The Anonymous Widower

UK Govt Awards Almost GBP 33m To Innovative Energy Storage Projects

The title of this post is the same as that of this article on Renewables Now.

This is the first paragraph.

The UK government has awarded GBP 32.9 million (USD 39.7m/EUR 38.3m) in funding to five innovative energy storage projects under the second phase of its Longer Duration Energy Storage competition.

These are the projects.

StorTera

StorTera has secured GBP 5.02 million to create a prototype demonstrator of its single liquid flow battery (SLIQ) technology.

The company’s main product is the SLIQ Flow Battery, for which it gives the headline of Reliable, Economical Energy For 20 Years.

This is a description of the technology.

The revolutionary StorTera SLIQ single liquid flow battery offers a low cost, high performance energy storage system made with durable components and supported by our flexible and adaptable inverter and control system. The StorTera SLIQ battery brings the following benefits/advantages:

  • Low levelised cost of storage and capital cost
  • Long lifetime of up to 20 years (min. 7,500 cycles)
  • Long duration energy with the energy and power capacity easily and independently scalable
  • Safe with no cooling requirements and high flash point materials
  • Fully recyclable at the end of lifetime

This is said about costs – Using low cost materials and manufacturing techniques, we predict capital costs of approximately £120/kW and £75/kWh by 2022.

I feel there could be something about this technology, but we’ll only know, when the demonstrator is fully working.

Sunamp

Sunamp will get GBP 9.25 million to test its thermal storage system in 100 homes across the UK.

On their home page, Sunamp has a banner of World Leading Thermal Technologies, with this description underneath.

Sunamp designs and manufactures space-saving thermal storage that makes UK homes, buildings and vehicles more energy-efficient and sustainable, while reducing carbon emissions and optimising renewables.

They do appear to have sold something, which is always a useful thing to do.

This page on their web site,  describes their Thermino Thermal Storage For Domestic Hot Water, where this is said.

Thousands of Sunamp thermal batteries are already in homes across the UK storing heat from low-carbon energy sources and releasing it for mains-pressure hot water when needed.

Our Thermino batteries replace traditional hot water cylinders – direct (for grid electricity and solar PV) or indirect (for boilers and heat pumps).

They are up to four times smaller than the equivalent hot water tank because they are filled with our energy-dense phase change material, Plentigrade. This means that heat pump systems can be installed where otherwise they wouldn’t fit, for example.

The key seems to be this substance called Plentigrade!

This page on their web site describes Plentigrade.

Under a heading of Storing Energy As Heat And Releasing It When, And Where, It’s Needed, this is said.

Sunamp thermal batteries are energy-saving thermal stores containing Plentigrade: our high-performance phase change materials (PCMs) that deliver heating or cooling reliably, safely and efficiently.

Plentigrade, with its perpetual phase changing ability, is at the core of our products.

Our breakthrough technology was created in collaboration with the University of Edinburgh, ranked among the top 20 universities in the world, and the UK’s national synchrotron particle accelerator, Diamond Light Source. To find out more about the chemistry behind Plentigrade, read our blog.

Note.

  1. This product almost looks to be too good to be true.
  2. But I’ve checked and it doesn’t seem to have appeared on Watchdog.
  3. It’s yet another breakthrough, that has used the Diamond Light Source.
  4. How many other developments would happen with a Diamond 2 in the North, as I wrote about in Blackpool Needs A Diamond?

I have a feeling, that my house needs one of Sunamp’s thermal batteries.

University of Sheffield

The article says this about a grant to the University of Sheffield.

The University of Sheffield has been awarded GBP 2.6 million to develop a prototype modular thermal energy storage system designed to provide optimised, flexible storage of heat within homes.

There are several thermal batteries around for houses.

RheEnergise

The article says this about a grant to RheEnergise.

With a GBP-8.24-million grant, RheEnergise Ltd will build a demonstrator of its High-Density Hydro pumped energy storage system near Plymouth. The technology uses a fluid denser than water to generate electricity from gentle slopes.

I wrote about this in Plan For £8.25m Plymouth Energy Plant To Generate Power From Cream-Like Fluid.

EDF UK R&D

The article says this about a grant to EDF UK R&D.

The government is also backing with GBP 7.73 million an initiative of EDF UK R&D and its partners, the University of Bristol, Urenco and the UK Atomic Energy Authority (UKAEA), to develop a hydrogen storage demonstrator using depleted uranium at UKAEA’s Culham Science Centre in Abingdon, Oxfordshire.

I wrote about this in Innovative Hydrogen Energy Storage Project Secures Over £7 million In Funding.

Conclusion

They are a mixed bunch of ideas from around the UK, that I think will produce at least two good winners.

 

December 2, 2022 Posted by | Energy Storage, Hydrogen | , , , , , , , , , , , | 6 Comments

Innovative Hydrogen Energy Storage Project Secures Over £7 million In Funding

The title of this post, is the same as that of this press release from the University of Bristol.

These two paragraphs outline the project.

A consortium, involving the University of Bristol, has been awarded £7.7m from the Net Zero Innovation Portfolio (NZIP) of UK Government’s Department for Business, Energy & Industrial Strategy (BEIS) to develop pioneering hydrogen storage.

The University, EDF UK, UKAEA and Urenco will together develop a hydrogen storage demonstrator, in which hydrogen is absorbed on a depleted uranium ‘bed’, which can then release the hydrogen when needed for use. When stored, the hydrogen is in a stable but reversible ‘metal hydride’ form. The depleted uranium material is available from recycling and has been used in other applications such as counterbalance weights on aircraft.

I particularly like this paragraph from Professor Tom Scott.

Professor Tom Scott from the University’s School of Physics and one of the architects of the HyDUStechnology, said: “This will be a world first technology demonstrator which is a beautiful and exciting translation of a well proven fusion-fuel hydrogen isotope storage technology that the UK Atomic Energy Authority has used for several decades at a small scale. The hydride compounds that we’re using can chemically store hydrogen at ambient pressure and temperature but remarkably they do this at twice the density of liquid hydrogen. The material can also quickly give-up the stored hydrogen simply by heating it, which makes it a wonderfully reversible hydrogen storage technology.”

It’s elegant and it certainly, is an unusual method of storing hydrogen.

I do see a problem in that depleted uranium is controversial because of its use in munitions; most notably in the Gulf War.

I also see its heavy weight being rather a disadvantage in storing hydrogen for mobile applications.

So, I will keep an open mind on this technology.

November 29, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , | 1 Comment

The Concept Of Remote Island Wind

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

The contracts have also introduced a concept that is new to me, called Remote Island Wind. All have got the same strike price of £46.39 per MWh.

Two of the projects on Orkney are community projects of around 30 MW, run by local trusts. This is surely, a model that will work in many places.

There is more on Orkney’s Community Wind Farm Project on this page of the Orkney Islands Council web site.

It could even have an electrolyser to provide hydrogen for zero-carbon fuel, when there is more electricity than is needed. Companies like ITM Power and others already build filling stations with an electrolyser, that can be powered by wind-generated electricity.

The other Remote Island Wind projects are larger with two wind farms of over 200 MW.

It does look to me, that the Department of BEIS is nudging wind farm developers in remote places to a model, that all stakeholders w will embrace.

The Viking Wind Farm

I wrote about this wind farm in Shetland’s Viking Wind Farm.

There are more details in this press release from SSE enewables, which is entitled CfD Contract Secured For Viking Energy Wind Farm.

These introductory paragraphs, give a good explanation of the finances of this farm.

SSE Renewables has been successful in the UK’s fourth Contract for Difference (CfD) Allocation Round, announced today, and has secured a low-carbon power contract for 220MW for its wholly-owned Viking Energy Wind Farm (Viking) project, currently being constructed in Shetland.

Viking’s success in securing a contract follows a competitive auction process in Allocation Round 4 (AR4) where it competed within Pot 2 of the allocation round set aside for ‘less established’ technologies including Remote Island Wind.

The 443MW Viking project, which SSE Renewables is currently building in the Shetland Islands, has secured a CfD for 220MW (50% of its total capacity) at a strike price of £46.39/MWh for the 2026/27 delivery year.

The successful project will receive its guaranteed strike price, set on 2012 prices but annually indexed for CPI inflation, for the contracted low carbon electricity it will generate for a 15-year period. Securing a CfD for Viking stabilises the revenue from the project whilst also delivering price security for bill payers.

It’s very professional and open to explain the capacity, the contract and the finances in detail.

The press release also has this paragraph, which details progress.

Viking is progressing through construction with over 50 per cent of turbine foundation bases poured. When complete in 2024, Viking Energy Wind Farm will be the UK’s most productive onshore wind farm in terms of annual electricity output, with the project also contributing to Shetland’s security of supply by underpinning the HVDC transmission link that will connect the islands to the mainland for the first time.

SSE also released this press release, which is entitled Major Milestone Reached As First Subsea Cable Installation Begins On Shetland HVDC Link, where this is the first paragraph.

The first phase of cable laying as part of the SSEN Transmission Shetland High-Voltage Direct Current (HVDC) Link began this week off the coast of Caithness, marking a major milestone in the £660M project.

SSE seem to be advancing on all fronts on the two projects!

The Stornoway Wind Farm

This press release from EDF Renewables is entitled EDF Renewables UK Welcomes Contract for Difference Success, where these are the first two paragraphs.

Two EDF Renewables UK projects bid into the Contract for Difference (CfD) auction round held by the UK Government’s BEIS department have been successful.

The projects are the Stornoway wind farm on the Isle of Lewis and Stranoch wind farm in Dumfries and Galloway. Together these onshore wind farms will provide 300 MW of low carbon electricity which is an important contribution to reaching net zero.

The press release also gives this information about the contract and completion of the Stornoway wind farm.

Stornoway Wind Farm on the Isle of Lewis is a joint venture with Wood. The project has won a CfD for 200 MW capacity, the strike price was £46.39, the target commissioning date is 31 March 2027.

This page on the Lewis Wind Power web site, gives these details of the Stornoway Wind Farm.

The Stornoway Wind Farm would be located to the west of the town of Stornoway in an area close to the three existing wind farm sites.

The project has planning consent for up to 36 turbines and is sited on land owned by the Stornoway Trust, a publicly elected body which manages the Stornoway Trust Estate on behalf of the local community.

The local community stands to benefit as follows:

  • Community benefit payments currently estimated at £900,000 per annum, which would go to an independent trust to distribute to local projects and organisations
  • Annual rental payments to local crofters and the Stornoway Trust – which we estimate could total more than £1.3m, depending on the CfD Strike Price secured and the wind farm’s energy output
  • Stornoway Wind Farm is the largest of the three consented wind farm projects with a grid connection in place and is therefore key to the needs case for a new grid connection with the mainland.  Indeed, the UK energy regulator Ofgem has stated that it will support the delivery of a new 450MW cable if the Stornoway and Uisenis projects are successful in this year’s Contract for Difference allocation round.

Note the last point, where only the Stornoway wind farm was successful.

The Uisenis Wind Farm

This press release from EDF Energy is entitled Lewis Wind Power Buys Uisenis Wind Farm, gives these details of the sale.

Lewis Wind Power (LWP), a joint venture between Amec Foster Wheeler and EDF Energy Renewables has bought the Uisenis Wind Farm project on the Isle of Lewis. The wind farm has planning consent for the development of 45 turbines with a maximum capacity of 162 MW. This would be enough to power 124,000 homes and would be the biggest renewable energy development on the Western Isles.

LWP owns the Stornoway Wind Farm project located around 20km to the north of Uisenis which has planning consent to develop 36 turbines to a maximum capacity of 180 MW – enough to power 135,000 homes.

This would bring Stornoway and Uisenis wind farms under the similar ownership structures.

This is a significant paragraph in the press release.

On behalf of Eishken Limited, the owner of the site where the Uisenis Wind Farm will be located, Nick Oppenheim said: “I am delighted that LWP are taking forward the wind farm. The resources available on the Eishken estate, and the Western Isles in general, means that it is an excellent location for renewable energy projects and, as such, the company is also developing a 300MW pumped storage hydro project immediately adjacent to the Uisenis wind farm. With such potential for renewables and the positive effect they will have on the local community, economy, and the UK as a whole I am are looking forward to positive news on both support for remote island projects and the interconnector.”

Note the mention of pumped storage.

This article on the BBC is entitled Pumped Storage Hydro Scheme Planned For Lewis, where this paragraph introduces the scheme.

A pumped storage hydro scheme using sea water rather than the usual method of drawing on freshwater from inland lochs has been proposed for Lewis.

The only other information is that it will provide 300 MW of power, but nothing is said about the storage capacity.

It looks like Lewis will have a world-class power system.

Mossy Hill And Beaw Field Wind Farms

Mossy Hill near Lerwick and Beaw Field in Yell are two Shetland wind farms being developed by Peel L & P.

This press release from Peel L & P is entitled Government Support For Two Shetland Wind Farms, where these are the first two paragraphs.

Plans for two onshore wind farms on the Shetland Islands which would help meet Scotland’s targets for renewable energy production are a step closer to being delivered after receiving long-term Government support.

Clean energy specialists Peel NRE has been successful in two bids in the Department for Business, Energy and Industrial Strategy’s (BEIS) Contracts for Difference (CfD) scheme; one for its Mossy Hill wind farm near Lerwick and the other for Beaw Field wind farm in Yell.

It looks like the two wind farms will power 130,000 houses and are planned to be operational in 2027.

Conclusion

Only time will tell, if the concept of Remote Island Wind works well.

July 8, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , | 6 Comments

Sizewell C Nuclear Power Station: Government To Take 20% Stake

The title of this post, is the same as that of this article on the BBC.

This is the first three paragraphs.

The government plans to take a 20% stake in a £20bn large-scale nuclear plant at Sizewell, the BBC has learned.

French developer EDF will also take a 20% stake in the Suffolk power station.

Ministers hope the confirmation of two cornerstone investors will encourage infrastructure investors and pension funds to take up the remaining 60%.

I used to live near Sixewell and the general feeling of local Suffolk people is not particularly against having nuclear power stations in their back yards.

There are several small points in favour of  Sizewell C.

  • Sizewell has been operating nuclear power plants safely since the 1960s.
  • Leiston, which is the nearest town, has a very strong engineering tradition.
  • Leiston also improved by several notches during the building of Sizewell B.
  • The site is accessible by rail and possibly sea with the right ship.
  • Nuclear fuel can be brought in and out by train.
  • If they spent a small amount on the train service to Saxmundham, construction workers could come in by train.
  • Sizewell C has been proposed to be used to generate hydrogen for Freeport East at the Ports of Harwich an Felixstowe.
  • The power cable to take electricity from Sizewell C towards London is already built.
  • Sizewell is much more convenient to get to from London, than other possible nuclear sites.

Overall, I feel that Sizewell is a good place for nuclear power station.

On the other hand, there are these points against the station.

  • There will be at least 6.7 GW of wind farms built off the East Anglian coast before Sizewell C is completed.
  • There may be substantial objection to the new power station.
  • Large nuclear power stations are rarely built to time and on budget.
  • I feel that if we go the nuclear route, that small modular nuclear reactors may be better.

I can understand why Governments like Sizewell as a nuclear power station site.

March 27, 2022 Posted by | Energy | , , , | 1 Comment

EDF Renewables Eyes 50MW Solar Farm To Power Green Hydrogen Development In Teesside

The title of this post, is the same as that of this article on Solar Power Portal.

These are the first two paragraphs.

EDF Renewables is looking to develop a 49.9MW solar farm to power a new green hydrogen production facility in Teesside.

Working together with Hynamics, a subsidiary of the EDF Group specialising in hydrogen, the companies are planning to develop a 30-50MW electrolyser, which will subsequently be scaled to over 500MW in line with emerging demand.

They are working with PD Ports and British Steel.

Teesside is certainly getting the green hydrogen it needs, as there is also a 400 MW hydrogen project on Teesside, that I wrote about in BP Plans To Turn Teesside Into First Green Hydrogen Hub.

March 15, 2022 Posted by | Hydrogen | , , , , , , | Leave a comment

“Game-Changing” Long-Duration Energy Storage Projects To Store Power In Hydrogen, Compressed Air And Next-Gen Batteries Win UK Government Backing

The title of this post, is the same as that of this press release from EDF.

These are the first two paragraphs.

EDF UK has received £2 million in funding from the Department for Business, Energy & Industrial Strategy (BEIS) to support four innovative methods of storing energy for longer periods of time.

The four longer-duration energy storage demonstration projects will help to achieve the UK’s plan for net zero by balancing the intermittency of renewable energy, creating more options for sustainable, low-cost energy storage in the UK.

These are the projects.

Tech Transfer And Modification Of Metal Hydride Storage Used In Fusion Sector For Hydrogen (Protium) Storage

The project is described like this in the press release.

The first project will store electricity as hydrogen in a chemical form using depleted uranium hydride (UH3). The project will utilise Urenco’s depleted uranium liability – a waste product from fuel production and reprocessed spent MOX fuel – to safely store hydrogen as UH3, which has approximately twice the volumetric energy density as liquid H2. The project will see EDF R&D lead a consortium combining expertise in engineering and materials from University of Bristol, operating metal hydride storage at UKAEA and handling depleted uranium from Urenco.

Sounds like a good project. Especially, as it finds a use for Urenco‘s depleted uranium.

Pivot Power

Pivot Power, part of EDF Renewables, will work on two projects.

  • Delivering Power On Demand From Solar PV Using 40MWh Vanadium Flow Battery Storage System
  • Accelerate Commercialisation Of Zinc-Based Battery Storage

The first project was described in Longer Duration Energy Storage Demonstration Programme, Stream 1 Phase 1: Details Of Successful Projects.

This is what EDF says about the two projects which are linked.

Pivot Power, part of EDF Renewables, will support the delivery of two demonstration projects. The first project, delivered in partnership with Invinity Energy Systems plc (AIM:IES), will establish the feasibility of developing one of the UK’s largest storage-enabled solar power resources. If selected, Phase Two of this project, which includes a utility-scale 10 MW / 40 MWh Invinity Vanadium Flow Battery, would receive funding under the programme.

Pivot Power will also work alongside e-Zinc, with support from Frontier Economics, to ‘metalize energy’, deploying breakthrough technology that stores energy in zinc, an inexpensive and widely available metal that has a high energy density.

I’m a believer in storing energy in zinc, until it is proven, it’s not a good method.

The final project was also described in Longer Duration Energy Storage Demonstration Programme, Stream 1 Phase 1: Details Of Successful Projects.

The EDF press release adds this.

The final project will explore how electricity, converted into compressed air, can be stored in EDF’s existing gas storage facilities, where EDF Thermal Generation and R&D will partner with io consulting and Hydrostor.

I have a good feeling about this project.

February 24, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , | Leave a comment

Longer Duration Energy Storage Demonstration Programme, Stream 1 Phase 1: Details Of Successful Projects

The title of this post, is the same as that of this document from the UK Government.

This is the introduction.

Stream 1 aims to accelerate commercialisation of innovative longer duration energy storage projects through to actual demonstrations. During Phase 1, projects will be expected to mobilise their proposed technologies to prepare for potential deployment on the UK energy system.

These are the projects.

Ballylumford Power-to-X

This is the description of this project in Northern Ireland.

B9 Energy Storage will receive £986,082 to mobilise a 20MW membrane free electrolyser green hydrogen project. Using otherwise curtailed wind power, hydrogen produced will be stored in local underground salt caverns for later use as a fuel in transport and electricity sectors, creating a full-cycle hydrogen economy (production, storage, distribution and usage) on site.

Note.

Ballylumford power station is a 600 MW gas-fired power station, that provides half of Northern Ireland’s electricity.

A 20 MW electrolyser will produce just under nine tonnes of hydrogen per day.

This Google Map shows the location of the power station opposite the port of Larne.

Note.

Ballylumford power station is clearly visible to the East of the channel towards the bottom of the map.

Ballylumford is also the Irish end of the HVDC Moyle interconnector from Scotland, which has a capacity of 500 MW.

Ballylumford would appear to have enough power for a large electrolyser.

Salt Beds In Northern Ireland

This document on the British Geological Survey web site is entitled Geological Storage In Northern Ireland.

The document discusses Irelands energy needs and gives a good description of using compressed air energy storage in salt caverns.

Then these two paragraphs describe the salt bed in Northern Ireland compare them to other deposits under Great Britain.

Thick halite deposits, found both onshore in Northern Ireland and immediately offshore in the North Channel, offer potential for salt cavern storage facilities. The salt deposits occur as bedded deposits with minor halokinesis (geological movement of salt) forming salt swells rather than pillows or domes so that the height of any cavern may be restricted by bed thickness. Pure salt beds tend to be thin (approximately 100-250 metres maximum thickness) compared to those used elsewhere and the presence of significant insoluble impurities and minor intrusive dolerite dykes or sills may reduce their suitability.

The Larne and Carrickfergus area of County Antrim is the only part of the whole island where thick salt beds occur. Elsewhere in the UK parts of Cheshire, Lancashire, Teesside, Humberside and Dorset have similar, or thicker, developments of salt beds and gas storage facilities are either in construction, or are already in operation.

It would appear that the thick salt beds in the Larne and Carrickfergus area could be suitable for gas storage.

Ballylumford might actually be on top of the salt beds, as Carrickfergus is a few miles to the South.

On a personal note, I used to work for ICI Mond Division and during that time and immediately afterwards, I met many people, who had been into the salt mines and worked with boreholes extracting the salt and the one thing everybody said about the salt mine, was that water must not get in.

Membrane-Free Electrolysis

I saw this in operation when I worked at ICI Mond. Most of their hydrogen and chlorine was produced using the main Castner-Kellner process at Castner-Kellner works in Runcorn. That is a nasty process that uses a lot of mercury, which got into the air and plant operators’ bodies.

But ICI also had a much smaller plant, where they used simple electrolysers, that had a metal cell, with a concrete top, with the anode and cathode going through the concrete into the brine. I seem to remember that its main purpose was to provide mercury-free hydrogen, chlorine and sodium hydroxide. I can remember seeing workers rebuilding the cells, as was done on a regular basis.

These were membrane free electrolysers and had been running successfully for many years.

Searching the Internet for “membrane free electrolyser” I found a company in Doncaster called CPH2.

The home page on their web site declares

Clean Power Hydrogen are the manufacturers of the unique Membrane-Free Electrolyser

Turning to the About page, this is said.

Being passionate about hydrogen as clean energy for the future, we wanted to find an alternative to PEM electrolysers as these had barriers to adoption. We realised that the cleanest way to produce hydrogen was by membrane-free water electrolysis, and in doing so, it would be a less expensive and more robust technology.

Dr. Nigel Williamson and Joe Scott established CPH2 (Ireland) in 2012 with the ambition to help clean up the environment for our children and future generations. Entering the green technology sector; a high growth and profitable market, they developed a Membrane-Free Electrolyser™ to produce hydrogen faster, more reliably, and more cost-effectively than other electrolysers.

They also have the ambition to be leading developer and manufacturer of green hydrogen technologies and an Irish connection.

My experience says that their technology will work. Especially, with the application of modern materials.

Have the Government backed the Ballylumford Power-to-X project, as they can back two promising technologies with one grant?

GraviSTORE

This is the description of this project.

Gravitricity Limited will receive £912,410.84 to design their multiweight energy store demonstrator project, which will store and discharge energy by lifting and lowering multiple weights in a vertical underground shaft.

Note.

  1. I like the Gravitricity concept and have invested through crowdfunding.
  2. The project will be based on a brownfield site in Northern England.
  3. Gravitricity’s current demonstrator in Edinburgh, which I wrote about in Gravitricity Celebrates Success Of 250kW Energy Storage Demonstrator, only uses a single weight, but this project talks about multiple weights.

According to other sources on the Internet, the demonstrator will have a storage capacity of 4 MWh and will be built on a brownfield site.

Will we see Gravitricity coming to a disused deep coal mine near you?

Long Duration Offshore Storage Bundle

This is the description of this project.

Subsea 7 Limited and FLASC B.V. will receive £471,760.00 to further develop the Long Duration Offshore Storage Bundle which will store energy as a combination of pressurised seawater and compressed air, using an innovative hydro-pneumatic technology.

Note.

  1. Subsea 7 Limited are a subsea engineering, construction and services company serving the offshore energy industry, domiciled in Luxembourg with headquarters in London.
  2. According to their web site, FLASC B.V. is a spin-off of the University of Malta, established in The Netherlands in 2019.

On the page on the FLASC web site, which is labelled The Technology, this is said.

FLASC is an energy storage device that can be integrated directly into a floating offshore platform. Energy is stored using a hydro-pneumatic liquid piston, driven by a reversible pump-turbine.

Charging Mode: electricity is used to pump water into a closed chamber containing pre-charged air.

Discharging Mode: the pressurised water is released through a hydraulic turbine to generate electricity.

FLASC leverages existing infrastructure and supply chains, along with the marine environment itself as a natural heatsink, resulting in a safe, reliable and cost-effective solution.

There is also this video.

The news page on the FLASC web site is a comforting read.

My knowledge of modelling vessel systems for chemical plants, tells my brain to like it.

Vanadium Flow Battery Longer Duration Energy Asset Demonstrator

This is the description of this project.

Invinity Energy Systems will receive £708,371 to demonstrate how a 40 MWh Vanadium Flow Battery could deliver long duration storage-enabled power on demand from UK-based solar generation.

Note.

  1. I wrote about Invinity Energy Systems in UK’s Pivot Power Sees First Battery On Line By 2021.
  2. Invinity Energy Systems was formed by a merger of RedT and Avalon Battery.
  3. The project appears to be located at Bathgate in Scotland.

This picture from EdF shows a large vanadian flow battery.

Invinity Energy Systems flow battery at Energy Superhub Oxford

If this project works out, vanadium flow batteries would be a good replacement for lithium-ion batteries.

Cheshire Energy Storage Centre

This is the description of this project.

io consulting will receive £1 million to enable its consortium to develop an electricity storage facility which could use mothballed EDF gas cavities in Cheshire utilising Hydrostor’s Advanced Compressed Air Energy Storage technology

Note.

  1. This is another project based on salt caverns.
  2. I wrote about Canadian company; Hydrostor in Gigawatt-Scale Compressed Air: World’s Largest Non-Hydro Energy-Storage Projects Announced.
  3. Hydrostor have received at least one large order for their system.

I have put Hydrostor on my list of tecnologies that should make it.

Conclusion

This is a well-balanced list of projects.

I would rate success as follows.

  • Ballylumford Power-to-X – 60 %
  • GraviSTORE – 80 %
  • Long Duration Offshore Storage Bundle – 60 %
  • Vanadium Flow Battery Longer Duration Energy Asset Demonstrator – 70 %
  • Cheshire Energy Storage Centre – 80 %

But then all these projects are a bit of a gamble

 

February 24, 2022 Posted by | Energy, Energy Storage, Finance | , , , , , , , , , , , , | 2 Comments

Is There A Need For A Norfolk-Suffolk Interconnector?

The coast of East Anglia from the Wash to the Haven Ports of Felixstowe, Harwich and Ipswich is becoming the Energy Coast of England.

Starting at the Wash and going East and then South, the following energy-related sites or large energy users are passed.

Bicker Fen Substation

Bicker may only be a small hamlet in Lincolnshire, but it is becoming increasingly important in supplying energy to the UK.

Nearby is Bicker Fen substation, which connects or will connect the following to the National Grid.

  • The 26 MW Bicker Fen onshore windfarm.
  • The 1,400 MW interconnector from Denmark called Viking Link.
  • The proposed 857 MW offshore wind farm Triton Knoll.

This Google Map shows the location of Bicker Fen with respect to The Wash.

Bicker Fen is marked by the red arrow.

The Google Map shows the substation.

It must be sized to handle over 2 GW, but is it large enough?

Dudgeon Offshore Wind Farm

The Dudgeon offshore wind farm is a 402 MW wind farm, which is twenty miles off the North Norfolk coast.

  • It has 67 turbines and an offshore substation.
  • It is connected to the shore at Weybourne on the coast from where an underground cable is connected to the National Grid at Necton.
  • It became operational in Oct 2017.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This Google Map shows the location of Weybourne on the coast.

Note.

  1. Weybourne is in the middle on the coast.
  2. Sheringham is on the coast in the East.
  3. Holt is on the Southern edge of the map almost South of Weybourne.

This second map shows the location of the onshore substation at Necton, with respect to the coast.

Note.

  1. The Necton substation is marked by a red arrow.
  2. Holt and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Necton and Weybourne are 35 miles apart.

Digging in the underground cable between Necton and Weybourne might have caused some disruption.

Looking at Weybourne in detail, I can’t find anything that looks like a substation. So is the Necton substation connected directly to Dudgeon’s offshore substation?

Sheringham Shoal Offshore Wind Farm

The Sheringham Shoal offshore wind farm is a 316.8 MW wind farm, which is eleven miles off the North Norfolk coast.

  • It has 88 turbines and two offshore substations.
  • As with Dudgeon, it is connected to the shore at Weybourne on the coast.
  • But the underground cable is connected to an onshore substation at Salle and that is connected to the National Grid at Norwich.
  • It became operational in Sept 2012.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This second map shows the location of the onshore substation at Salle, with respect to the coast.

Note.

  1. The Salle substation is marked by a red arrow.
  2. Holt, Weybourne and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Salle and Weybourne are 13.5 miles apart.

Could the following two statements be true?

  • As the Sheringham Shoal wind farm was built first, that wind farm was able to use the shorter route.
  • It wasn’t built large enough to be able to handle the Dudgeon wind farm.

The statements would certainly explain, why Dudgeon used a second cable.

Extending The Dudgeon And Sheringham Shoal Wind Farms

Both the Dudgeon And Sheringham Shoal web sites have details of the proposed join extension of both wind farms.

This is the main statement on the Overview page.

Equinor has been awarded an Agreement for Lease by the Crown Estate, the intention being to seek consents to increase the generating capacity of both the Sheringham Shoal Offshore Wind Farm and the Dudgeon Offshore Wind Farm.

They then make three points about the development.

  • Equinor is proposing a joint development of the two projects with a common transmission infrastructure.
  • As part of the common DCO application, the Extension Projects have a shared point of connection at the National Grid Norwich Main substation.
  • These extension projects will have a combined generating capacity of 719MW which will make an important contribution to the UK’s target of 30GW of electricity generated by offshore wind by 2030.

This statement on the Offshore Location page, describes the layout of the wind farms.

The Sheringham Shoal Offshore Wind Farm extension is to the north and the east of the existing wind farm, while its Dudgeon counterpart is to the north and south east of the existing Dudgeon Offshore Wind Farm site. The proposed extension areas share the boundaries with its existing wind farm site.

They then make these two important points about the development.

  • Equinor is seeking to develop the extension project with a joint transmission infrastructure. A common offshore substation infrastructure is planned to be located in the Sheringham Shoal wind farm site.
  • The seabed export cable which will transmit the power generated by both wind farm extensions will make landfall at Weybourne.

There is also this map.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. The Sheringham Shoal Extension is outlined in red.
  3. The Dudgeon Extension is outlined in blue.
  4. The black lines appear to be the power cables.

I suspect the dotted blue lines are shipping routes sneaking their way through the turbines.

This statement on the Onshore Location page, describes the layout of the offshore and onshore cables.

A new seabed export cable will bring the electricity generated by both the Sheringham Shoal and Dudgeon Offshore Wind Farm extensions to shore at Weybourne, on the coast of Norfolk.

They then make these two important points about the development.

  • From there a new underground cable will be installed to transmit that power to a new purpose built onshore substation, which will be located within a 3km radius of the existing Norwich main substation, south of Norwich. This will be the National Grid network connection point for the electricity from both wind farm extensions.
  • The power will be transmitted from landfall to the substation using an HVAC system which eliminates the need for any relay stations along the onshore cable route.

There is also this map.

It will be a substantial undertaking to build the underground cable between Weybourne and South of Norwich.

Bacton Gas Terminal

The Bacton gas terminal is a complex of six gas terminals about ten miles East of Cromer.

  • It lands and processes gas from a number of fields in the North Sea.
  • It hosts the UK end of the BBL pipeline to The Netherlands.
  • It hosts the UK end of the Interconnector to Zeebrugge in Belgium.
  • The Baird and Deborah fields, which have been developed as gas storage, are connected to the gas terminal. They are both mothballed.

This Google Map shows the location of the terminal.

Note.

  1. The Bacton gas terminal is marked by a red arrow.
  2. Sheringham is in the North West corner of the map.
  3. Cromer, Overstrand, Trimingham and Mundesley are resort towns and villages along the coast North of Bacton.

This second map shows the Bacton gas terminal in more detail.

Would you want to have a seaside holiday, by a gas terminal?

Norfolk Boreas And Norfolk Vanguard

Norfolk Boreas and Norfolk Vanguard are two wind farms under development by Vattenfall.

  • Norfolk Boreas is a proposed 1.8 GW wind farm, that will be 45 miles offshore.
  • Norfolk Vanguard is a proposed 1.8 GW wind farm, that will be 29 miles offshore.

This map shows the two fields in relation to the coast.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. Norfolk Boreas is outlined in blue.
  3. Norfolk Vsnguard is outlined in orange.
  4. Cables will be run in the grey areas.

This second map shows the onshore cable.

Note.

  1. The cables are planned to come ashore between Happisburgh and Eccles-on-Sea.
  2. Bacton gas terminal is only a short distance up the coast.
  3. The onshore cable is planned to go from here across Norfolk to the Necton substation.

But all of this has been overturned by a legal ruling.

This article on the BBC is entitled Norfolk Vanguard: Ministers Wrong Over Wind Farm Go-Ahead, Says Judge.

These are the first four paragraphs.

A High Court judge has quashed permission for one of the world’s largest offshore wind farms to be built off the east coast of England.

The Norfolk Vanguard Offshore Wind Farm was granted development consent in July by the Secretary of State for Business, Energy and Industrial Strategy (BEIS).

But Mr Justice Holgate overturned the decision following legal action from a man living near a planned cable route.

A Department for BEIS spokeswoman said it was “disappointed by the outcome”.

I bet the spokeswoman was disappointed.

Vattenfall and the BEIS will go back to the drawing board.

But seriously, is it a good idea to dig an underground cable all the way across Norfolk or in these times build a massive overhead cable either?

Perhaps the solution is to connect the Norfolk Boreas And Norfolk Vanguard wind farms to a giant electrolyser at Bacton, which creates hydrogen.

  • The underground electricity cable across Norfolk would not be needed.
  • Bacton gas terminal is only a few miles up the coast from the cable’s landfall.
  • The UK gets another supply of gas.
  • The hydrogen is blended with natural gas for consumption in the UK or Europe.
  • A pure hydrogen feed can be used to supply hydrogen buses, trucks and other vehicles, either by tanker or pipeline.
  • Excess hydrogen could be stored in depleted gas fields.

The main benefit though, would be that it would transform Bacton gas terminal from a declining asset into Norfolk’s Hydrogen Powerhouse.

Great Yarmouth And Lowestoft

Great Yarmouth Outer Harbour and the Port of Lowestoft have not been the most successful of ports in recent years, but with the building of large numbers of wind farms, they are both likely to receive collateral benefits.

I wouldn’t be surprised to see the support ships for the wind farms switching to zero-carbon power, which would require good electrical connections to the ports to either charge batteries or power electrolysers to generate hydrogen.

Sizewell

Sizewell has only one nuclear power station at present; Sizewell B, but it could be joined by Sizewell C or a fleet of Small Modular Reactors (SMR).

The Sizewell Overhead Transmission Line

Sizewell also has a very high capacity overhead power line to Ipswich and the West.

I doubt, it would be possible to build an overhead transmission line like this today.

Sizewell And Hydrogen

EdF, who own the site are involved with Freeport East and may choose to build a large electrolyser in the area to create hydrogen for the Freeport.

East Anglia Array

The East Anglia Array will be an enormous wind farm., comprising up to six separate projects.

It will be thirty miles offshore.

It could generate up to 7.2 GW.

The first project East Anglia One is in operation and delivers 714 MW to a substation in the Deben Estuary, which connects to the Sizewell high-capacity overhead power line.

Most projects will be in operation by 2026.

Freeport East

As the Freeport develops, it will surely be a massive user of both electricity and hydrogen.

Problems With The Current Electricity Network

I don’t believe that the current electricity network, that serves the wind farms and the large energy users has been designed with the number of wind farms we are seeing in the North Sea in mind.

Every new windfarm seems to need a new connection across Norfolk or Suffolk and in Norfolk, where no high-capacity cables exist, this is stirring up the locals.

There is also no energy storage in the current electricity network, so at times, the network must be less than efficient and wind turbines have to be shut down.

Objections To The Current Policies

It is not difficult to find stories on the Internet about objections to the current policies of building large numbers of wind farms and the Sizewell C nuclear power station.

This article on the East Anglia Daily Times, which is entitled Campaigners Unite In Calling For A Pause Before ‘Onslaught’ Of Energy Projects ‘Devastates’ Region is typical.

This is the first paragraph.

Campaigners and politicians have called on the Government to pause the expansion of the energy industry in Suffolk, which they fear will turn the countryside into an “industrial wasteland” and hit tourism.

The group also appear to be against the construction of Sizewell C.

I feel they have a point about too much development onshore, but I feel that if the UK is to thrive in the future we need an independent zero carbon energy source.

I also believe that thousands of wind farms in the seas around the UK and Ireland are the best way to obtain that energy.

Blending Hydrogen With Natural Gas

Blending green hydrogen produced in an electrolyser  with natural gas is an interesting possibility.

  • HyDeploy is a project to investigate blending up to 20 % of green hydrogen in the natural gas supply to industrial and domestic users.
  • Partners include Cadent, ITM Power, Keele University and the Health and Safety Executive.
  • Natural gas naturally contains a small amount of hydrogen anyway.
  • The hydrogen gas would be distributed to users in the existing gas delivery network.

I wrote about HyDeploy in a post called HyDeploy.

Thje only loser, if hydrogen were to be blended with natural gas would be Vlad the Poisoner, as he’d sell less of his tainted gas.

An Interconnector Between Bicker Fen And Freeport East

I believe that an electricity interconnector between at least Bicker Fen and Freeport East could solve some of the problems.

My objectives would be.

  • Avoid as much disruption on the land as possible.
  • Create the capacity to deliver all the energy generated to customers, either as electricity or hydrogen.
  • Create an expandable framework, that would support all the wind farms that could be built in the future.

The interconnector would be a few miles offshore and run along the sea-bed.

  • This method of construction is well proven.
  • It was used for the Western HVDC Link between Hunterston in Scotland and Connah’s Quay in Wales.
  • Most wind farms seem to have existing substations and these would be upgraded to host the interconnector.

Connections en route would include.

Dudgeon Offshore Wind Farm

The interconnector would connect to the existing offshore substation.

Sheringham Shoal Wind Farm

The interconnector would connect to the existing offshore substation.

Dudgeon and Sheringham Shoal Extension Offshore Wind Farms

These two wind farms could be connected directly to the interconnector, if as planned, they shared an offshore substation in the Sheringham Shoal Extension offshore wind farm.

Bacton Gas Terminal

I would connect to the Bacton Gas Terminal, so that a large electrolyser could be installed at the terminal.

The hydrogen produced could be.

  • Stored in depleted gas fields connected to the terminal.
  • Blended with natural gas.
  • Exported to Europe through an interconnector.
  • Supplied to local users by truck or pipeline.

After all, the terminal has been handling gas for over fifty years, so they have a lot of experience of safe gas handling.

Norfolk Boreas And Norfolk Vanguard

These two wind farms could be connected directly to the interconnector, if they shared an offshore substation.

It would also help to appease and silence the objectors, if there was no need to dig up half of Norfolk.

Great Yarmouth And Lowestoft

It might be better, if these ports were supplied from the interconnector.

  • Either port could have its own electrolyser to generate hydrogen, which could be.
  • Used to power ships, trucks and port equipment.
  • Liquefied and exported in tankers.
  • Used to supply local gas users.
  • Hydrogen could be supplied to a converted Great Yarmouth power station.

Both Great Yarmouth and Lowestoft could become hydrogen hub towns.

Sizewell

This site has a high-capacity connection to the National Grid. This connection is a big eyesore, but it needs to run at full capacity to take electricity from the Energy Coast to the interior of England.

That electricity can come from Sizewell B and/or Sizewell C nuclear power stations or the offshore wind farms.

East Anglia Array

There would probably need to be a joint offshore substation to control the massive amounts of electricity generated by the array.

Currently, the only wind farm in operation of this group is East Anglia One, which uses an underground cable connection to the Sizewell high-capacity connection to the Bullen Lane substation at Bramford.

Freeport East, Ipswich And Bullen Lane Substation

This Google Map shows the area between Ipswich and the coast.

Note.

  1. Sizewell is in the North-East corner of the map.
  2. Felixstowe, Harwich and Freeport East are at the mouth of the rivers Orwell and Stour.
  3. The Bullen Lane substation is to the West of Ipswich and shown by the red arrow.

I would certainly investigate the possibility of running an underwater cable up the River Orwell to connect the Southern end of the interconnector Between Bicker Fen And Freeport East.

This Google Map shows the Bullen Lane Substation.

It looks impressive, but is it big enough to handle all the electricity coming ashore from the offshore wind farms to the East of Suffolk and the electricity from the power stations at Sizewell?

Conclusion

I believe there are a lot of possibilities, that would meet my objectives.

In addition, simple mathematics says to me, that either there will need to be extra capacity at both Bicker Fen and Bullen Lane substations and onward to the rest of the country, or a large electrolyser to convert several gigawatts of electricity into hydrogen for distribution, through the gas network.

 

 

January 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Hydrogen Train Refuelling Standard To Be Developed

The title of this post, is the same as that of this article on Railway Gazette.

This is the first paragraph.

A agreement to optimise hydrogen refuelling equipment for passenger trains and define an international standard has been signed by Alstom and the Hynamics hydrogen subsidiary of French energy group EDF.

This can only be a good thing.

November 21, 2021 Posted by | Hydrogen, Transport/Travel | , , , | Leave a comment

Felixstowe And Harwich Ports Submit Bid For ‘Freeport’ Status

The title of this post is the same as this article on the BBC.

These are the first three paragraphs.

A bid for “freeport” status for two existing ports has been submitted after the project was approved by a council.

East Suffolk Council unanimously backed the bid for the Port of Felixstowe and Harwich International to become one of 10 freeport facilities across the UK.

Freeport East would see owners Hutchison operate a single custom zone covering both coastal ports.

I think, some will think this a bit cheeky, but I think it is a product of the characters of the counties of Essex and Suffolk.

I was conceived in Suffolk and have probably spent half my life in the county.

It’s a county that thinks big.

  • Is there another woman, who as Boudica did, assembled an army of hundreds of thousands and attempted to throw an unwelcome invader out of her country?
  • The history of her tribe; the Iceni is closely tied, according to some historians, to the development of the thoroughbred racehorse at New Horse Market or Newmarket as it is known today!
  • Newmarket is to horse racing as St. Andrews is to golf.
  • The town is home of about 3,500 horses and is a major centre for horse and animal health.
  • Newmarket Heath is a Site of Special Scientific Interest and is to be the largest area of mown grass in the world.
  • Suffolk sheep are one of the most numerous sheep breeds in the world, having been exported all over the world.
  • Suffolk is the only county in England with its own breed of sheep, cattle (Red Poll) and horse (Suffolk Horse)
  • Bury St. Edmunds Abbey was one of the largest churches in England.

When I was about seven, the Port of Felixstowe was just a small dock exporting grain and now it the busiest container port in the UK and the eighth in Europe.

It is no surprise to me, that Felixstowe and Harwich want to be a Freeport, so they can expand further.

There have already been related news and media reports.

Freeport East Web Site

The Freeport East web site is at www.freeporteast.com.

Read these sections.

It is an ambitious vision. As someone, who believes we must innovate, this paragraph from the Innovation section strikes the right tone.

Beyond the energy sector, Freeport East will also contribute to wider innovation in the technology sector. Hutchison Ports is already working with Cambridge University and Three UK to develop innovative 5G applications. Hutchison Ports is also working with the New Anglia LEP, Tech East and BT’s research centre at Adastral Park on new telecommunications infrastructure. Freeport East will embed these technological innovations at its heart and help to make the UK a world leader in technological innovation

The web site, also talks about the ports becoming major centres for the development and servicing of renewable energy in the North Sea.

A Little Help From Their Friends

I notice that in some reports, they have joined forces with the University of Cambridge. As Cambridge colleges are big local landowners, this can only be to the benefit of the concept.

A Hydrogen Freeport

This article on the Eadt Anglian Daily Times is entitled Top Ports Could Be Powered By Hydrogen In Major Project.

The project is well-described in the article with this infographic, that shows how nuclear power from Siewell and wind power from the North Sea can come together to decarbonise shipping and the port.

This paragraph sums up the hydrogen project.

At its peak, the power project, which will be delivered in partnership with Ryze-Hydrogen and EDF, developers of the proposed Sizewell C nuclear power station, will produce 1GW of hydrogen – 20% of the 5GW target in the Prime Minister’s Ten Point Plan for a Green Industrial Revolution.

Suffolk is thinking big again!

It certainly does appear, that several ports are following the hydrogen route. On this blog I have mentioned Antwerp, Holyhead and Portsmouth recently.

So what will the hydrogen be used for?

The East Anglian article says this.

The clean fuel would be used to power port equipment, ships, trucks and trains.

Port Equipment

I think the interesting one is port equipment.

  • The chairman of JCB is Anthony Bamford.
  • His son; Jo Bamford owns Ryze Hydrogen.
  • JCB have recently released a hydrogen-powered digger.
  • JCB is mentioned on the infographic.

Could we be seeing a range of hydrogen-powered port equipment, that has been developed by JCB?

Other companies like Hyster are certainly developing hydrogen-powered port equipment.

Ships

Decarbonisation of ships is difficult, as they need a lot of power and it usually comes from that most noxious of fuels; bunker oil.

The Wikipedia entry for bunker oil, has a section called Environmental Issues, where this is said.

Emissions from bunker fuel burning in ships contribute to air pollution levels in many port cities, especially where the emissions from industry and road traffic have been controlled. The switch of auxiliary engines from heavy fuel oil to diesel oil at berth can result in large emission reductions, especially for SO2 and PM. CO2 emissions from bunker fuels sold are not added to national GHG emissions. For small countries with large international ports, there is an important difference between the emissions in territorial waters and the total emissions of the fuel sold.

A lot of work is being done to power ships with hydrogen.

Provide refuelling for hydrogen-powered ships and you’ll get the business.

Trucks

Diesel trucks hauling goods to and from ports contribute to the pollution in the port, but if they are powered by hydrogen, the pollution for workers and neighbours is less.

I can see some freight terminals adopting a policy of No Hydrogen – No Load, with hauliers.

In Holyhead Hydrogen Hub Planned For Wales, I talked about a hydrogen hub at Holyhead. Will the ports of Dover, Felixstowe and Immingham need to have hydrogen refuelling facilities to handle hydrogen trucks hauling goods between the island of Ireland and Europe?

Trains

It is my belief, that hydrogen freight locomotives will be developed, so Felixstowe will need facilities to fuel the trains.

Imagine two highly-automated ports at Felixstowe and Holyhead, both with large supplies of hydrogen.

  • A hydrogen-powered freight train would link the two ports.
  • Hydrogen-powered handling equipment would load and unload the containers.

How many trucks would that take off the roads between Holyhead and Felixstowe?

Conclusion

The Port of Felixstowe is going to use hydrogen to become more efficient and zero-carbon, and make it more attractive to shippers wanting to pay more than lip-service to decarbonisation.

The EU have constantly accused Boris of turning the UK into Singapore-on-Thames!

But here we are creating Singaport-on-the-Haven.

The EU has freeports, so I guess it’s OK.

February 20, 2021 Posted by | Hydrogen, Transport/Travel, World | , , , , , , , , , , | 4 Comments