The Anonymous Widower

The Future Of The Class 68 Locomotives

This post has been brought on by the comments to two posts I have written today.

Both Direct Rail Services and TransPennine Express are major users of Class 68 locomotives, with each having a fleet of fourteen locomotives.

In addition, Chiltern Railways has a smaller fleet of six locomotives.

  • Direct Rail Services use their locomotives for various passenger and freight duties, including the important one of moving nuclear material around the country.
  • TransPennine Express use their locomotives on their passenger services across the North of England.
  • Chiltern Railways use their locomotives on their passenger services between London and Birmingham and sometimes Oxford.

The design was a bespoke one by Stadler for Direct Rail Services and the first one entered service in 2014.

The picture shows one of TransPennine’s Class 68 locomotives at Scarborough. As the picture shows, they are a smart and purposeful-looking locomotive, that wouldn’t look out of place in the right livery on the front of the Royal Train.

It has some good features.

  • It is a 100 mph locomotive.
  • It seems to be well-liked by operators.
  • It can haul both passenger and freight trains.
  • It can act as a Thunderbird or rescue locomotive.

But they have three problems; emissions, noise and diesel.

This is from Wikipedia.

The locomotive’s propulsion system is compliant with Stage III A of the European emission standards, but not the more stringent Stage III B requirements.

But noise is a another problem and this has caused council action in Scarborough.

More important than emissions or noise, is the fact, that the locomotive is diesel-powered, so the fleet will probably have to be retired from the railway, at a time, when there is still useful life left in the locomotives.

The Class 68 locomotive is a member of the Stadler Eurolight  family, of which there are three versions.

All follow similar design principles, differing mainly in dimensions, with Spain, Taiwan and the UK ordering upwards of twenty-thirty locomotives.

The UKLight branch of the family has two other members.

The Class 88 locomotive is an electro-diesel version of the Class 68 locomotive and the development of the design is described in this extract from the Class 88 locomotive’s Wikipedia entry.

Amid the fulfillment of DRS’ order for the Class 68, Stadler’s team proposed the development of a dual-mode locomotive that could be alternatively powered by an onboard diesel engine or via electricity supplied from overhead lines (OHLE). Having been impressed by the concept, DRS opted to place an order for ten Class 88s during September 2013. Having been developed alongside the Class 68, considerable similarities are shared between the two locomotives, amounting to roughly 70 percent of all components being shared.

According to Wikipedia, the type had a smooth entry into service.

The Class 93 locomotive will be the next development of the UKLight branch of the family, when it is delivered in 2023.

It will be a tri-mode locomotive, that will be capable of being powered by 25 KVAC overhead electrification, an onboard diesel engine and batteries.

It will be a 110 mph locomotive.

It can haul both passenger and freight trains.

Rail Operations Group have ordered 30 locomotives.

This is the first paragraph of the section in Wikipedia called Specification.

The Class 93 locomotive has been developed to satisfy a requirement for a fast freight locomotive that uses electric power while under the wires, but is also capable of self-powered operations. Accordingly, it is capable of running on diesel engines, from overhead wires, or from its onboard batteries. These batteries, which occupy the space used for the braking resistors in the Class 88, are charged via the onboard transformer or regenerative braking; when the batteries are fully charged, the locomotive only has its friction brakes available. The diesel engine is a six-cylinder Caterpillar C32 turbocharged power unit, rated at 900 kW, conforming with the EU97/68 stage V emission standard. The batteries units are made of Lithium Titanate Oxide and use a liquid cooling solution, enabling rapid charge and discharge.

It is a truly agnostic locomotive, that can take its power from anywhere.

The last paragraph of the specification compares the locomotive to the Class 66 locomotive.

In comparison with the Class 66, the Class 93 can outperform it in various metrics. In addition to a higher top speed, the locomotive possesses greater acceleration and far lower operating costs, consuming only a third of the fuel of a Class 66 along with lower track access charges due to its lower weight. ROG has postulated that it presents a superior business case, particularly for intermodal rail freight operations, while also being better suited for mixed-traffic operations as well. Each locomotive has a reported rough cost of £4 million.

It is no ordinary locomotive and it will change rail freight operations in the UK.

I have a feeling that the Class 93 locomotive could be a lower-carbon replacement for the Class 68 locomotive.

But I also believe that what Stadler have learned in the development of the Class 93 locomotive can be applied to the Class 68 locomotive to convert them into zero-carbon locomotives.

It may be just a matter of throwing out the diesel engine and the related gubbins and replacing them with a large battery. This process seems to have worked with Wabtec’s conversion of diesel locomotives to FLXdrive battery-electric locomotives.

 

January 22, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , | 8 Comments

Battery-Electric Trains And The TransPennine Upgrade

In Is There Going To Be Full Electrification Between Leeds And Huddersfield?, I showed this map of the TransPennine Upgrade between Huddersfield and Westtown near Dewsbury.

Note.

  1. There will be electrification between Dewsbury and Huddersfield.
  2. Tracks will be doubled from two to four.
  3. Ravensthorpe, Mirfield, Deighton and Huddersfield stations will be electrified and probably upgraded.
  4. Dewsbury and Huddersfield stations are eight miles apart.

This page on the Network Rail website gives more information.

Click on Huddersfield and Westtown (Dewsbury) and you get this information.

On 31 March 2021, we submitted a Transport and Works Act Order (TWAO) application to the Secretary of State for Transport for the Huddersfield to Westtown (Dewsbury) scheme.

Throughout this eight-mile section of the route, we’re proposing to double the number of tracks from two-to-four, electrify from Huddersfield to Dewsbury and make big improvements to the four stations in this section – Huddersfield, Deighton, Mirfield and Ravensthorpe; where we also need to separate the lines going to/from Leeds from the lines going to/from Wakefield, with either a bridge or a tunnel.

It is a much larger scheme than the one between Bolton and Wigan, which I wrote about in Bolton-Wigan £78m Rail Electrification Project Announced.

  • Huddersfield-Westtown is eight miles, whereas Bolton-Wigan is 6.5 miles.
  • Both involve upgrading four stations.
  • Both involve full electrification.
  • Huddersfield-Westtown involves doubling the number of tracks, whereas Bolton-Wigan needs little work to the track.
  • Huddersfield-Westtown will need a bridge or a tunnel, whereas Bolton-Wigan might need minor work to a couple of flat junctions.
  • Huddersfield station is Grade 1 Listed, whereas Wigan Wallgate station has some good features.
  • The Huddersfield-Westtown scheme is costed at £2.9 billion, whereas Bolton-Wigan is just £78 million.

The Huddersfield-Westtown scheme is thirty-seven times larger in terms of money.

What Passenger Services Use The Route Between Huddersfield And Dewsbury?

These services use the route, all or in part.

  • Northern Trains – Wigan Wallgate and Leeds via Manchester Victoria, Hebden Bridge, Brighouse, Mirfield, Ravensthorpe and Dewsbury – 1 tph
  • Northern Trains – Huddersfield and Castleford via Deighton, Mirfield and Wakefield Kirkgate – 1 tph
  • TransPennine Express – Liverpool Lime Street and Scarborough via Manchester Victoria, Stalybridge, Huddersfield and Leeds – 1 tph
  • TransPennine Express – Manchester Airport and Redcar Central via Manchester Victoria, Stalybridge,  Huddersfield, Dewsbury and Leeds – 1 tph
  • TransPennine Express – Liverpool Lime Street and Edinburgh via Manchester Victoria, Huddersfield and Leeds – 1 tph
  • TransPennine Express – Manchester Airport and Newcastle via Manchester Victoria,  Huddersfield, Dewsbury and Leeds – 1 tph
  • TransPennine Express – Manchester Piccadilly and Hull via Stalybridge,  Huddersfield and Leeds – 1 tph
  • TransPennine Express – Huddersfield and Leeds via Deighton, Mirfield, Ravensthorpe and Dewsbury – 1 tph

Note.

  1. All trains are one train per hour (tph)
  2. Three tph run non-stop between Huddersfield and Leeds.
  3. Two tph stop at Deighton station, Mirfield and Ravensthorpe.

After completion of the Huddersfield and Westtown upgrade, there will be electrification at the following places.

  • West of Manchester Victoria station
  • Between Huddersfield and Westtown
  • Between Leeds and York – Currently being electrified between York and Church Fenton.

And these routes will not be electrified.

  • Dewsbury and Leeds – 9.2 miles
  • Leeds and Hull – 51.5 miles
  • Mirfield and Castleford – 16 miles
  • Manchester Piccadilly and Stalybridge – Could be electrified – 7.5 miles
  • Manchester Victoria and Heaton Lodge Junction via Hebden Bridge – 47.4 miles
  • Manchester Victoria and Stalybridge – Could be electrified – 7.7 miles
  • Redcar Central and Northallerton – 28.1 miles
  • Stalybridge and Huddersfield – 18 miles
  • York and Scarborough – 42.1 miles

Note that all routes except Mirfield and Castleford and Leeds and Hull have electrification at both ends.

Which Routes Between Huddersfield And Westtown Could Be Handled By Battery-Electric Trains?

I will assume that operators will have a battery-electric train capable of running 56 miles on batter ypower. This distance comes from Hitachi’s specification for the Hitachi Regional Battery Train, which is shown in this Hitachi infographic.

These are the routes and my answers.

Northern Trains – Wigan Wallgate and Leeds

The longest section without electrification is Manchester Victoria and Heaton Lodge Junction via Hebden Bridge, which is 47.4 miles.

I am sure this route is possible with battery-electric trains.

Northern Trains – Huddersfield and Castleford

The longest section without electrification is Mirfield and Castleford, which is 16 miles.

But it must be handled on both an out and back basis. So the train will cover 32 miles on battery power.

I am sure this route is possible with battery-electric trains.

TransPennine Express – Liverpool Lime Street and Scarborough

The longest section without electrification to the West of Leeds, is Manchester Victoria and Huddersfield, which is 25.7 miles.

At the Eastern end, as York and Scarborough is 42.1 miles without electrification, there would need to be some electrification or a charging system at Scarborough station.

I am sure this route is possible with battery-electric trains.

TransPennine Express – Manchester Airport and Redcar Central

The longest section without electrification to the West of Leeds,is Manchester Victoria and Huddersfield, which is 25.7 miles.

At the Eastern end, as Northallerton and Redcar Central is 28.1 miles without electrification, there may need to be some electrification or a charging system at Redcar Central station.

I am sure this route is possible with battery-electric trains.

TransPennine Express – Liverpool Lime Street and Edinburgh

The longest section without electrification is Manchester Victoria and Huddersfield, which is 25.7 miles.

Leeds and Edinburgh is fully electrified.

I am sure this route is possible with battery-electric trains.

TransPennine Express – Manchester Airport and Newcastle

The longest section without electrification is Manchester Victoria and Huddersfield, which is 25.7 miles.

Leeds and Newcastle is fully electrified.

I am sure this route is possible with battery-electric trains.

TransPennine Express – Manchester Piccadilly and Hull

The longest section without electrification to the West of Leeds, is Manchester Victoria and Huddersfield, which is 25.5 miles.

At the Eastern end, as Leeds and Hull is 51.5 miles, there would need to be some electrification or a charging system at Hull station.

I am sure this route is possible with battery-electric trains.

TransPennine Express – Huddersfield and Leeds

The longest section without electrification is Dewsbury and Leeds, which is 9.2 miles.

I am sure this route is possible with battery-electric trains.

Handling The Eastern Ends

At Hull, Redcar Central and Scarborough stations, there will need to be some means to recharge the trains, so they can get back to the electrification on the East Coast Main Line.

There could either be a short length of 25 KVAC overhead electrification or a special-purpose charging station.

There would need to be an allowance in the turnback, of perhaps 10-15 minutes to make sure trains started back with full batteries.

Will Huddersfield And Westtown Be Long Enough To Charge A Battery-Electric Train?

I have looked at train times between Huddersfield And Westtown and typically trains take around 11-12 minutes to go between Huddersfield and Dewsbury stations.

That should probably be enough, especially, as the trains will probably be using regenerative braking to batteries at any station stops.

Conclusion

I am absolutely certain that by completing the TransPennine Upgrade with full electrification between Huddersfield and Westtown, that all passenger services through the section could be run by battery-electric trains with a range of ninety kilometres or fifty-six miles.

There would probably need to be some electrification or a charging system at Hull, Redcar Central and Scarborough stations.

A Thought On Short Sections Of Electrification

As with the Bolton-Wigan scheme to the West of the Pennines, a length of electrified track that is less than ten miles, allows several services to be run by battery-electric trains and decarbonised.

How many other sections of less than ten miles of electrification can transform train services and reduce the use of diesel around the UK, by the introduction of fleets of battery-electric trains?

 

September 4, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 6 Comments

Changing Trains At Scarborough – March 13th, 2019

I took these pictures, whilst changing from the York to Scarborough train to one going to Hull.

There used to be a cafe in the Stephen Joseph Theatre, but they pointed me to the Eat Me Cafe in the road behind.

I visited the cafe at the wrong time of day. Otherwise, I would have had lunch, as they had gluten-free options.

March 18, 2019 Posted by | Food, Transport/Travel | , | Leave a comment

Scarborough

I’d never been to Scarborough before so I took the opportunity to visit on my way from York to Hull.

Looking back from a few days away, I think that Scarborough, would be a better place to stay than Hull.

I came to Scarborough station on one a Class 185 train and left in a Class 158 train, so I didn’t have to experience a Pacer. According to Wikipedia the Hull to Scarborough Line is usually worked by the very acceptable Class 158 trains, sometimes coupled to something else for more capacity. This is said.

Services are usually worked by Class 158 DMUs. Summer weekends see services operated by a Class 158 coupled to a Class 153 or extra Class 158 providing a 3/4-car unit for additional capacity. Sundays also see a variety of traction traversing the line to retain crew knowledge; this can include Class 153, Class 150, Class 142 and Class 144.

 

You do wonder how much traffic this route could generate if it was electrified and run by a new four-car electric train.

It would be very expensive to electrify, as until Hull is electrified, it would be a stand-alone system for about forty miles, that was a long way from any other electrification.

But if some means were to be provided to charge the trains at Scarborough and Hull, I suspect that IPEMUs could provide services between Scarborough and Hull and Scarborough and York with ease, given the easy nature of the lines.

This would also allow the TransPennine services from Scarborough to Manchester and Liverpool to be run by high-speed IPEMUs, which could bridge the electrifdication gap between Leeds and Manchester.

In an ideal world, a service should be provided between Scarborough and Whitby, which if there was an improved service around Scarborough would probably be needed to serve the tourism industry.

That area of East Yorkshire needs to be developed with respect to the leisure and tourism opportunities it offers.

 

October 20, 2015 Posted by | Transport/Travel | , , , , | 2 Comments