible to run this service with trains charged at one end of the route.

London Marylebone And Birmingham Moor Street

  • The service runs at a frequency of one tph
  • Intermediate stations for the service are High Wycombe, Banbury, Leamington Spa, Warwick Parkway and Solihull.

The service is 112 miles long and takes one hour and forty-four minutes.

It should be possible to run this service with trains charged at both ends of the route and also fully charged somewhere in the middle.

Distances from London Marylebone of the various stations are.

  • High Wycombe – 28 miles
  • Bicester North – 55 miles
  • Banbury – 69 miles
  • Leamington Spa – 89 miles
  • Warwick – 91 miles
  • Warwick Parkway – 92 miles
  • Solihull – 105 miles

Consider.

  • It looks like a fully-charged train from London Marylebone could reach Bicester North, but not Banbury, with a 55-65 mile battery range.
  • Travelling South, Bicester North could be reached with a fully-charged train from Birmingham Moor Street.

But it would appear to be too marginal to run a reliable service.

London Marylebone And Birmingham Snow Hill

  • The service runs at a frequency of one tph
  • Intermediate stations for the service are Bicester North, Banbury, Leamington Spa, Warwick, Warwick Parkway, Dorridge, Solihull and Birmingham Moor Street

The service is 112 miles long and takes two hours and a minute.

It should be possible to run this service with trains charged at both ends of the route and also fully charged somewhere in the middle.

London Marylebone And Kidderminster

Some services between London Marylebone and Birmingham Snow Hill are extended to Kidderminster.

The distance between Kidderminster and Birmingham Snow Hill is twenty miles and the service takes forty-two minutes.

London Marylebone And Oxford

  • The service runs at a frequency of two tph
  • Intermediate stations for the service are High Wycombe, Haddenham & Thame Parkway, Bicester Village, Islip and, Oxford Parkway.
  • The service runs into dedicated platforms at Oxford station.

The service is 67 miles long and takes one hour and nine minutes.

It should be possible to run this service with trains charged at both ends of the route and some supplementary charging somewhere in the middle.

Chiltern’s Aylesbury Line Services

These are Chiltern Railway‘s services that run on the London And Aylesbury Line (Amersham Line).

London Marylebone And Aylesbury (And Aylesbury Vale Parkway) via Amersham

  • The service runs at a frequency of two tph
  • Intermediate stations are Harrow-on-the-Hill, Rickmansworth, Chorleywood, Chalfont & Latimer, Amersham, Great Missenden, Wendover and Stoke Mandeville.
  • It appears that there is sufficient time at Aylesbury Vale Parkway in the turnround to charge the train using a Fast Charge system.

The Aylesbury service is 39 miles long and takes one hour.

The Aylesbury Vale Parkway service is 41 miles long and takes one hour and twelve minutes.

It should be possible to run both services with trains charged at both ends of the route.

 

Chiltern Railways’ Future Train Needs

Chiltern Railways will need to add to or replace some or all of their fleet in the near future for various reasons.

Decarbonisation

Chiltern are probably the passenger train operating company, with the lowest proportion of zero-carbon trains. It scores zero for zero-carbon!

Government policy of an extinction date of 2040 was first mentioned by Jo Johnson, when he was Rail Minister in February 2018.

As new trains generally last between thirty and forty years and take about five years to design and deliver, trains ordered tomorrow, will probably still be running in 2055, which is fifteen years after Jo Johnson’s diesel extinction date.

I feel that, all trains we order now, should be one of the following.

  • All-electric
  • Battery-electric
  • Hydrogen-electric
  • Diesel electric trains, that can be converted to zero-carbon, by the replacement of the diesel power, with an appropriate zero-carbon source.

Hitachi seem to be designing an AT-300 diesel-electric train for Avanti West Coast, where the diesel engines can be replaced with batteries, according to an article in the January 2020 Edition of Modern Railways.

Pollution And Noise In And Around Marylebone Station

This Google Map shows the area around Marylebone station.

Cinsider.

  • Marylebone station is in the South-East corner of the map.
  • The station is surrounded by some of the most expensive real estate in London.
  • A lot of Chiltern’s trains do not meet the latest regulations for diesel trains.
  • Blackfriars, Cannon Street, Charing Cross, Euston, Fenchurch Street, Kings Cross, Liverpool Street, London Bridge, Paddington, St. Pancras, Victoria and Waterloo stations are diesel-free or have plans to do so.

Will the residents, the Greater London Council and the Government do something about improving Chiltern’s pollution and noise?

New trains would be a necessary part of the solution.

New And Extended Services

Consider.

  • Chiltern plan to extend the Aylesbury Parkway service to Milton Keynes in connection with East West Rail. This service would appear to be planned to run via High Wycombe and Princes Risborough.
  • There has also been proposals for a new Chiltern terminus at Old Oak Common in West London to connect to Crossrail, High Speed Two and the London Overground.
  • Chiltern could run a service between Oxford and Birmingham Moor Street.
  • With the demise of the Croxley Rail Link around Watford, Chiltern could be part of a revived solution.
  • In Issue 899 of Rail Magazine in an article entitled Calls For Major Enhancement To Oxford And Didcot Route, it states that there will be three tph between Oxford and Marylebone, two of which will start from a new station at Cowley.

Chiltern certainly have been an expansionist railway in the past.

I wouldn’t be surprised to see Chiltern ordering new trains.

As I said earlier, I suspect they wouldn’t want to order some new short-life diesel trains.

125 mph Running

Consider.

  • The West Coast Main Line has an operating speed of 125 mph.
  • East West Rail is being built for an operating speed of 125 mph.
  • Some parts of the Chiltern Main Line could be electrified and upgraded to 125 mph operation.

For these reasons, some of Chiltern’s new fleet must be capable of modification, so it can run at 125 mph, where it is possible.

100 mph Trains

Around half of Chiltern’s fleet are 100 mph trains, but the other half, made up of Class 165 trains only have a 75 mph operating speed.

Running a fleet, where all trains have a similar performance, must give operational and capacity improvements.

Increasing Capacity

Chiltern’s Main Line service to Birmingham is run using six Mark 3 carriages between a Class 68 locomotive and a driving van trailer.

These trains are 177.3 metres long and hold 444 passengers.

These trains are equivalent in length to a seven-car Hitachi Class AT-300 train, which I estimate would hold just over 500 passengers.

Changing some trains for a more modern design, could increase the passenger capacity, but without increasing the train length.

Aventi West Coast And High Speed Two

Chiltern’s services to Birmingham will come under increasing pressure from Avanti West Coast‘s revamped all-electric fleet, which within ten years should be augmented by High Speed Two.

It will be difficult selling the joys of comfortable diesel trains against the environmental benefits of all-electric zero-carbon faster trains.

Great Western Railway And Possible Electrification To Oxford

Chiltern’s services to Oxford will also come under increasing pressure from Great Western Railway’s services to Oxford.

  • When Crossrail opens, Paddington will be a much better terminal than Marylebone.
  • Crossrail will offer lots of new connections from Reading.
  • Great Western Railway could run their own battery-electric trains to Oxford.
  • Great Western Railway will be faster between London and Oxford at 38 minutes to Chiltern’s 65 minutes.

Will new trains be needed on the route to retain passengers?

Will Chiltern Have Two Separate Fleets?

Currently, Chiltern Railways have what is effectively  two separate fleets.

  • A Chiltern Main Line fleet comprised of five sets of six Mark 3 coaches, a Class 68 locomotive and a driving van trailer.
  • A secondary fleet of thirty-four assorted diesel multiple units of various ages and lengths, which do everything else.

But would this be their fleet, if they went for a full renewal to fully-decarbonise?

Would they acquire more Main Line sets to work the services to Birmingham, Kidderminster and perhaps some other Midlands destinations?

Do the Oxford services require more capacity for both Oxford and Bicester Village and would more Main Line sets be a solution?

What destinations will be served and what trains will be needed to work services from new destinations like Milton Keynes and Old Oak Common?

I can see Chiltern acquiring two fleets of battery-electric trains.

  • Chiltern Main Line trains based on Hitachi AT-300 trains with between five and seven cars.
  • Suburban trains for shorter journeys, based on Hitachi Class 385 trains with perhaps four cars.

Both would be fairly similar under the skin.

Conclusion On Chiltern Railways’ Future Trains

I am very much drawn to the conclusion, that Chiltern will have to introduce a new fleet of zero-carbon trains.

Electrification would be a possibility, but have we got enough resources to carry out the work, at the same time as High Speed Two is being built?

Hydrogen might be a possibility, but it would probably lead to a loss of capacity on the trains.

Battery-electric trains might not be a solution, but I suspect they could be the best way to increase Chiltern’s fleet and decarbonise at the same time.

  • Hitachi’s basic train design is used by several train operating companies and appears to be well received, by Train operating companies, staff and passengers.
  • Hitachi appear to be well-advanced with a battery-electric version.
  • Hitachi seem to have sold the concept of battery-electric AT-300 trains to Avanti West Coast to replace their diesel-electric Class 221 trains.

The sale of trains to Avanti West Coast appears to be very significant, in that Hitachi will be delivering a diesel-electric fleet, that will then be converted to battery-electric.

I like this approach.

  • Routes can be converted gradually and the trains fully tested as diesel-electric.
  • Electrification and/or charging stations can be added, to the rail network.
  • As routes are ready, the trains can be converted to battery-electric.

It would appear to be a low-risk approach, that could ensure conversion of the fleet does not involve too much disruption to passengers.

Possible Electrification That Might Help Chiltern Railways

These lines are or could be electrified in the near future.

Amersham Line Between Harrow-on-the-Hill and Amersham Stations

The only electrified line on the Chiltern Railways network is the section of the Amersham Line between Harrow-on-the-Hill and Amersham stations.

  • It is electrified using London Underground’s system.
  • It is fourteen miles long and trains take twenty-two minutes.
  • London Marylebone and Harrow-on-the-Hill is a distance of only nine miles
  • Aylesbury and Amersham is a distance of only fifteen miles.

Could this be of use in powering Children Railways’ trains?

The maths certainly look promising, as if nothing else it means the maximum range of one of Hitachi’s proposed battery-electric trains is fourteen miles further, which may enable Chiltern’s proposed service between London Marylebone and Milton Keynes to reach the 25 KVAC electrification at Bletchley.

But if the new trains were to use the London Underground electrification, they would have to be dual-voltage units.

As Hitachi have already built dual-voltage Class 395 trains for the UK, I don’t think, that this will be a problem.

Dorridge/Whitlock’s End And Worcestershire via Birmingham Snow Hill

In the February 2020 Edition of Modern Railways, there is a feature, which is entitled West Midlands Builds For The Future.

This is said about electrification on the Snow Hill Lines.

Remodelling Leamington is just one of the aspirations WMRE has for upgrading the Great Western’s Southern approach to Birmingham, which serves a number of affluent suburbs, with growing passenger numbers. “Electrification of the Snow Hill Lines commuter network is something which we are keen to explore.’ says Mr. Rackliff.

As well as reducing global carbon emissions, yhis would also help reduce air pollution in central Birmingham and local population centres. ‘From a local perspective, we’d initially want to see electrification of the core network between Dorridge/Whitlock’s End and Worcestershire via Birmingham Snow Hill as a minimum, but from a national perspective it would make sense to electrify the Chiltern Main Line all the way to Marylebone.’

Note the following distances from Dorridge.

  • Leamington Spa – 13 miles
  • Banbury – 33 miles
  • Bicester North – 47 miles
  • High Wycombe – 74 miles

It looks as if, electrification of the Snow Hill Lines would allow trains to travel from Bicester or Banbury to Birmingham Moor Street, Birmingham Snow Hill or Kidderminster.

Reading And Nuneaton via Didcot, Oxford, Banbury, Leamington Spa And Coventry

This route, which is used by CrossCountry services and freight trains, has been mentioned in the past, as a route that may be electrified.

Note the following distances from Didcot.

  • Oxford – 10 miles
  • Ayhno Junction – 27 miles
  • Banbury 32 miles
  • Leamington Spa – 52 miles
  • Coventry – 62 miles
  • Nuneaton – 72 miles

Electrifying this route would link together the following lines.

Note that Aynho Junction is only 36 miles from High Wycombe and 64 miles from London Marylebone.

Fast Charging At Terminal Stations

Chiltern Railways use the following terminal stations.

  • Aylesbury station, where a bay platform is used.
  • Aylesbury Parkway station
  • Banbury station, where a bay platform is used.
  • Birmingham Moor Street station, where all bay platforms are used.
  • Birmingham Show Hill station
  • High Wycombe station, where a bay platform is used.
  • Kidderminster station
  • London Marylebone station, where all platforms are used.
  • Oxford station, where two North-facing bay platforms are used.
  • Stratford-upon-Avon station

I suspect that something like Viviarail’s Fast-Charge system, based on well-proven third-rail technology could be used.

  • This system uses a bank of batteries to transfer power to the train’s batteries.
  • The transfer is performed using modified high-quality third-rail electrification technology.
  • Battery-to-battery transfer is fast, due to the low-impedance of batteries.
  • The system will be able to connect automatically, without driver action.
  • The third-rail is only switched on, when a train is present.
  • The battery bank will be trickle-charged from any convenient power source.

Could the battery bank be installed under the track in the platform to save space?

If Network Rail and Chiltern Railways would prefer a solution based on 25 KVAC technology, I’m sure that Furrer and Frey or another electrification company have a solution.

Installing charging in a platform at a station, would obviously close the platform for a couple of months, but even converting all six platforms at Marylebone station wouldn’t be an impossible task.

Possible Electrification Between London Marylebone And Harrow-on-the-Hill

Consider.

  • All trains to Aylesbury have to travel between London Marylebone and Harrow-on-the-Hill stations, which is nine miles of track without electrification. It takes about twelve minutes.
  • Trains via High Wycombe use this section of track as far as Neasden South Junction, which is give miles and typically takes seven minutes.
  • Leaving Marylebone, these trains are accelerating, so will need more power.

This map from carto.metro.free.fr shows the lines around Neasden.

Note.

  1. The Chiltern Railways tracks are shown in black.
  2. Two tracks continue to the North-West to Harrow-on-the-Hill and Aylesbury.
  3. Two tracks continue to the West to Wembley Stdium station and High Wycombe.
  4. Two tracks continue South-East into Marylebone station, running non-stop.
  5. The Jubilee Line tracks in the middle are shown in silver,
  6. The Metropolitan Line tracks are shown in mauve.

These pictures were taken of the two Chiltern tracks from a Jubilee Line train running between West Hampstead and Wembley Park stations.

Note, that the tracks have no electrification and there is plenty of space.

I feel that to accelerate the trains out of Marylebone and make sure that the batteries are fully charged, that these tracks should be electrified.

There is space on this section for 25 KVAC overhead, but would it be better to use an electrified rail system?

  • As you approach Marylebone there are several tunnels, which might make installation of overhead wires difficult and disruptive.
  • There are London Underground tracks and their third and fourth rail electrification everywhere.
  • Between Harrow-on-the Hill and Amersham stations, Chiltern and Metropolitan Line trains share the same track, which is electrified to London Underground standards and used for traction power by the Metropolitan Line trains.
  • Trains connect and disconnect to third-rail electrification, without any complication and have been doing it for over a hundred years.

On the other hand, there are arguments against third-rail systems like safety and electrical inefficiency.

Running Chiltern’s Routes Using A Battery-Electric Train

I will now take each route in order and look at how battery-electric trains could run the route.

London Marylebone And Oxford

Consider.

  • This route is 67 miles.
  • An out and back trip is 134 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains currently wait in the bay platforms at Oxford for up to thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.

When I outlined this route, I said this.

It should be possible to run this service with trains charged at both ends of the route and some supplementary charging somewhere in the middle.

I’m discussing this route first, as it has the complication of needing some form of intermediate charging.

The obvious place for some intermediate charging would be High Wycombe station.

  • It is 28 miles from Marylebone
  • It is 38 miles from Oxford
  • Trains seem to stop for a couple of minutes at High Wycombe.

As trains would only need to pick up a half-charge at the station, would it be possible for a train passing through High Wycombe to be able to use a Fast-Charge system, to give the battery a boost?

As a Control and Electrical Engineer by training, I think that this is more than possible.

It leads me to believe that with Fast Charging systems at Marylebone, Oxford and High Wycombe, Hitachi’s proposed battery-electric trains can run a reliable service between Marylebone and Oxford.

London Marylebone And Gerrards Cross

Consider.

  • This route is just nineteen miles.
  • An out and back trip is thirty-eight miles.
  • Trains appear to use a reversing siding to change tracks to return to London. They wait in the siding for up to thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.

I am fairly sure, that this route could be run by trains charged at Marylebone station only.

However, if charging is needed at Gerrards Cross, there is plenty of time, for this to be performed in the reversing siding.

It might even be reversed with all charging taking place at Gerrards Cross, so that fast turnrounds can be performed in Marylebone station.

London Marylebone And High Wycombe

Consider.

  • This route is just twenty-eight miles.
  • An out and back trip is fifty-six miles.
  • Trains wait in the bay platform for up to thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.

Everything said for the Gerrards Cross service would apply to the High Wycombe service.

London Marylebone And Banbury

Consider.

  • This route is 69 miles.
  • An out and back trip is 138 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in platform 4 at Banbury for around thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at High Wycombe station.

As with the Marylebone and Oxford route, this route will need some intermediate charging and as with the Oxford service, High Wycombe is the obvious choice,

High Wycombe is only 41 miles from Banbury, which is well within range of Hitachi’s proposed battery-electric train.

London Marylebone And Stratford-upon-Avon

Consider.

  • This route is 104 miles.
  • An out and back trip is 208 miles.
  • The distance between Stratford-upon-Avon and Banbury is 35 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in Platform 1 at Stratford-upon-Avon for over thirty minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at Banbury station, where they wait for several minutes.
  • Trains call at High Wycombe station.

As with the Marylebone and Oxford and Marylebone and Banbury routes, this route will need some intermediate charging and as with the Oxford and Banbury services, High Wycombe is the obvious choice,

But this route could also use the Fast Charging system at Banbury.

London Marylebone And Birmingham Moor Street

Consider.

  • This route is 112 miles.
  • An out and back trip is 224 miles.
  • The distance between Birmingham Moor Street and Banbury is 43 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in the bay platform at Birmingham Moor Street for thirteen minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at Banbury and High Wycombe stations.

As with the Marylebone and Stratford-upon-Avon route, this route will need some intermediate charging and as with the Stratford-upon-Avon service, High Wycombe and Banbury are the obvious choice,

London Marylebone And Birmingham Snow Hill

Consider.

  • This route is 112 miles.
  • An out and back trip is 224 miles.
  • The distance between Birmingham Snow Hill and Banbury is 43 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains wait in the bay platform at Birmingham Snow Hill for ten minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • Trains call at Banbury and High Wycombe stations.

As with the Marylebone and Stratford-upon-Avon route, this route will need some intermediate charging and as with the Stratford-upon-Avon service, High Wycombe and Banbury are the obvious choice,

London Marylebone And Kidderminster

Consider.

  • This route is 132 miles.
  • An out and back trip is 264 miles.
  • The distance between Kidderminster and Banbury is 63 miles.
  • The route is probably too long for the proposed Hitachi battery-electric train, without some intermediate charging.
  • Trains call at Banbury and High Wycombe stations.

As with the Marylebone and Stratford-upon-Avon and Birmingham routes, this route will need some intermediate charging and as with the Stratford-upon-Avon and Birmingham services, High Wycombe and Banbury are the obvious choice,

London Marylebone And Aylesbury Via High Wycombe

Consider.

  • The route is 43.5 miles
  • An out and back trip is 87 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • This service usually terminates in Platform 1 at Aylesbury station, where trains wait for up to thirteen minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • The train will also be fully-charged at Marylebone.

It looks that this route could be easily handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at High Wycombe to give the battery a top-up.

London Marylebone And Aylesbury Via Amersham

Consider.

  • The route is 39 miles
  • An out and back trip is 78 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • This service usually terminates in Platform 3 at Aylesbury station, where trains wait for up to twenty minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • The train will also be fully-charged at Marylebone.

It looks that this route could be easily handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at High Wycombe to give the battery a top-up.

London Marylebone And Aylesbury Vale Parkway Via Amersham

Consider.

  • The route is 41 miles
  • An out and back trip is 82 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • This service usually terminates in Platform 1 at Aylesbury Vale Parkway station, where trains wait for up to nine minutes, which is more than enough time to fully-charge the train for return to Marylebone.
  • The train will also be fully-charged at Marylebone.

It looks that this route could be easily handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at Aylesbury to give the battery a top-up.

Leamington Spa And Birmingham Moor Street

Consider.

  • The route is 23 miles
  • An out and back trip is 46 miles.
  • This service usually terminates in a bay platform at Birmingham Moor Street station, where trains wait for up to twenty minutes, which is more than enough time to fully-charge the train for return to Leamington Spa.

I am fairly sure, that this route could be run by trains charged at Bitmingham Moor Street station only.

New And Extended Services

These services are planned or have been mentioned as possibilities.

London Marylebone And Milton Keynes Via High Wycombe, Princes Risborough, Aylesbury And Aylesbury Vale Parkway

This is the new service that Chiltern will start running in the next few years.

Consider.

  • I estimate the distance between Aylesbury Vale Parkway and Bletchley, where 25 KVAC overhead electrification starts is 18 miles, with Milton Keynes a further three miles.
  • The distance between Marylebone and Bletchley via High Wycombe would be 63.5 miles.
  • The route is probably short enough for the proposed Hitachi battery-electric train, to run the route without intermediate charging.
  • Charging would normally be in Milton Keynes and Marylebone, with a certain amount of charging from the 25 KVAC between Bletchley and Milton Keynes.

It looks that this route could be handled with charging at both ends of the route, but if there has been a charging error, the train can obviously make a pit-stop at High Wycombe or Aylesbury to give the battery a top-up.

Birmingham Moor Street And Oxford

Consider.

  • Birmingham Moor Street station could have more South-facing bay platforms.
  • Birmingham Moor Street station is only a short walk from the new High Speed Two station at Birmingham Curzon Street.
  • Oxford station has two North-facing bay platforms.
  • Oxford station and Aynho Junction is only twenty miles and well within battery range, if High Wycombe and Banbury is electrified.
  • Banbury and Oxford currently takes 23 minutes.
  • Banbury and Birmingham Moor Street currently takes 44 minutes

It looks like a Birmingham Moor Street and Oxford service would take one hour and seven minutes.

London Marylebone And The Cowley Branch

This proposed service is probably about four to five miles further on from Oxford station.

There may be problems with how the track is laid out, but with a charging station at the end of the branch, I doubt that distance would be a problem.

Croxley Rail Link Proposal

I said this earlier.

With the demise of the Croxley Rail Link around Watford, Chiltern could be part of a revived solution.

The original plan died a long time ago, but could there be a simpler Chiltern-based solution?

  • Rebuild the railway between Croxley and Watford High Street stations.
  • Build new stations at Watford Vicarage Road and Cassiobridge.
  • A single track link would be more affordable could certainly handle two tph and possibly four.
  • Chiltern would run a two tph service between Watford Junction and Aylesbury stations.
  • The service would call at Watford High Street, Watford Vicarage Road, Cassiobridge, Croxley, Rickmansworth, Chorleywood, Chalfont & Latimer, Amersham, Great Missenden, Wendover and Stoke Mandeville.

I’m sure a more comprehensive scheme than the original one can be devised.

Important Stations

These are some of the more important stations and a few notes.

Aylesbury

As Chiltern develops the network in the next few years, these services could run to and/or through Aylesbury station.

  • One tph – London Marylebone and Aylesbury via High Wycombe
  • One tph – London Marylebone and Aylesbury via Amersham
  • One tph – London Marylebone and Aylesbury Vale Parkway via Amersham
  • One tph – London Marylebone and Milton Keynes via High Wycombe and Aylesbury Vale Parkway (new service)

I could also see a two tph service between Watford Junction and Aylesbury via Amersham.

Summing all this up means that two tph go via High Wycombe and four tph go via Amersham.

This Google Map shows Aylesbury station.

Note.

  1. Platforms are numbered 1 to 3 from South to North.
  2. Trains going South via High Wycombe call in Platforms 1 or 2.
  3. Trains going South via Amersham call in Platforms 2 and 3
  4. Trains going North call in Platforms 2 and 3.

These pictures show the station.

It is a spacious station, with step-free access and I feel that it could handle more services.

Banbury

I am sure that Banbury station, will be an important charging point for Chiltern’s battery-electric trains going North of Banbury.

This Google Map shows the layout of the recently-refurbished Banbury station.

Note.

  1. Platforms are numbered 1 to 4 from West to East.
  2. Trains going North call in Platforms 1 or 2.
  3. Trains going South call in Platforms 3 or 4.
  4. The Marylebone and London service usually turns back in Platform 4 after waiting there for over half-an-hour.
  5. Northbound Stratford-upon-Avon services generally use Platform 1, but most others generally use Playform 2.
  6. Southbound Stratford-upon-Avon services generally use Platform 4, but most others generally use Playform 3.

It looks to me, that Banbury station could handle the charging of trains as they pass through, as all of Chiltern’s services that serve destinations to the North of Banbury, stop at the station.

Hitachi are saying, that one of their proposed battery-electric trains needs ten minutes to be fully-charged.

So there may need to be some adjustment to the time-table to lengthen the stops at Banbury, to give ten minutes of charging time.

Alternatively, a few miles of electrification could be centred on Banbury, perhaps between Aynho Junction and Leamington Spa, which is a distance of twenty-six miles, which takes one of Chiltern’s trains around twenty-three minutes.

This would surely give enough time to fully-charge the batteries, but would also benefit CrossCountry, if they should go the battery-electric route.

I have followed the route between Aynho Junction and Leamington Spa in my helicopter and it would appear to be a fairly straight and uncomplicated route. I would say, it is about as difficult to electrify, as the Midland Main Line between Bedford and Kettering/Corby, which appears to have been one of Hetwork Rail’s better electrification projects, which should be delivered on time and has been installed without too much disruption to trains and passengers.

High Wycombe

It looks to me, that High Wycombe station will be an important charging point for Chiltern’s battery-electric trains going North to Oxford and Banbury.

Unlike Banbury, High Wycombe has not seen many changes over the years.

This Google Map shows High Wycombe station.

Note.

  1. Platforms are numbered 1 to 3 from South to North.
  2. Platform 1 is a bay platform that faces London.
  3. Platform 2 is the Westbound platform.
  4. Platform 3 is the Eastbound platform.
  5. High Wycombe has five tph in both directions, with an upgrade to six tph possible, after two tph run to the Cowley Branch.

The frequency of the trains through High Wycombe station could probably be handled by a Fast Charging system, but it would be tight to fit all current five services into an hour. It would appear to preclude any extra services going through High Wycombe, as there just isn’t enough time in an hour.

For this reason, I think that High Wycombe station needs full electrification, so that all passing trains can top up their batteries.

This gives the interesting possibility, that a train leaving High Wycombe for London with a full battery, would probably have enough charge in the battery to travel the 28 miles to London Marylebone and return. The train could always have a top-up at Marylebone.

So how far would the electrfication, through High Wycombe run?

Given that for operational reasons, it is probably best that pantographs are raised and lowered in stations, it is probably best if the various routes were electrified to the next station.

  • The Chiltern Main Line route would be electrified as far as Banbury station, where all trains stop. The distance would be 41 miles.
  • The Oxford route would be electrified as far as Bicester Village station, where all trains stop. The distance would be less than two miles from the Chiltern Main Line
  • The Aylesbury route would be electrified as far as Princes Risborough station, where all trains stop. This would be included in the Chiltern Main Line electrification.

It looks to me, that just 43 miles of double-track electrification would enable Hitachi’s proposed battery-electric trains to reach all parts of the Chiltern network.

Distances of the various destinations from the electrification are as follows.

  • Birmingham Moor Street – 43 miles
  • Birmingham Snow Hill – 43 miles
  • Kidderminster – 63 miles
  • Marylebone – 28 miles
  • Milton Keynes – 27 miles
  • Oxford – 38 miles
  • Oxford – Cowley – 43 miles
  • Stratford-upon-Avon  35 miles

Only Kidderminster could be tricky, but not if the Snow Hill Lines are electrified through Birmingham.

Electrification of the Chiltern Main Line between High Wycombe and Banbury with a number of Fast Charging systems in selected stations, would be my preferred option of enabling Hitachi’s proposed battery-electric trains to work the Chiltern network.

These pictures show High Wycombe station.

It does appear that the bridge at the Western end of the station my need to be modified, so that overhead wires can be threaded underneath.

Conclusion

Quite unexpectedly, I am pleasantly surprised.

Chiltern Railways’ current network can be run by Hitachi’s proposed battery-electric AT-300 trains.

  • Fast charging systems will be needed at Aylesbury, Aylesbury Vale Parkway, Banbury, Birmingham Moor Street, Birmingham Snow Hill, Gerrards Cross, High Wycombe, Kidderminster, Marylebone, Milton Keynes and Oxford.
  • Banbury and High Wycombe will need to be able to top-up trains as they pass through.
  • No large scale electrification will be needed. Although any new electrification will be greatly accepted!

As I indicated earlier, I would electrify the core part of the Chiltern Main Line route between High Wycombe and Banbury.

It would probably be a good idea to electrify a few miles at the Southern end of the line, where it runs into Marylebone station.

  • Marylebone and Harrow-on-the-Hill.
  • Marylebone and West Ruislip
  • Old Oak Common and West Ruislip.

I would use third-rail electrification to be compatible with London Underground and because of the automatic connection and disconnection.

But most surprisingly, there are already generous turnround times at most terminal stations, which give enough time to charge the trains.

It’s almost, as if Chiltern are preparing for battery-electric trains.

 

 

 

 

 

 

February 21, 2020 Posted by | Transport | , , , , , , , , , , , , , | 2 Comments

Hertfordshire County Council’s Aspiration For A Watford Junction And Aylesbury Service

This article on Ian Visits is entitled Watford Junction Station Could Become A “Super-Hub”.

This is the introductory paragraph.

A new Watford Junction to Aylesbury rail service, along with a new link between Stevenage and Luton are two of the proposals being put forward by Hertfordshire Council.

The proposals are contained in this document on the Hertfordshire County Council web site, which is entitled Rail Strategy.

In TfL Seeks New Procurement Plan For Metropolitan Line Extension, I proposed a service run by Chiltern Railways between Watford Junction and Amersham stations.

The rest of this article is a rewrite of part of that linked post, which explores the possibilities of a service between Watford Junction and Aylesbury stations.

This Was My Original Simple  Proposal

I think it would be possible to design a simpler link with the following characteristics.

  • Watford station would remain open.
  • A four trains per hour (tph) link would run all day between Watford Junction and Amersham stations.
  • Stops would be at Watford High Street, Vicarage RoadCassiobridge, Croxley, Rickmansworth, Chorleywood and Chalfont & Latimer.

No-one would get a worse service than currently and the new stations of Cassiobridge and Vicarage Road, would make rail an alternative for many travellers.

The cross-Watford service would give access to these London services.

  • Chiltern at all stations between Croxley and Amersham.
  • London Midland at Watford Junction.
  • Metropolitan Line at Croxley, Rickmansworth and Amersham.
  • Virgin Trains at Watford Junction,
  • Watford DC Line at Watford High Street and Watford Junction

The Bakerloo Line at Watford Junction and Watford High Street, could possibly be added, if the line is extended. Which I doubt, it will be!

Hertfordshire is proposing the terminal is Aylesbury, which seems to be a good idea. But I’ll examine that later.

The next few sections, will cover various issues with the route.

New Track

There would need to be new track between Croxley and Watford High Street stations.

Will The New Stations Have Two Platforms?

All proposals have shown new stations on the new track at Cassiobridge and Vicarage Road.

I believe that money can be saved by creating two much simpler stations.

  • Only one platform, but probably an island platform with two faces like Watford High Street station.
  • No expensive footbridge if possible.
  • Only one lift.

Cassiobridge would be more complicated because of the viaduct connecting the line towards Croxley station.

This visualisation shows the viaduct and the location of Cassiobridge station.

croxley-rail-link-proposed-viaduct-connecting-the-existing-metropolitan-line-with-disused-croxley-green-branch-line

Cassiobridge station will be behind the trees towards the top-right of the image.

Would The New Track Be Single Or Double-Track?

There is space for double-track and the two ends of the route are already electrified double-track.

But surely the viaduct shown above would be much more affordable, if it were to be built for only one track!

Trains would need to pass at places East of Croxley station, but then if the line was double-track through and to the East of Cassiobridge station, trains could pass with impunity.

Consider.

  • The Borders Railway looks to have too much single-track
  • The Barking Riverside Extension is being built with a double track.

Too much single-track is often regretted.

Why Four Trains Per Hour?

Four trains per hour (tph) is becoming a standard, as it encourages Turn-Up-And-Go behaviour from travellers.

It also fits well with keeping the four tph Metropolitan Line service to Watford station, as this could give a same platform interchange at Croxley station.

Would The New Track Be Electrified?

The only part of the route that is not electrified is the about three miles of new track between  the Watford Branch and the Watford DC Line.

All current electrification is either third-rail or to the London Underground standard. and any future electrification would probably be to the London Underground standard, so that S Stock can work the route.

I believe that the Class 710 trains will have a limited onboard energy storage capability, which could enable the trains to bridge the cap in the  electrification between Watford High Street and Croxley stations.

How much would not electrifying the new track save?

How Long Will A Journey Take From Amersham Or Aylesbury To Watford Junction?

Consider.

  • Amersham to Croxley takes about 30 minutes, but it does involve a change to a bus.
  • The Overground takes three minutes between Watford Junction and Watford High Street stations.
  • Chiltern Railways achieve a twelve minute time between Amersham and Rickmansworth.

I suspect that a modern train like one of London Overground’s Class 378 trains could do the journey in a few minutes under half-an-hour.

As Amersham to Aylesbury takes about sixteen minutes, that looks like a trip between Aylesbury and Watford Junction would take about forty-five minutes.

Amersham Or Aylesbury?

My original plan used Amersham, as it has a turnback facility.

But Aylesbury looks to have space as this Google Map shows.

It should also be noted that the forty-five minute journey time between Aylesbury and Watford Junction stations, would give a two hour round trip, with relaxed fifteen minute turnround times.

This would allow time to top-up the batteries.

What Class Of Train Could Be Used?

Four-car Class 378 trains or the new Class 710 trains would be ideal. As the Class 378 train is out of production, it would have to be Class 710 trains or something similar from Bombardier. But other manufacturers might have a suitable train.

Battery power would be required, but that is becoming a standard option on metro trains like these.

How Many Trains Would Be Needed?

If the trains could do an Out-and-Back journey in an hour, then four trains would be needed to provide a four tph service.

A two-hour time would need eight trains.

Will The Link Have Any Other Services?

I have seen to plans to use the line for any other passenger or freight services.

Will There Be Infrastructure Issues At Existing Stations?

As all of the trains, I’ve mentioned and the London Underground S Stock trains, share platforms all over North West London, the answer is probably no, with the exception of a few minor adjustments to signs and platforms.

Croxley Station

Croxley station would be unchanged.

But in addition to the 4 tph between Baker Street and Watford, there would be 4 tph between Watford Junction and Amersham.

Platform 1 would handle.

  • Baker Street to Watford
  • Amersham to Watford Junction

Platform 2 would handle.

  • Watford to Baker Street
  • Watford Junction to Amersham

This would mean that if the trains alternated, the maximum wait for a connection would be about 7.5 minutes.

What I feel would be the two most common connections, would just involve a wait on the same platform.

I suspect that those, who timetable trains, would come up with a very passenger-friendly solution.

Watford Station

A property developer once told me, that the most profitable developments, are those where a railway station is involved.

The Platforms At Watford Station

So would the development of the extension involve a rebuild of Watford station to provide the following?

  • A modern future-proofed station, with all the capacity that might be needed in the next forty years or so.
  • Appropriate housing or commercial development on top of the new station.
  • Sensible amounts of parking for travellers.

With four tph to and from London in the basement, it would surely be a profitable development.

Watford Junction Station

Watford Junction station has four bay platforms 1-4, that handle the three tph service on the Watford DC Line.

At stations like Clapham Junction, Crystal Palace, Dalston Junction, Highbury and Islington and New Cross, single platforms handle four tph with ease for London Overground services.

This means that handling four tph to Amersham in addition to current services would not be difficult.

The only work, that I think should be done, is make sure that these platforms are long enough to take two of the future Class 710 trains working as an eight-car train.

There could even be two platforms left for Bakerloo Line services, if it were to be decided, that these services would go to Watford Junction.

Elton John Plays Vicarage Road Stadium

This or some football matches at Vicarage Road Stadium, would be the biggest test of the Link.

Note the following.

  • Some stations  like Watford High Street can already handle longer trains than the hundred metre long, five-car Class 378 trains they currently do.
  • Some stations like Croxley can handle the 133 metre long S Stock trains used on the Metropolitan Line.

So to future-proof the Link for massive one-off events would it be sensible to make the platforms long enough for eight-car trains or two Class 710 trains working as a pair?

Benefits

The benefits of this approach are as follows.

  • Watford station keeps its current service to London.
  • Watford gets a four tph link across the South of the town, serving the Shopping Centre, the Hospital and the Stadium.
  • Amersham or Aylesbury to Croxley stations get a link to the West Coast Main Line.
  • It could be built as a single track line without electrification.
  • Trains to run the services could be more easily available.
  • Simple island platform-based stations could be built at Cassiobridge and Vicarage Road.

In addition, Chiltern Railways, London Midland, London Overground and Underground, all gain a feeder railway bringing travellers to their services to and from London.

Cost Savings

Note.

  1. Transport for London needs cost savings on this project.
  2. Redevelopment of Watford station as a station with oversite development could raise a lot of money.
  3. The Croxley Link could be built as a single-track link without electrification and run initially using battery-electric trains.

I also feel, that building the line this way would deliver it earlier, thus improving cash-flow.

The simple link would need at the minimum.

  • A single- or double-track railway without electrification between Croxley and Watford High Street stations.
  • Two stations with island platforms at Cassiobridge and Vicarage Road
  • A viaduct to connect Cassiobridge station to the Watford Branch.
  • Some Class 710 trains or similar.

If skates were worn, the link could probably open in 2025.

December 20, 2019 Posted by | Transport | , , , , , , , | 1 Comment