The Anonymous Widower

UK Govt Awards Almost GBP 33m To Innovative Energy Storage Projects

The title of this post is the same as that of this article on Renewables Now.

This is the first paragraph.

The UK government has awarded GBP 32.9 million (USD 39.7m/EUR 38.3m) in funding to five innovative energy storage projects under the second phase of its Longer Duration Energy Storage competition.

These are the projects.

StorTera

StorTera has secured GBP 5.02 million to create a prototype demonstrator of its single liquid flow battery (SLIQ) technology.

The company’s main product is the SLIQ Flow Battery, for which it gives the headline of Reliable, Economical Energy For 20 Years.

This is a description of the technology.

The revolutionary StorTera SLIQ single liquid flow battery offers a low cost, high performance energy storage system made with durable components and supported by our flexible and adaptable inverter and control system. The StorTera SLIQ battery brings the following benefits/advantages:

  • Low levelised cost of storage and capital cost
  • Long lifetime of up to 20 years (min. 7,500 cycles)
  • Long duration energy with the energy and power capacity easily and independently scalable
  • Safe with no cooling requirements and high flash point materials
  • Fully recyclable at the end of lifetime

This is said about costs – Using low cost materials and manufacturing techniques, we predict capital costs of approximately £120/kW and £75/kWh by 2022.

I feel there could be something about this technology, but we’ll only know, when the demonstrator is fully working.

Sunamp

Sunamp will get GBP 9.25 million to test its thermal storage system in 100 homes across the UK.

On their home page, Sunamp has a banner of World Leading Thermal Technologies, with this description underneath.

Sunamp designs and manufactures space-saving thermal storage that makes UK homes, buildings and vehicles more energy-efficient and sustainable, while reducing carbon emissions and optimising renewables.

They do appear to have sold something, which is always a useful thing to do.

This page on their web site,  describes their Thermino Thermal Storage For Domestic Hot Water, where this is said.

Thousands of Sunamp thermal batteries are already in homes across the UK storing heat from low-carbon energy sources and releasing it for mains-pressure hot water when needed.

Our Thermino batteries replace traditional hot water cylinders – direct (for grid electricity and solar PV) or indirect (for boilers and heat pumps).

They are up to four times smaller than the equivalent hot water tank because they are filled with our energy-dense phase change material, Plentigrade. This means that heat pump systems can be installed where otherwise they wouldn’t fit, for example.

The key seems to be this substance called Plentigrade!

This page on their web site describes Plentigrade.

Under a heading of Storing Energy As Heat And Releasing It When, And Where, It’s Needed, this is said.

Sunamp thermal batteries are energy-saving thermal stores containing Plentigrade: our high-performance phase change materials (PCMs) that deliver heating or cooling reliably, safely and efficiently.

Plentigrade, with its perpetual phase changing ability, is at the core of our products.

Our breakthrough technology was created in collaboration with the University of Edinburgh, ranked among the top 20 universities in the world, and the UK’s national synchrotron particle accelerator, Diamond Light Source. To find out more about the chemistry behind Plentigrade, read our blog.

Note.

  1. This product almost looks to be too good to be true.
  2. But I’ve checked and it doesn’t seem to have appeared on Watchdog.
  3. It’s yet another breakthrough, that has used the Diamond Light Source.
  4. How many other developments would happen with a Diamond 2 in the North, as I wrote about in Blackpool Needs A Diamond?

I have a feeling, that my house needs one of Sunamp’s thermal batteries.

University of Sheffield

The article says this about a grant to the University of Sheffield.

The University of Sheffield has been awarded GBP 2.6 million to develop a prototype modular thermal energy storage system designed to provide optimised, flexible storage of heat within homes.

There are several thermal batteries around for houses.

RheEnergise

The article says this about a grant to RheEnergise.

With a GBP-8.24-million grant, RheEnergise Ltd will build a demonstrator of its High-Density Hydro pumped energy storage system near Plymouth. The technology uses a fluid denser than water to generate electricity from gentle slopes.

I wrote about this in Plan For £8.25m Plymouth Energy Plant To Generate Power From Cream-Like Fluid.

EDF UK R&D

The article says this about a grant to EDF UK R&D.

The government is also backing with GBP 7.73 million an initiative of EDF UK R&D and its partners, the University of Bristol, Urenco and the UK Atomic Energy Authority (UKAEA), to develop a hydrogen storage demonstrator using depleted uranium at UKAEA’s Culham Science Centre in Abingdon, Oxfordshire.

I wrote about this in Innovative Hydrogen Energy Storage Project Secures Over £7 million In Funding.

Conclusion

They are a mixed bunch of ideas from around the UK, that I think will produce at least two good winners.

 

December 2, 2022 Posted by | Energy Storage, Hydrogen | , , , , , , , , , , , | 6 Comments

Innovative Hydrogen Energy Storage Project Secures Over £7 million In Funding

The title of this post, is the same as that of this press release from the University of Bristol.

These two paragraphs outline the project.

A consortium, involving the University of Bristol, has been awarded £7.7m from the Net Zero Innovation Portfolio (NZIP) of UK Government’s Department for Business, Energy & Industrial Strategy (BEIS) to develop pioneering hydrogen storage.

The University, EDF UK, UKAEA and Urenco will together develop a hydrogen storage demonstrator, in which hydrogen is absorbed on a depleted uranium ‘bed’, which can then release the hydrogen when needed for use. When stored, the hydrogen is in a stable but reversible ‘metal hydride’ form. The depleted uranium material is available from recycling and has been used in other applications such as counterbalance weights on aircraft.

I particularly like this paragraph from Professor Tom Scott.

Professor Tom Scott from the University’s School of Physics and one of the architects of the HyDUStechnology, said: “This will be a world first technology demonstrator which is a beautiful and exciting translation of a well proven fusion-fuel hydrogen isotope storage technology that the UK Atomic Energy Authority has used for several decades at a small scale. The hydride compounds that we’re using can chemically store hydrogen at ambient pressure and temperature but remarkably they do this at twice the density of liquid hydrogen. The material can also quickly give-up the stored hydrogen simply by heating it, which makes it a wonderfully reversible hydrogen storage technology.”

It’s elegant and it certainly, is an unusual method of storing hydrogen.

I do see a problem in that depleted uranium is controversial because of its use in munitions; most notably in the Gulf War.

I also see its heavy weight being rather a disadvantage in storing hydrogen for mobile applications.

So, I will keep an open mind on this technology.

November 29, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , | 1 Comment

Hydrophilic Polymers: The Key To A Green Future

The title of this post, is the same as that of this article on Tech Xplore.

This is the first paragraph.

Researchers from the University of Surrey and the University of Bristol are working on innovative devices to tame and store carbon-free renewable energy from unpredictable sources such as wind and solar.

That got me interested and I read the whole article.

This abstract on SpringerLink gives a definition of hydrophilic polymers.

Hydrophilic polymers are those polymers which dissolve in, or are swollen by, water. Many compounds of major technical and economic importance fall within this definition, including many polymers of natural origin. Many foodstuffs—containing substantial amounts of carbohydrate and protein— can be classified as hydrophilic polymers, and some have important technical and industrial uses, apart from their nutritional value. For example, although over 95% of the starches produced from corn (maize), wheat, potato, tapioca, and other vegetable sources are used as foods (human or animal), the remaining quantity represents an important part of the technical polymer market. In fact, more than two-thirds of hydrophilic or water-soluble polymers used in industry are derived from polymers of natural origin, so coming from renewable resources (harvested crops, trees, waste animal products and so on), rather than petrochemical sources of finite availability.

This paragraph from the Tech Xplore article describes the research.

The Chemistry Department at Surrey is working with collaborators at Bristol, Professors Ian Hamerton and David Fermin, and Superdielectrics Ltd., an innovative British Research Company located at the Surrey Research Park to transform simple hydrophilic polymers which were originally developed for use as contact lenses, to realize a second critical energy storage process.

This could lead to the next generation of supercapacitors.

Conclusion

This is fascinating technology and it could save the world.

November 6, 2021 Posted by | Energy, Energy Storage, World | , , , , , , | 4 Comments